2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
Commit Graph

1099 Commits

Author SHA1 Message Date
Andrey Ignatov
1d11b3016c bpf: Introduce bpf_sysctl_get_current_value helper
Add bpf_sysctl_get_current_value() helper to copy current sysctl value
into provided by BPF_PROG_TYPE_CGROUP_SYSCTL program buffer.

It provides same string as user space can see by reading corresponding
file in /proc/sys/, including new line, etc.

Documentation for the new helper is provided in bpf.h UAPI.

Since current value is kept in ctl_table->data in a parsed form,
ctl_table->proc_handler() with write=0 is called to read that data and
convert it to a string. Such a string can later be parsed by a program
using helpers that will be introduced separately.

Unfortunately it's not trivial to provide API to access parsed data due to
variety of data representations (string, intvec, uintvec, ulongvec,
custom structures, even NULL, etc). Instead it's assumed that user know
how to handle specific sysctl they're interested in and appropriate
helpers can be used.

Since ctl_table->proc_handler() expects __user buffer, conversion to
__user happens for kernel allocated one where the value is stored.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-12 13:54:58 -07:00
Andrey Ignatov
808649fb78 bpf: Introduce bpf_sysctl_get_name helper
Add bpf_sysctl_get_name() helper to copy sysctl name (/proc/sys/ entry)
into provided by BPF_PROG_TYPE_CGROUP_SYSCTL program buffer.

By default full name (w/o /proc/sys/) is copied, e.g. "net/ipv4/tcp_mem".

If BPF_F_SYSCTL_BASE_NAME flag is set, only base name will be copied,
e.g. "tcp_mem".

Documentation for the new helper is provided in bpf.h UAPI.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-12 13:54:58 -07:00
Andrey Ignatov
7b146cebe3 bpf: Sysctl hook
Containerized applications may run as root and it may create problems
for whole host. Specifically such applications may change a sysctl and
affect applications in other containers.

Furthermore in existing infrastructure it may not be possible to just
completely disable writing to sysctl, instead such a process should be
gradual with ability to log what sysctl are being changed by a
container, investigate, limit the set of writable sysctl to currently
used ones (so that new ones can not be changed) and eventually reduce
this set to zero.

The patch introduces new program type BPF_PROG_TYPE_CGROUP_SYSCTL and
attach type BPF_CGROUP_SYSCTL to solve these problems on cgroup basis.

New program type has access to following minimal context:
	struct bpf_sysctl {
		__u32	write;
	};

Where @write indicates whether sysctl is being read (= 0) or written (=
1).

Helpers to access sysctl name and value will be introduced separately.

BPF_CGROUP_SYSCTL attach point is added to sysctl code right before
passing control to ctl_table->proc_handler so that BPF program can
either allow or deny access to sysctl.

Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-12 13:54:58 -07:00
Andrey Ignatov
b1cd609d9b bpf: Add base proto function for cgroup-bpf programs
Currently kernel/bpf/cgroup.c contains only one program type and one
proto function cgroup_dev_func_proto(). It'd be useful to have base
proto function that can be reused for new cgroup-bpf program types
coming soon.

Introduce cgroup_base_func_proto().

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-12 13:54:58 -07:00
David S. Miller
bb23581b9b Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2019-04-12

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) Improve BPF verifier scalability for large programs through two
   optimizations: i) remove verifier states that are not useful in pruning,
   ii) stop walking parentage chain once first LIVE_READ is seen. Combined
   gives approx 20x speedup. Increase limits for accepting large programs
   under root, and add various stress tests, from Alexei.

2) Implement global data support in BPF. This enables static global variables
   for .data, .rodata and .bss sections to be properly handled which allows
   for more natural program development. This also opens up the possibility
   to optimize program workflow by compiling ELFs only once and later only
   rewriting section data before reload, from Daniel and with test cases and
   libbpf refactoring from Joe.

3) Add config option to generate BTF type info for vmlinux as part of the
   kernel build process. DWARF debug info is converted via pahole to BTF.
   Latter relies on libbpf and makes use of BTF deduplication algorithm which
   results in 100x savings compared to DWARF data. Resulting .BTF section is
   typically about 2MB in size, from Andrii.

4) Add BPF verifier support for stack access with variable offset from
   helpers and add various test cases along with it, from Andrey.

5) Extend bpf_skb_adjust_room() growth BPF helper to mark inner MAC header
   so that L2 encapsulation can be used for tc tunnels, from Alan.

6) Add support for input __sk_buff context in BPF_PROG_TEST_RUN so that
   users can define a subset of allowed __sk_buff fields that get fed into
   the test program, from Stanislav.

7) Add bpf fs multi-dimensional array tests for BTF test suite and fix up
   various UBSAN warnings in bpftool, from Yonghong.

8) Generate a pkg-config file for libbpf, from Luca.

9) Dump program's BTF id in bpftool, from Prashant.

10) libbpf fix to use smaller BPF log buffer size for AF_XDP's XDP
    program, from Magnus.

11) kallsyms related fixes for the case when symbols are not present in
    BPF selftests and samples, from Daniel
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-11 17:00:05 -07:00
Stanislav Fomichev
b0b9395d86 bpf: support input __sk_buff context in BPF_PROG_TEST_RUN
Add new set of arguments to bpf_attr for BPF_PROG_TEST_RUN:
* ctx_in/ctx_size_in - input context
* ctx_out/ctx_size_out - output context

The intended use case is to pass some meta data to the test runs that
operate on skb (this has being brought up on recent LPC).

For programs that use bpf_prog_test_run_skb, support __sk_buff input and
output. Initially, from input __sk_buff, copy _only_ cb and priority into
skb, all other non-zero fields are prohibited (with EINVAL).
If the user has set ctx_out/ctx_size_out, copy the potentially modified
__sk_buff back to the userspace.

We require all fields of input __sk_buff except the ones we explicitly
support to be set to zero. The expectation is that in the future we might
add support for more fields and we want to fail explicitly if the user
runs the program on the kernel where we don't yet support them.

The API is intentionally vague (i.e. we don't explicitly add __sk_buff
to bpf_attr, but ctx_in) to potentially let other test_run types use
this interface in the future (this can be xdp_md for xdp types for
example).

v4:
  * don't copy more than allowed in bpf_ctx_init [Martin]

v3:
  * handle case where ctx_in is NULL, but ctx_out is not [Martin]
  * convert size==0 checks to ptr==NULL checks and add some extra ptr
    checks [Martin]

v2:
  * Addressed comments from Martin Lau

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-11 10:21:40 +02:00
Daniel Borkmann
2824ecb701 bpf: allow for key-less BTF in array map
Given we'll be reusing BPF array maps for global data/bss/rodata
sections, we need a way to associate BTF DataSec type as its map
value type. In usual cases we have this ugly BPF_ANNOTATE_KV_PAIR()
macro hack e.g. via 38d5d3b3d5 ("bpf: Introduce BPF_ANNOTATE_KV_PAIR")
to get initial map to type association going. While more use cases
for it are discouraged, this also won't work for global data since
the use of array map is a BPF loader detail and therefore unknown
at compilation time. For array maps with just a single entry we make
an exception in terms of BTF in that key type is declared optional
if value type is of DataSec type. The latter LLVM is guaranteed to
emit and it also aligns with how we regard global data maps as just
a plain buffer area reusing existing map facilities for allowing
things like introspection with existing tools.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
1dc9285184 bpf: kernel side support for BTF Var and DataSec
This work adds kernel-side verification, logging and seq_show dumping
of BTF Var and DataSec kinds which are emitted with latest LLVM. The
following constraints apply:

BTF Var must have:

- Its kind_flag is 0
- Its vlen is 0
- Must point to a valid type
- Type must not resolve to a forward type
- Size of underlying type must be > 0
- Must have a valid name
- Can only be a source type, not sink or intermediate one
- Name may include dots (e.g. in case of static variables
  inside functions)
- Cannot be a member of a struct/union
- Linkage so far can either only be static or global/allocated

BTF DataSec must have:

- Its kind_flag is 0
- Its vlen cannot be 0
- Its size cannot be 0
- Must have a valid name
- Can only be a source type, not sink or intermediate one
- Name may include dots (e.g. to represent .bss, .data, .rodata etc)
- Cannot be a member of a struct/union
- Inner btf_var_secinfo array with {type,offset,size} triple
  must be sorted by offset in ascending order
- Type must always point to BTF Var
- BTF resolved size of Var must be <= size provided by triple
- DataSec size must be >= sum of triple sizes (thus holes
  are allowed)

btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve()
are on a high level quite similar but each come with slight,
subtle differences. They could potentially be a bit refactored
in future which hasn't been done here to ease review.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
3e0ddc4f3f bpf: allow . char as part of the object name
Trivial addition to allow '.' aside from '_' as "special" characters
in the object name. Used to allow for substrings in maps from loader
side such as ".bss", ".data", ".rodata", but could also be useful for
other purposes.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
87df15de44 bpf: add syscall side map freeze support
This patch adds a new BPF_MAP_FREEZE command which allows to
"freeze" the map globally as read-only / immutable from syscall
side.

Map permission handling has been refactored into map_get_sys_perms()
and drops FMODE_CAN_WRITE in case of locked map. Main use case is
to allow for setting up .rodata sections from the BPF ELF which
are loaded into the kernel, meaning BPF loader first allocates
map, sets up map value by copying .rodata section into it and once
complete, it calls BPF_MAP_FREEZE on the map fd to prevent further
modifications.

Right now BPF_MAP_FREEZE only takes map fd as argument while remaining
bpf_attr members are required to be zero. I didn't add write-only
locking here as counterpart since I don't have a concrete use-case
for it on my side, and I think it makes probably more sense to wait
once there is actually one. In that case bpf_attr can be extended
as usual with a flag field and/or others where flag 0 means that
we lock the map read-only hence this doesn't prevent to add further
extensions to BPF_MAP_FREEZE upon need.

A map creation flag like BPF_F_WRONCE was not considered for couple
of reasons: i) in case of a generic implementation, a map can consist
of more than just one element, thus there could be multiple map
updates needed to set the map into a state where it can then be
made immutable, ii) WRONCE indicates exact one-time write before
it is then set immutable. A generic implementation would set a bit
atomically on map update entry (if unset), indicating that every
subsequent update from then onwards will need to bail out there.
However, map updates can fail, so upon failure that flag would need
to be unset again and the update attempt would need to be repeated
for it to be eventually made immutable. While this can be made
race-free, this approach feels less clean and in combination with
reason i), it's not generic enough. A dedicated BPF_MAP_FREEZE
command directly sets the flag and caller has the guarantee that
map is immutable from syscall side upon successful return for any
future syscall invocations that would alter the map state, which
is also more intuitive from an API point of view. A command name
such as BPF_MAP_LOCK has been avoided as it's too close with BPF
map spin locks (which already has BPF_F_LOCK flag). BPF_MAP_FREEZE
is so far only enabled for privileged users.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
591fe9888d bpf: add program side {rd, wr}only support for maps
This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.

Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.

We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
be70bcd53d bpf: do not retain flags that are not tied to map lifetime
Both BPF_F_WRONLY / BPF_F_RDONLY flags are tied to the map file
descriptor, but not to the map object itself! Meaning, at map
creation time BPF_F_RDONLY can be set to make the map read-only
from syscall side, but this holds only for the returned fd, so
any other fd either retrieved via bpf file system or via map id
for the very same underlying map object can have read-write access
instead.

Given that, keeping the two flags around in the map_flags attribute
and exposing them to user space upon map dump is misleading and
may lead to false conclusions. Since these two flags are not
tied to the map object lets also not store them as map property.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
d8eca5bbb2 bpf: implement lookup-free direct value access for maps
This generic extension to BPF maps allows for directly loading
an address residing inside a BPF map value as a single BPF
ldimm64 instruction!

The idea is similar to what BPF_PSEUDO_MAP_FD does today, which
is a special src_reg flag for ldimm64 instruction that indicates
that inside the first part of the double insns's imm field is a
file descriptor which the verifier then replaces as a full 64bit
address of the map into both imm parts. For the newly added
BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following:
the first part of the double insns's imm field is again a file
descriptor corresponding to the map, and the second part of the
imm field is an offset into the value. The verifier will then
replace both imm parts with an address that points into the BPF
map value at the given value offset for maps that support this
operation. Currently supported is array map with single entry.
It is possible to support more than just single map element by
reusing both 16bit off fields of the insns as a map index, so
full array map lookup could be expressed that way. It hasn't
been implemented here due to lack of concrete use case, but
could easily be done so in future in a compatible way, since
both off fields right now have to be 0 and would correctly
denote a map index 0.

The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with
BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of
map pointer versus load of map's value at offset 0, and changing
BPF_PSEUDO_MAP_FD's encoding into off by one to differ between
regular map pointer and map value pointer would add unnecessary
complexity and increases barrier for debugability thus less
suitable. Using the second part of the imm field as an offset
into the value does /not/ come with limitations since maximum
possible value size is in u32 universe anyway.

This optimization allows for efficiently retrieving an address
to a map value memory area without having to issue a helper call
which needs to prepare registers according to calling convention,
etc, without needing the extra NULL test, and without having to
add the offset in an additional instruction to the value base
pointer. The verifier then treats the destination register as
PTR_TO_MAP_VALUE with constant reg->off from the user passed
offset from the second imm field, and guarantees that this is
within bounds of the map value. Any subsequent operations are
normally treated as typical map value handling without anything
extra needed from verification side.

The two map operations for direct value access have been added to
array map for now. In future other types could be supported as
well depending on the use case. The main use case for this commit
is to allow for BPF loader support for global variables that
reside in .data/.rodata/.bss sections such that we can directly
load the address of them with minimal additional infrastructure
required. Loader support has been added in subsequent commits for
libbpf library.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
David S. Miller
f83f715195 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Minor comment merge conflict in mlx5.

Staging driver has a fixup due to the skb->xmit_more changes
in 'net-next', but was removed in 'net'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-05 14:14:19 -07:00
Andrey Ignatov
1fbd20f8b7 bpf: Add missed newline in verifier verbose log
check_stack_access() that prints verbose log is used in
adjust_ptr_min_max_vals() that prints its own verbose log and now they
stick together, e.g.:

  variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16
  size=1R2 stack pointer arithmetic goes out of range, prohibited for
  !root

Add missing newline so that log is more readable:
  variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1
  R2 stack pointer arithmetic goes out of range, prohibited for !root

Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-05 16:50:08 +02:00
Andrey Ignatov
107c26a70c bpf: Sanity check max value for var_off stack access
As discussed in [1] max value of variable offset has to be checked for
overflow on stack access otherwise verifier would accept code like this:

  0: (b7) r2 = 6
  1: (b7) r3 = 28
  2: (7a) *(u64 *)(r10 -16) = 0
  3: (7a) *(u64 *)(r10 -8) = 0
  4: (79) r4 = *(u64 *)(r1 +168)
  5: (c5) if r4 s< 0x0 goto pc+4
   R1=ctx(id=0,off=0,imm=0) R2=inv6 R3=inv28
   R4=inv(id=0,umax_value=9223372036854775807,var_off=(0x0;
   0x7fffffffffffffff)) R10=fp0,call_-1 fp-8=mmmmmmmm fp-16=mmmmmmmm
  6: (17) r4 -= 16
  7: (0f) r4 += r10
  8: (b7) r5 = 8
  9: (85) call bpf_getsockopt#57
  10: (b7) r0 = 0
  11: (95) exit

, where R4 obviosly has unbounded max value.

Fix it by checking that reg->smax_value is inside (-BPF_MAX_VAR_OFF;
BPF_MAX_VAR_OFF) range.

reg->smax_value is used instead of reg->umax_value because stack
pointers are calculated using negative offset from fp. This is opposite
to e.g. map access where offset must be non-negative and where
umax_value is used.

Also dedicated verbose logs are added for both min and max bound check
failures to have diagnostics consistent with variable offset handling in
check_map_access().

[1] https://marc.info/?l=linux-netdev&m=155433357510597&w=2

Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-05 16:50:08 +02:00
Andrey Ignatov
088ec26d9c bpf: Reject indirect var_off stack access in unpriv mode
Proper support of indirect stack access with variable offset in
unprivileged mode (!root) requires corresponding support in Spectre
masking for stack ALU in retrieve_ptr_limit().

There are no use-case for variable offset in unprivileged mode though so
make verifier reject such accesses for simplicity.

Pointer arithmetics is one (and only?) way to cause variable offset and
it's already rejected in unpriv mode so that verifier won't even get to
helper function whose argument contains variable offset, e.g.:

  0: (7a) *(u64 *)(r10 -16) = 0
  1: (7a) *(u64 *)(r10 -8) = 0
  2: (61) r2 = *(u32 *)(r1 +0)
  3: (57) r2 &= 4
  4: (17) r2 -= 16
  5: (0f) r2 += r10
  variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1R2
  stack pointer arithmetic goes out of range, prohibited for !root

Still it looks like a good idea to reject variable offset indirect stack
access for unprivileged mode in check_stack_boundary() explicitly.

Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-05 16:50:07 +02:00
Andrey Ignatov
f2bcd05ec7 bpf: Reject indirect var_off stack access in raw mode
It's hard to guarantee that whole memory is marked as initialized on
helper return if uninitialized stack is accessed with variable offset
since specific bounds are unknown to verifier. This may cause
uninitialized stack leaking.

Reject such an access in check_stack_boundary to prevent possible
leaking.

There are no known use-cases for indirect uninitialized stack access
with variable offset so it shouldn't break anything.

Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-05 16:50:07 +02:00
Alexei Starovoitov
7a9f5c65ab bpf: increase verifier log limit
The existing 16Mbyte verifier log limit is not enough for log_level=2
even for small programs. Increase it to 1Gbyte.
Note it's not a kernel memory limit.
It's an amount of memory user space provides to store
the verifier log. The kernel populates it 1k at a time.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:38 +02:00
Alexei Starovoitov
c04c0d2b96 bpf: increase complexity limit and maximum program size
Large verifier speed improvements allow to increase
verifier complexity limit.
Now regardless of the program composition and its size it takes
little time for the verifier to hit insn_processed limit.
On typical x86 machine non-debug kernel processes 1M instructions
in 1/10 of a second.
(before these speed improvements specially crafted programs
could be hitting multi-second verification times)
Full kasan kernel with debug takes ~1 second for the same 1M insns.
Hence bump the BPF_COMPLEXITY_LIMIT_INSNS limit to 1M.
Also increase the number of instructions per program
from 4k to internal BPF_COMPLEXITY_LIMIT_INSNS limit.
4k limit was confusing to users, since small programs with hundreds
of insns could be hitting BPF_COMPLEXITY_LIMIT_INSNS limit.
Sometimes adding more insns and bpf_trace_printk debug statements
would make the verifier accept the program while removing
code would make the verifier reject it.
Some user space application started to add #define MAX_FOO to
their programs and do:
  MAX_FOO=100;
again:
  compile with MAX_FOO;
  try to load;
  if (fails_to_load) { reduce MAX_FOO; goto again; }
to be able to fit maximum amount of processing into single program.
Other users artificially split their single program into a set of programs
and use all 32 iterations of tail_calls to increase compute limits.
And the most advanced folks used unlimited tc-bpf filter list
to execute many bpf programs.
Essentially the users managed to workaround 4k insn limit.
This patch removes the limit for root programs from uapi.
BPF_COMPLEXITY_LIMIT_INSNS is the kernel internal limit
and success to load the program no longer depends on program size,
but on 'smartness' of the verifier only.
The verifier will continue to get smarter with every kernel release.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:38 +02:00
Alexei Starovoitov
4f73379ec5 bpf: verbose jump offset overflow check
Larger programs may trigger 16-bit jump offset overflow check
during instruction patching. Make this error verbose otherwise
users cannot decipher error code without printks in the verifier.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:38 +02:00
Alexei Starovoitov
71dde681a8 bpf: convert temp arrays to kvcalloc
Temporary arrays used during program verification need to be vmalloc-ed
to support large bpf programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:38 +02:00
Alexei Starovoitov
25af32dad8 bpf: improve verification speed by not remarking live_read
With large verifier speed improvement brought by the previous patch
mark_reg_read() becomes the hottest function during verification.
On a typical program it consumes 40% of cpu.
mark_reg_read() walks parentage chain of registers to mark parents as LIVE_READ.
Once the register is marked there is no need to remark it again in the future.
Hence stop walking the chain once first LIVE_READ is seen.
This optimization drops mark_reg_read() time from 40% of cpu to <1%
and overall 2x improvement of verification speed.
For some programs the longest_mark_read_walk counter improves from ~500 to ~5

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:37 +02:00
Alexei Starovoitov
9f4686c41b bpf: improve verification speed by droping states
Branch instructions, branch targets and calls in a bpf program are
the places where the verifier remembers states that led to successful
verification of the program.
These states are used to prune brute force program analysis.
For unprivileged programs there is a limit of 64 states per such
'branching' instructions (maximum length is tracked by max_states_per_insn
counter introduced in the previous patch).
Simply reducing this threshold to 32 or lower increases insn_processed
metric to the point that small valid programs get rejected.
For root programs there is no limit and cilium programs can have
max_states_per_insn to be 100 or higher.
Walking 100+ states multiplied by number of 'branching' insns during
verification consumes significant amount of cpu time.
Turned out simple LRU-like mechanism can be used to remove states
that unlikely will be helpful in future search pruning.
This patch introduces hit_cnt and miss_cnt counters:
hit_cnt - this many times this state successfully pruned the search
miss_cnt - this many times this state was not equivalent to other states
(and that other states were added to state list)

The heuristic introduced in this patch is:
if (sl->miss_cnt > sl->hit_cnt * 3 + 3)
  /* drop this state from future considerations */

Higher numbers increase max_states_per_insn (allow more states to be
considered for pruning) and slow verification speed, but do not meaningfully
reduce insn_processed metric.
Lower numbers drop too many states and insn_processed increases too much.
Many different formulas were considered.
This one is simple and works well enough in practice.
(the analysis was done on selftests/progs/* and on cilium programs)

The end result is this heuristic improves verification speed by 10 times.
Large synthetic programs that used to take a second more now take
1/10 of a second.
In cases where max_states_per_insn used to be 100 or more, now it's ~10.

There is a slight increase in insn_processed for cilium progs:
                       before   after
bpf_lb-DLB_L3.o 	1831	1838
bpf_lb-DLB_L4.o 	3029	3218
bpf_lb-DUNKNOWN.o 	1064	1064
bpf_lxc-DDROP_ALL.o	26309	26935
bpf_lxc-DUNKNOWN.o	33517	34439
bpf_netdev.o		9713	9721
bpf_overlay.o		6184	6184
bpf_lcx_jit.o		37335	39389
And 2-3 times improvement in the verification speed.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:37 +02:00
Alexei Starovoitov
06ee7115b0 bpf: add verifier stats and log_level bit 2
In order to understand the verifier bottlenecks add various stats
and extend log_level:
log_level 1 and 2 are kept as-is:
bit 0 - level=1 - print every insn and verifier state at branch points
bit 1 - level=2 - print every insn and verifier state at every insn
bit 2 - level=4 - print verifier error and stats at the end of verification

When verifier rejects the program the libbpf is trying to load the program twice.
Once with log_level=0 (no messages, only error code is reported to user space)
and second time with log_level=1 to tell the user why the verifier rejected it.

With introduction of bit 2 - level=4 the libbpf can choose to always use that
level and load programs once, since the verification speed is not affected and
in case of error the verbose message will be available.

Note that the verifier stats are not part of uapi just like all other
verbose messages. They're expected to change in the future.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:37 +02:00
Jesper Dangaard Brouer
676e4a6fe7 xdp: fix cpumap redirect SKB creation bug
We want to avoid leaking pointer info from xdp_frame (that is placed in
top of frame) like commit 6dfb970d3d ("xdp: avoid leaking info stored in
frame data on page reuse"), and followup commit 97e19cce05 ("bpf:
reserve xdp_frame size in xdp headroom") that reserve this headroom.

These changes also affected how cpumap constructed SKBs, as xdpf->headroom
size changed, the skb data starting point were in-effect shifted with 32
bytes (sizeof xdp_frame). This was still okay, as the cpumap frame_size
calculation also included xdpf->headroom which were reduced by same amount.

A bug was introduced in commit 77ea5f4cbe ("bpf/cpumap: make sure
frame_size for build_skb is aligned if headroom isn't"), where the
xdpf->headroom became part of the SKB_DATA_ALIGN rounding up. This
round-up to find the frame_size is in principle still correct as it does
not exceed the 2048 bytes frame_size (which is max for ixgbe and i40e),
but the 32 bytes offset of pkt_data_start puts this over the 2048 bytes
limit. This cause skb_shared_info to spill into next frame. It is a little
hard to trigger, as the SKB need to use above 15 skb_shinfo->frags[] as
far as I calculate. This does happen in practise for TCP streams when
skb_try_coalesce() kicks in.

KASAN can be used to detect these wrong memory accesses, I've seen:
 BUG: KASAN: use-after-free in skb_try_coalesce+0x3cb/0x760
 BUG: KASAN: wild-memory-access in skb_release_data+0xe2/0x250

Driver veth also construct a SKB from xdp_frame in this way, but is not
affected, as it doesn't reserve/deduct the room (used by xdp_frame) from
the SKB headroom. Instead is clears the pointers via xdp_scrub_frame(),
and allows SKB to use this area.

The fix in this patch is to do like veth and instead allow SKB to (re)use
the area occupied by xdp_frame, by clearing via xdp_scrub_frame().  (This
does kill the idea of the SKB being able to access (mem) info from this
area, but I guess it was a bad idea anyhow, and it was already killed by
the veth changes.)

Fixes: 77ea5f4cbe ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-29 12:15:02 -07:00
Andrey Ignatov
2011fccfb6 bpf: Support variable offset stack access from helpers
Currently there is a difference in how verifier checks memory access for
helper arguments for PTR_TO_MAP_VALUE and PTR_TO_STACK with regard to
variable part of offset.

check_map_access, that is used for PTR_TO_MAP_VALUE, can handle variable
offsets just fine, so that BPF program can call a helper like this:

  some_helper(map_value_ptr + off, size);

, where offset is unknown at load time, but is checked by program to be
in a safe rage (off >= 0 && off + size < map_value_size).

But it's not the case for check_stack_boundary, that is used for
PTR_TO_STACK, and same code with pointer to stack is rejected by
verifier:

  some_helper(stack_value_ptr + off, size);

For example:
  0: (7a) *(u64 *)(r10 -16) = 0
  1: (7a) *(u64 *)(r10 -8) = 0
  2: (61) r2 = *(u32 *)(r1 +0)
  3: (57) r2 &= 4
  4: (17) r2 -= 16
  5: (0f) r2 += r10
  6: (18) r1 = 0xffff888111343a80
  8: (85) call bpf_map_lookup_elem#1
  invalid variable stack read R2 var_off=(0xfffffffffffffff0; 0x4)

Add support for variable offset access to check_stack_boundary so that
if offset is checked by program to be in a safe range it's accepted by
verifier.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-29 12:05:35 -07:00
David S. Miller
356d71e00d Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2019-03-27 17:37:58 -07:00
Paul Chaignon
927cb78177 bpf: remove incorrect 'verifier bug' warning
The BPF verifier checks the maximum number of call stack frames twice,
first in the main CFG traversal (do_check) and then in a subsequent
traversal (check_max_stack_depth).  If the second check fails, it logs a
'verifier bug' warning and errors out, as the number of call stack frames
should have been verified already.

However, the second check may fail without indicating a verifier bug: if
the excessive function calls reside in dead code, the main CFG traversal
may not visit them; the subsequent traversal visits all instructions,
including dead code.

This case raises the question of how invalid dead code should be treated.
This patch implements the conservative option and rejects such code.

Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Tested-by: Xiao Han <xiao.han@orange.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-26 13:02:16 -07:00
Daniel Borkmann
1da6c4d914 bpf: fix use after free in bpf_evict_inode
syzkaller was able to generate the following UAF in bpf:

  BUG: KASAN: use-after-free in lookup_last fs/namei.c:2269 [inline]
  BUG: KASAN: use-after-free in path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318
  Read of size 1 at addr ffff8801c4865c47 by task syz-executor2/9423

  CPU: 0 PID: 9423 Comm: syz-executor2 Not tainted 4.20.0-rc1-next-20181109+
  #110
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
  Google 01/01/2011
  Call Trace:
    __dump_stack lib/dump_stack.c:77 [inline]
    dump_stack+0x244/0x39d lib/dump_stack.c:113
    print_address_description.cold.7+0x9/0x1ff mm/kasan/report.c:256
    kasan_report_error mm/kasan/report.c:354 [inline]
    kasan_report.cold.8+0x242/0x309 mm/kasan/report.c:412
    __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:430
    lookup_last fs/namei.c:2269 [inline]
    path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318
    filename_lookup+0x26a/0x520 fs/namei.c:2348
    user_path_at_empty+0x40/0x50 fs/namei.c:2608
    user_path include/linux/namei.h:62 [inline]
    do_mount+0x180/0x1ff0 fs/namespace.c:2980
    ksys_mount+0x12d/0x140 fs/namespace.c:3258
    __do_sys_mount fs/namespace.c:3272 [inline]
    __se_sys_mount fs/namespace.c:3269 [inline]
    __x64_sys_mount+0xbe/0x150 fs/namespace.c:3269
    do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe
  RIP: 0033:0x457569
  Code: fd b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7
  48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff
  ff 0f 83 cb b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00
  RSP: 002b:00007fde6ed96c78 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
  RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 0000000000457569
  RDX: 0000000020000040 RSI: 0000000020000000 RDI: 0000000000000000
  RBP: 000000000072bf00 R08: 0000000020000340 R09: 0000000000000000
  R10: 0000000000200000 R11: 0000000000000246 R12: 00007fde6ed976d4
  R13: 00000000004c2c24 R14: 00000000004d4990 R15: 00000000ffffffff

  Allocated by task 9424:
    save_stack+0x43/0xd0 mm/kasan/kasan.c:448
    set_track mm/kasan/kasan.c:460 [inline]
    kasan_kmalloc+0xc7/0xe0 mm/kasan/kasan.c:553
    __do_kmalloc mm/slab.c:3722 [inline]
    __kmalloc_track_caller+0x157/0x760 mm/slab.c:3737
    kstrdup+0x39/0x70 mm/util.c:49
    bpf_symlink+0x26/0x140 kernel/bpf/inode.c:356
    vfs_symlink+0x37a/0x5d0 fs/namei.c:4127
    do_symlinkat+0x242/0x2d0 fs/namei.c:4154
    __do_sys_symlink fs/namei.c:4173 [inline]
    __se_sys_symlink fs/namei.c:4171 [inline]
    __x64_sys_symlink+0x59/0x80 fs/namei.c:4171
    do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe

  Freed by task 9425:
    save_stack+0x43/0xd0 mm/kasan/kasan.c:448
    set_track mm/kasan/kasan.c:460 [inline]
    __kasan_slab_free+0x102/0x150 mm/kasan/kasan.c:521
    kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528
    __cache_free mm/slab.c:3498 [inline]
    kfree+0xcf/0x230 mm/slab.c:3817
    bpf_evict_inode+0x11f/0x150 kernel/bpf/inode.c:565
    evict+0x4b9/0x980 fs/inode.c:558
    iput_final fs/inode.c:1550 [inline]
    iput+0x674/0xa90 fs/inode.c:1576
    do_unlinkat+0x733/0xa30 fs/namei.c:4069
    __do_sys_unlink fs/namei.c:4110 [inline]
    __se_sys_unlink fs/namei.c:4108 [inline]
    __x64_sys_unlink+0x42/0x50 fs/namei.c:4108
    do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
    entry_SYSCALL_64_after_hwframe+0x49/0xbe

In this scenario path lookup under RCU is racing with the final
unlink in case of symlinks. As Linus puts it in his analysis:

  [...] We actually RCU-delay the inode freeing itself, but
  when we do the final iput(), the "evict()" function is called
  synchronously. Now, the simple fix would seem to just RCU-delay
  the kfree() of the symlink data in bpf_evict_inode(). Maybe
  that's the right thing to do. [...]

Al suggested to piggy-back on the ->destroy_inode() callback in
order to implement RCU deferral there which can then kfree() the
inode->i_link eventually right before putting inode back into
inode cache. By reusing free_inode_nonrcu() from there we can
avoid the need for our own inode cache and just reuse generic
one as we currently do.

And in-fact on top of all this we should just get rid of the
bpf_evict_inode() entirely. This means truncate_inode_pages_final()
and clear_inode() will then simply be called by the fs core via
evict(). Dropping the reference should really only be done when
inode is unhashed and nothing reachable anymore, so it's better
also moved into the final ->destroy_inode() callback.

Fixes: 0f98621bef ("bpf, inode: add support for symlinks and fix mtime/ctime")
Reported-by: syzbot+fb731ca573367b7f6564@syzkaller.appspotmail.com
Reported-by: syzbot+a13e5ead792d6df37818@syzkaller.appspotmail.com
Reported-by: syzbot+7a8ba368b47fdefca61e@syzkaller.appspotmail.com
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Analyzed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/lkml/0000000000006946d2057bbd0eef@google.com/T/
2019-03-26 01:38:49 +01:00
Jakub Kicinski
83d163124c bpf: verifier: propagate liveness on all frames
Commit 7640ead939 ("bpf: verifier: make sure callees don't prune
with caller differences") connected up parentage chains of all
frames of the stack.  It didn't, however, ensure propagate_liveness()
propagates all liveness information along those chains.

This means pruning happening in the callee may generate explored
states with incomplete liveness for the chains in lower frames
of the stack.

The included selftest is similar to the prior one from commit
7640ead939 ("bpf: verifier: make sure callees don't prune with
caller differences"), where callee would prune regardless of the
difference in r8 state.

Now we also initialize r9 to 0 or 1 based on a result from get_random().
r9 is never read so the walk with r9 = 0 gets pruned (correctly) after
the walk with r9 = 1 completes.

The selftest is so arranged that the pruning will happen in the
callee.  Since callee does not propagate read marks of r8, the
explored state at the pruning point prior to the callee will
now ignore r8.

Propagate liveness on all frames of the stack when pruning.

Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-21 19:57:02 -07:00
Lorenz Bauer
edbf8c01de bpf: add skc_lookup_tcp helper
Allow looking up a sock_common. This gives eBPF programs
access to timewait and request sockets.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-21 18:59:10 -07:00
Lorenz Bauer
85a51f8c28 bpf: allow helpers to return PTR_TO_SOCK_COMMON
It's currently not possible to access timewait or request sockets
from eBPF, since there is no way to return a PTR_TO_SOCK_COMMON
from a helper. Introduce RET_PTR_TO_SOCK_COMMON to enable this
behaviour.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-21 18:59:10 -07:00
Lorenz Bauer
0f3adc288d bpf: track references based on is_acquire_func
So far, the verifier only acquires reference tracking state for
RET_PTR_TO_SOCKET_OR_NULL. Instead of extending this for every
new return type which desires these semantics, acquire reference
tracking state iff the called helper is an acquire function.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-21 18:59:10 -07:00
Xu Yu
0803278b0b bpf: do not restore dst_reg when cur_state is freed
Syzkaller hit 'KASAN: use-after-free Write in sanitize_ptr_alu' bug.

Call trace:

  dump_stack+0xbf/0x12e
  print_address_description+0x6a/0x280
  kasan_report+0x237/0x360
  sanitize_ptr_alu+0x85a/0x8d0
  adjust_ptr_min_max_vals+0x8f2/0x1ca0
  adjust_reg_min_max_vals+0x8ed/0x22e0
  do_check+0x1ca6/0x5d00
  bpf_check+0x9ca/0x2570
  bpf_prog_load+0xc91/0x1030
  __se_sys_bpf+0x61e/0x1f00
  do_syscall_64+0xc8/0x550
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

Fault injection trace:

  kfree+0xea/0x290
  free_func_state+0x4a/0x60
  free_verifier_state+0x61/0xe0
  push_stack+0x216/0x2f0	          <- inject failslab
  sanitize_ptr_alu+0x2b1/0x8d0
  adjust_ptr_min_max_vals+0x8f2/0x1ca0
  adjust_reg_min_max_vals+0x8ed/0x22e0
  do_check+0x1ca6/0x5d00
  bpf_check+0x9ca/0x2570
  bpf_prog_load+0xc91/0x1030
  __se_sys_bpf+0x61e/0x1f00
  do_syscall_64+0xc8/0x550
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

When kzalloc() fails in push_stack(), free_verifier_state() will free
current verifier state. As push_stack() returns, dst_reg was restored
if ptr_is_dst_reg is false. However, as member of the cur_state,
dst_reg is also freed, and error occurs when dereferencing dst_reg.
Simply fix it by testing ret of push_stack() before restoring dst_reg.

Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-03-21 12:18:18 +01:00
Martin KaFai Lau
cba368c1f0 bpf: Only print ref_obj_id for refcounted reg
Naresh reported that test_align fails because of the mismatch at the
verbose printout of the register states.  The reason is due to the newly
added ref_obj_id.

ref_obj_id is only useful for refcounted reg.  Thus, this patch fixes it
by only printing ref_obj_id for refcounted reg.  While at it, it also uses
comma instead of space to separate between "id" and "ref_obj_id".

Fixes: 1b98658968 ("bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-20 18:24:35 -07:00
Martynas Pumputis
f01a7dbe98 bpf: Try harder when allocating memory for large maps
It has been observed that sometimes a higher order memory allocation
for BPF maps fails when there is no obvious memory pressure in a system.
E.g. the map (BPF_MAP_TYPE_LRU_HASH, key=38, value=56, max_elems=524288)
could not be created due to vmalloc unable to allocate 75497472B,
when the system's memory consumption (in MB) was the following:

    Total: 3942 Used: 837 (21.24%) Free: 138 Buffers: 239 Cached: 2727

Later analysis [1] by Michal Hocko showed that the vmalloc was not trying
to reclaim memory from the page cache and was failing prematurely due to
__GFP_NORETRY.

Considering dcda9b0471 ("mm, tree wide: replace __GFP_REPEAT by
__GFP_RETRY_MAYFAIL with more useful semantic") and [1], we can replace
__GFP_NORETRY with __GFP_RETRY_MAYFAIL, as it won't invoke OOM killer
and will try harder to fulfil allocation requests.

Unfortunately, replacing the body of the BPF map memory allocation
function with the kvmalloc_node helper function is not an option at
this point in time, given 1) kmalloc is non-optional for higher order
allocations, and 2) passing __GFP_RETRY_MAYFAIL to the kmalloc would
stress the slab allocator too much for large requests.

The change has been tested with the workloads mentioned above and by
observing oom_kill value from /proc/vmstat.

[1]: https://lore.kernel.org/bpf/20190310071318.GW5232@dhcp22.suse.cz/

Signed-off-by: Martynas Pumputis <m@lambda.lt>
Acked-by: Yonghong Song <yhs@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20190318153940.GL8924@dhcp22.suse.cz/
2019-03-18 16:48:25 +01:00
David S. Miller
0aedadcf6b Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:

====================
pull-request: bpf 2019-03-16

The following pull-request contains BPF updates for your *net* tree.

The main changes are:

1) Fix a umem memory leak on cleanup in AF_XDP, from Björn.

2) Fix BTF to properly resolve forward-declared enums into their corresponding
   full enum definition types during deduplication, from Andrii.

3) Fix libbpf to reject invalid flags in xsk_socket__create(), from Magnus.

4) Fix accessing invalid pointer returned from bpf_tcp_sock() and
   bpf_sk_fullsock() after bpf_sk_release() was called, from Martin.

5) Fix generation of load/store DW instructions in PPC JIT, from Naveen.

6) Various fixes in BPF helper function documentation in bpf.h UAPI header
   used to bpf-helpers(7) man page, from Quentin.

7) Fix segfault in BPF test_progs when prog loading failed, from Yonghong.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-16 12:20:08 -07:00
Martin KaFai Lau
1b98658968 bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release
Lorenz Bauer [thanks!] reported that a ptr returned by bpf_tcp_sock(sk)
can still be accessed after bpf_sk_release(sk).
Both bpf_tcp_sock() and bpf_sk_fullsock() have the same issue.
This patch addresses them together.

A simple reproducer looks like this:

	sk = bpf_sk_lookup_tcp();
	/* if (!sk) ... */
	tp = bpf_tcp_sock(sk);
	/* if (!tp) ... */
	bpf_sk_release(sk);
	snd_cwnd = tp->snd_cwnd; /* oops! The verifier does not complain. */

The problem is the verifier did not scrub the register's states of
the tcp_sock ptr (tp) after bpf_sk_release(sk).

[ Note that when calling bpf_tcp_sock(sk), the sk is not always
  refcount-acquired. e.g. bpf_tcp_sock(skb->sk). The verifier works
  fine for this case. ]

Currently, the verifier does not track if a helper's return ptr (in REG_0)
is "carry"-ing one of its argument's refcount status. To carry this info,
the reg1->id needs to be stored in reg0.

One approach was tried, like "reg0->id = reg1->id", when calling
"bpf_tcp_sock()".  The main idea was to avoid adding another "ref_obj_id"
for the same reg.  However, overlapping the NULL marking and ref
tracking purpose in one "id" does not work well:

	ref_sk = bpf_sk_lookup_tcp();
	fullsock = bpf_sk_fullsock(ref_sk);
	tp = bpf_tcp_sock(ref_sk);
	if (!fullsock) {
	     bpf_sk_release(ref_sk);
	     return 0;
	}
	/* fullsock_reg->id is marked for NOT-NULL.
	 * Same for tp_reg->id because they have the same id.
	 */

	/* oops. verifier did not complain about the missing !tp check */
	snd_cwnd = tp->snd_cwnd;

Hence, a new "ref_obj_id" is needed in "struct bpf_reg_state".
With a new ref_obj_id, when bpf_sk_release(sk) is called, the verifier can
scrub all reg states which has a ref_obj_id match.  It is done with the
changes in release_reg_references() in this patch.

While fixing it, sk_to_full_sk() is removed from bpf_tcp_sock() and
bpf_sk_fullsock() to avoid these helpers from returning
another ptr. It will make bpf_sk_release(tp) possible:

	sk = bpf_sk_lookup_tcp();
	/* if (!sk) ... */
	tp = bpf_tcp_sock(sk);
	/* if (!tp) ... */
	bpf_sk_release(tp);

A separate helper "bpf_get_listener_sock()" will be added in a later
patch to do sk_to_full_sk().

Misc change notes:
- To allow bpf_sk_release(tp), the arg of bpf_sk_release() is changed
  from ARG_PTR_TO_SOCKET to ARG_PTR_TO_SOCK_COMMON.  ARG_PTR_TO_SOCKET
  is removed from bpf.h since no helper is using it.

- arg_type_is_refcounted() is renamed to arg_type_may_be_refcounted()
  because ARG_PTR_TO_SOCK_COMMON is the only one and skb->sk is not
  refcounted.  All bpf_sk_release(), bpf_sk_fullsock() and bpf_tcp_sock()
  take ARG_PTR_TO_SOCK_COMMON.

- check_refcount_ok() ensures is_acquire_function() cannot take
  arg_type_may_be_refcounted() as its argument.

- The check_func_arg() can only allow one refcount-ed arg.  It is
  guaranteed by check_refcount_ok() which ensures at most one arg can be
  refcounted.  Hence, it is a verifier internal error if >1 refcount arg
  found in check_func_arg().

- In release_reference(), release_reference_state() is called
  first to ensure a match on "reg->ref_obj_id" can be found before
  scrubbing the reg states with release_reg_references().

- reg_is_refcounted() is no longer needed.
  1. In mark_ptr_or_null_regs(), its usage is replaced by
     "ref_obj_id && ref_obj_id == id" because,
     when is_null == true, release_reference_state() should only be
     called on the ref_obj_id obtained by a acquire helper (i.e.
     is_acquire_function() == true).  Otherwise, the following
     would happen:

	sk = bpf_sk_lookup_tcp();
	/* if (!sk) { ... } */
	fullsock = bpf_sk_fullsock(sk);
	if (!fullsock) {
		/*
		 * release_reference_state(fullsock_reg->ref_obj_id)
		 * where fullsock_reg->ref_obj_id == sk_reg->ref_obj_id.
		 *
		 * Hence, the following bpf_sk_release(sk) will fail
		 * because the ref state has already been released in the
		 * earlier release_reference_state(fullsock_reg->ref_obj_id).
		 */
		bpf_sk_release(sk);
	}

  2. In release_reg_references(), the current reg_is_refcounted() call
     is unnecessary because the id check is enough.

- The type_is_refcounted() and type_is_refcounted_or_null()
  are no longer needed also because reg_is_refcounted() is removed.

Fixes: 655a51e536 ("bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-13 12:04:35 -07:00
Linus Torvalds
8f49a658b4 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Pull networking fixes from David Miller:
 "First batch of fixes in the new merge window:

   1) Double dst_cache free in act_tunnel_key, from Wenxu.

   2) Avoid NULL deref in IN_DEV_MFORWARD() by failing early in the
      ip_route_input_rcu() path, from Paolo Abeni.

   3) Fix appletalk compile regression, from Arnd Bergmann.

   4) If SLAB objects reach the TCP sendpage method we are in serious
      trouble, so put a debugging check there. From Vasily Averin.

   5) Memory leak in hsr layer, from Mao Wenan.

   6) Only test GSO type on GSO packets, from Willem de Bruijn.

   7) Fix crash in xsk_diag_put_umem(), from Eric Dumazet.

   8) Fix VNIC mailbox length in nfp, from Dirk van der Merwe.

   9) Fix race in ipv4 route exception handling, from Xin Long.

  10) Missing DMA memory barrier in hns3 driver, from Jian Shen.

  11) Use after free in __tcf_chain_put(), from Vlad Buslov.

  12) Handle inet_csk_reqsk_queue_add() failures, from Guillaume Nault.

  13) Return value correction when ip_mc_may_pull() fails, from Eric
      Dumazet.

  14) Use after free in x25_device_event(), also from Eric"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (72 commits)
  gro_cells: make sure device is up in gro_cells_receive()
  vxlan: test dev->flags & IFF_UP before calling gro_cells_receive()
  net/x25: fix use-after-free in x25_device_event()
  isdn: mISDNinfineon: fix potential NULL pointer dereference
  net: hns3: fix to stop multiple HNS reset due to the AER changes
  ip: fix ip_mc_may_pull() return value
  net: keep refcount warning in reqsk_free()
  net: stmmac: Avoid one more sometimes uninitialized Clang warning
  net: dsa: mv88e6xxx: Set correct interface mode for CPU/DSA ports
  rxrpc: Fix client call queueing, waiting for channel
  tcp: handle inet_csk_reqsk_queue_add() failures
  net: ethernet: sun: Zero initialize class in default case in niu_add_ethtool_tcam_entry
  8139too : Add support for U.S. Robotics USR997901A 10/100 Cardbus NIC
  fou, fou6: avoid uninit-value in gue_err() and gue6_err()
  net: sched: fix potential use-after-free in __tcf_chain_put()
  vhost: silence an unused-variable warning
  vsock/virtio: fix kernel panic from virtio_transport_reset_no_sock
  connector: fix unsafe usage of ->real_parent
  vxlan: do not need BH again in vxlan_cleanup()
  net: hns3: add dma_rmb() for rx description
  ...
2019-03-11 08:54:01 -07:00
Daniel Borkmann
20182390c4 bpf: fix replace_map_fd_with_map_ptr's ldimm64 second imm field
Non-zero imm value in the second part of the ldimm64 instruction for
BPF_PSEUDO_MAP_FD is invalid, and thus must be rejected. The map fd
only ever sits in the first instructions' imm field. None of the BPF
loaders known to us are using it, so risk of regression is minimal.
For clarity and consistency, the few insn->{src_reg,imm} occurrences
are rewritten into insn[0].{src_reg,imm}. Add a test case to the BPF
selftest suite as well.

Fixes: 0246e64d9a ("bpf: handle pseudo BPF_LD_IMM64 insn")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-07 08:47:13 -08:00
Linus Torvalds
203b6609e0 Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
 "Lots of tooling updates - too many to list, here's a few highlights:

   - Various subcommand updates to 'perf trace', 'perf report', 'perf
     record', 'perf annotate', 'perf script', 'perf test', etc.

   - CPU and NUMA topology and affinity handling improvements,

   - HW tracing and HW support updates:
      - Intel PT updates
      - ARM CoreSight updates
      - vendor HW event updates

   - BPF updates

   - Tons of infrastructure updates, both on the build system and the
     library support side

   - Documentation updates.

   - ... and lots of other changes, see the changelog for details.

  Kernel side updates:

   - Tighten up kprobes blacklist handling, reduce the number of places
     where developers can install a kprobe and hang/crash the system.

   - Fix/enhance vma address filter handling.

   - Various PMU driver updates, small fixes and additions.

   - refcount_t conversions

   - BPF updates

   - error code propagation enhancements

   - misc other changes"

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (238 commits)
  perf script python: Add Python3 support to syscall-counts-by-pid.py
  perf script python: Add Python3 support to syscall-counts.py
  perf script python: Add Python3 support to stat-cpi.py
  perf script python: Add Python3 support to stackcollapse.py
  perf script python: Add Python3 support to sctop.py
  perf script python: Add Python3 support to powerpc-hcalls.py
  perf script python: Add Python3 support to net_dropmonitor.py
  perf script python: Add Python3 support to mem-phys-addr.py
  perf script python: Add Python3 support to failed-syscalls-by-pid.py
  perf script python: Add Python3 support to netdev-times.py
  perf tools: Add perf_exe() helper to find perf binary
  perf script: Handle missing fields with -F +..
  perf data: Add perf_data__open_dir_data function
  perf data: Add perf_data__(create_dir|close_dir) functions
  perf data: Fail check_backup in case of error
  perf data: Make check_backup work over directories
  perf tools: Add rm_rf_perf_data function
  perf tools: Add pattern name checking to rm_rf
  perf tools: Add depth checking to rm_rf
  perf data: Add global path holder
  ...
2019-03-06 07:59:36 -08:00
David S. Miller
f7fb7c1a1c Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2019-03-04

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) Add AF_XDP support to libbpf. Rationale is to facilitate writing
   AF_XDP applications by offering higher-level APIs that hide many
   of the details of the AF_XDP uapi. Sample programs are converted
   over to this new interface as well, from Magnus.

2) Introduce a new cant_sleep() macro for annotation of functions
   that cannot sleep and use it in BPF_PROG_RUN() to assert that
   BPF programs run under preemption disabled context, from Peter.

3) Introduce per BPF prog stats in order to monitor the usage
   of BPF; this is controlled by kernel.bpf_stats_enabled sysctl
   knob where monitoring tools can make use of this to efficiently
   determine the average cost of programs, from Alexei.

4) Split up BPF selftest's test_progs similarly as we already
   did with test_verifier. This allows to further reduce merge
   conflicts in future and to get more structure into our
   quickly growing BPF selftest suite, from Stanislav.

5) Fix a bug in BTF's dedup algorithm which can cause an infinite
   loop in some circumstances; also various BPF doc fixes and
   improvements, from Andrii.

6) Various BPF sample cleanups and migration to libbpf in order
   to further isolate the old sample loader code (so we can get
   rid of it at some point), from Jakub.

7) Add a new BPF helper for BPF cgroup skb progs that allows
   to set ECN CE code point and a Host Bandwidth Manager (HBM)
   sample program for limiting the bandwidth used by v2 cgroups,
   from Lawrence.

8) Enable write access to skb->queue_mapping from tc BPF egress
   programs in order to let BPF pick TX queue, from Jesper.

9) Fix a bug in BPF spinlock handling for map-in-map which did
   not propagate spin_lock_off to the meta map, from Yonghong.

10) Fix a bug in the new per-CPU BPF prog counters to properly
    initialize stats for each CPU, from Eric.

11) Add various BPF helper prototypes to selftest's bpf_helpers.h,
    from Willem.

12) Fix various BPF samples bugs in XDP and tracing progs,
    from Toke, Daniel and Yonghong.

13) Silence preemption splat in test_bpf after BPF_PROG_RUN()
    enforces it now everywhere, from Anders.

14) Fix a signedness bug in libbpf's btf_dedup_ref_type() to
    get error handling working, from Dan.

15) Fix bpftool documentation and auto-completion with regards
    to stream_{verdict,parser} attach types, from Alban.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-03-04 10:14:31 -08:00
David S. Miller
9eb359140c Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2019-03-02 12:54:35 -08:00
Daniel Borkmann
3612af783c bpf: fix sanitation rewrite in case of non-pointers
Marek reported that he saw an issue with the below snippet in that
timing measurements where off when loaded as unpriv while results
were reasonable when loaded as privileged:

    [...]
    uint64_t a = bpf_ktime_get_ns();
    uint64_t b = bpf_ktime_get_ns();
    uint64_t delta = b - a;
    if ((int64_t)delta > 0) {
    [...]

Turns out there is a bug where a corner case is missing in the fix
d3bd7413e0 ("bpf: fix sanitation of alu op with pointer / scalar
type from different paths"), namely fixup_bpf_calls() only checks
whether aux has a non-zero alu_state, but it also needs to test for
the case of BPF_ALU_NON_POINTER since in both occasions we need to
skip the masking rewrite (as there is nothing to mask).

Fixes: d3bd7413e0 ("bpf: fix sanitation of alu op with pointer / scalar type from different paths")
Reported-by: Marek Majkowski <marek@cloudflare.com>
Reported-by: Arthur Fabre <afabre@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/netdev/CAJPywTJqP34cK20iLM5YmUMz9KXQOdu1-+BZrGMAGgLuBWz7fg@mail.gmail.com/T/
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-01 21:24:08 -08:00
Eric Dumazet
4b9113045b bpf: fix u64_stats_init() usage in bpf_prog_alloc()
We need to iterate through all possible cpus.

Fixes: 492ecee892 ("bpf: enable program stats")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-03-02 00:31:36 +01:00
Peng Sun
352d20d611 bpf: drop refcount if bpf_map_new_fd() fails in map_create()
In bpf/syscall.c, map_create() first set map->usercnt to 1, a file
descriptor is supposed to return to userspace. When bpf_map_new_fd()
fails, drop the refcount.

Fixes: bd5f5f4ecb ("bpf: Add BPF_MAP_GET_FD_BY_ID")
Signed-off-by: Peng Sun <sironhide0null@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-03-01 16:04:29 +01:00
Ingo Molnar
9ed8f1a6e7 Merge branch 'linus' into perf/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-28 08:27:17 +01:00
Yonghong Song
a115d0ed72 bpf: set inner_map_meta->spin_lock_off correctly
Commit d83525ca62 ("bpf: introduce bpf_spin_lock")
introduced bpf_spin_lock and the field spin_lock_off
in kernel internal structure bpf_map has the following
meaning:
  >=0 valid offset, <0 error

For every map created, the kernel will ensure
spin_lock_off has correct value.

Currently, bpf_map->spin_lock_off is not copied
from the inner map to the map_in_map inner_map_meta
during a map_in_map type map creation, so
inner_map_meta->spin_lock_off = 0.
This will give verifier wrong information that
inner_map has bpf_spin_lock and the bpf_spin_lock
is defined at offset 0. An access to offset 0
of a value pointer will trigger the following error:
   bpf_spin_lock cannot be accessed directly by load/store

This patch fixed the issue by copy inner map's spin_lock_off
value to inner_map_meta->spin_lock_off.

Fixes: d83525ca62 ("bpf: introduce bpf_spin_lock")
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-02-27 17:03:13 -08:00
Alexei Starovoitov
5f8f8b93ae bpf: expose program stats via bpf_prog_info
Return bpf program run_time_ns and run_cnt via bpf_prog_info

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-27 17:22:50 +01:00
Alexei Starovoitov
492ecee892 bpf: enable program stats
JITed BPF programs are indistinguishable from kernel functions, but unlike
kernel code BPF code can be changed often.
Typical approach of "perf record" + "perf report" profiling and tuning of
kernel code works just as well for BPF programs, but kernel code doesn't
need to be monitored whereas BPF programs do.
Users load and run large amount of BPF programs.
These BPF stats allow tools monitor the usage of BPF on the server.
The monitoring tools will turn sysctl kernel.bpf_stats_enabled
on and off for few seconds to sample average cost of the programs.
Aggregated data over hours and days will provide an insight into cost of BPF
and alarms can trigger in case given program suddenly gets more expensive.

The cost of two sched_clock() per program invocation adds ~20 nsec.
Fast BPF progs (like selftests/bpf/progs/test_pkt_access.c) will slow down
from ~10 nsec to ~30 nsec.
static_key minimizes the cost of the stats collection.
There is no measurable difference before/after this patch
with kernel.bpf_stats_enabled=0

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-27 17:22:50 +01:00
Peng Sun
781e62823c bpf: decrease usercnt if bpf_map_new_fd() fails in bpf_map_get_fd_by_id()
In bpf/syscall.c, bpf_map_get_fd_by_id() use bpf_map_inc_not_zero()
to increase the refcount, both map->refcnt and map->usercnt. Then, if
bpf_map_new_fd() fails, should handle map->usercnt too.

Fixes: bd5f5f4ecb ("bpf: Add BPF_MAP_GET_FD_BY_ID")
Signed-off-by: Peng Sun <sironhide0null@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-26 19:08:30 +01:00
David S. Miller
70f3522614 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Three conflicts, one of which, for marvell10g.c is non-trivial and
requires some follow-up from Heiner or someone else.

The issue is that Heiner converted the marvell10g driver over to
use the generic c45 code as much as possible.

However, in 'net' a bug fix appeared which makes sure that a new
local mask (MDIO_AN_10GBT_CTRL_ADV_NBT_MASK) with value 0x01e0
is cleared.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-24 12:06:19 -08:00
Alban Crequy
7c0cdf0b39 bpf, lpm: fix lookup bug in map_delete_elem
trie_delete_elem() was deleting an entry even though it was not matching
if the prefixlen was correct. This patch adds a check on matchlen.

Reproducer:

$ sudo bpftool map create /sys/fs/bpf/mylpm type lpm_trie key 8 value 1 entries 128 name mylpm flags 1
$ sudo bpftool map update pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 aa bb cc dd value hex 01
$ sudo bpftool map dump pinned /sys/fs/bpf/mylpm
key: 10 00 00 00 aa bb cc dd  value: 01
Found 1 element
$ sudo bpftool map delete pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 ff ff ff ff
$ echo $?
0
$ sudo bpftool map dump pinned /sys/fs/bpf/mylpm
Found 0 elements

A similar reproducer is added in the selftests.

Without the patch:

$ sudo ./tools/testing/selftests/bpf/test_lpm_map
test_lpm_map: test_lpm_map.c:485: test_lpm_delete: Assertion `bpf_map_delete_elem(map_fd, key) == -1 && errno == ENOENT' failed.
Aborted

With the patch: test_lpm_map runs without errors.

Fixes: e454cf5958 ("bpf: Implement map_delete_elem for BPF_MAP_TYPE_LPM_TRIE")
Cc: Craig Gallek <kraig@google.com>
Signed-off-by: Alban Crequy <alban@kinvolk.io>
Acked-by: Craig Gallek <kraig@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-22 16:17:53 +01:00
David S. Miller
375ca548f7 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Two easily resolvable overlapping change conflicts, one in
TCP and one in the eBPF verifier.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-20 00:34:07 -08:00
David S. Miller
885e631959 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:

====================
pull-request: bpf-next 2019-02-16

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) numerous libbpf API improvements, from Andrii, Andrey, Yonghong.

2) test all bpf progs in alu32 mode, from Jiong.

3) skb->sk access and bpf_sk_fullsock(), bpf_tcp_sock() helpers, from Martin.

4) support for IP encap in lwt bpf progs, from Peter.

5) remove XDP_QUERY_XSK_UMEM dead code, from Jan.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-16 22:56:34 -08:00
Jakub Kicinski
dd27c2e3d0 bpf: offload: add priv field for drivers
Currently bpf_offload_dev does not have any priv pointer, forcing
the drivers to work backwards from the netdev in program metadata.
This is not great given programs are conceptually associated with
the offload device, and it means one or two unnecessary deferences.
Add a priv pointer to bpf_offload_dev.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-12 17:07:09 +01:00
Alexei Starovoitov
3defaf2f15 bpf: fix lockdep false positive in stackmap
Lockdep warns about false positive:
[   11.211460] ------------[ cut here ]------------
[   11.211936] DEBUG_LOCKS_WARN_ON(depth <= 0)
[   11.211985] WARNING: CPU: 0 PID: 141 at ../kernel/locking/lockdep.c:3592 lock_release+0x1ad/0x280
[   11.213134] Modules linked in:
[   11.214954] RIP: 0010:lock_release+0x1ad/0x280
[   11.223508] Call Trace:
[   11.223705]  <IRQ>
[   11.223874]  ? __local_bh_enable+0x7a/0x80
[   11.224199]  up_read+0x1c/0xa0
[   11.224446]  do_up_read+0x12/0x20
[   11.224713]  irq_work_run_list+0x43/0x70
[   11.225030]  irq_work_run+0x26/0x50
[   11.225310]  smp_irq_work_interrupt+0x57/0x1f0
[   11.225662]  irq_work_interrupt+0xf/0x20

since rw_semaphore is released in a different task vs task that locked the sema.
It is expected behavior.
Fix the warning with up_read_non_owner() and rwsem_release() annotation.

Fixes: bae77c5eb5 ("bpf: enable stackmap with build_id in nmi context")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-11 16:36:24 +01:00
Martin KaFai Lau
655a51e536 bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock
This patch adds a helper function BPF_FUNC_tcp_sock and it
is currently available for cg_skb and sched_(cls|act):

struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk);

int cg_skb_foo(struct __sk_buff *skb) {
	struct bpf_tcp_sock *tp;
	struct bpf_sock *sk;
	__u32 snd_cwnd;

	sk = skb->sk;
	if (!sk)
		return 1;

	tp = bpf_tcp_sock(sk);
	if (!tp)
		return 1;

	snd_cwnd = tp->snd_cwnd;
	/* ... */

	return 1;
}

A 'struct bpf_tcp_sock' is also added to the uapi bpf.h to provide
read-only access.  bpf_tcp_sock has all the existing tcp_sock's fields
that has already been exposed by the bpf_sock_ops.
i.e. no new tcp_sock's fields are exposed in bpf.h.

This helper returns a pointer to the tcp_sock.  If it is not a tcp_sock
or it cannot be traced back to a tcp_sock by sk_to_full_sk(), it
returns NULL.  Hence, the caller needs to check for NULL before
accessing it.

The current use case is to expose members from tcp_sock
to allow a cg_skb_bpf_prog to provide per cgroup traffic
policing/shaping.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-02-10 19:46:17 -08:00
Martin KaFai Lau
46f8bc9275 bpf: Add a bpf_sock pointer to __sk_buff and a bpf_sk_fullsock helper
In kernel, it is common to check "skb->sk && sk_fullsock(skb->sk)"
before accessing the fields in sock.  For example, in __netdev_pick_tx:

static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
			    struct net_device *sb_dev)
{
	/* ... */

	struct sock *sk = skb->sk;

		if (queue_index != new_index && sk &&
		    sk_fullsock(sk) &&
		    rcu_access_pointer(sk->sk_dst_cache))
			sk_tx_queue_set(sk, new_index);

	/* ... */

	return queue_index;
}

This patch adds a "struct bpf_sock *sk" pointer to the "struct __sk_buff"
where a few of the convert_ctx_access() in filter.c has already been
accessing the skb->sk sock_common's fields,
e.g. sock_ops_convert_ctx_access().

"__sk_buff->sk" is a PTR_TO_SOCK_COMMON_OR_NULL in the verifier.
Some of the fileds in "bpf_sock" will not be directly
accessible through the "__sk_buff->sk" pointer.  It is limited
by the new "bpf_sock_common_is_valid_access()".
e.g. The existing "type", "protocol", "mark" and "priority" in bpf_sock
     are not allowed.

The newly added "struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)"
can be used to get a sk with all accessible fields in "bpf_sock".
This helper is added to both cg_skb and sched_(cls|act).

int cg_skb_foo(struct __sk_buff *skb) {
	struct bpf_sock *sk;

	sk = skb->sk;
	if (!sk)
		return 1;

	sk = bpf_sk_fullsock(sk);
	if (!sk)
		return 1;

	if (sk->family != AF_INET6 || sk->protocol != IPPROTO_TCP)
		return 1;

	/* some_traffic_shaping(); */

	return 1;
}

(1) The sk is read only

(2) There is no new "struct bpf_sock_common" introduced.

(3) Future kernel sock's members could be added to bpf_sock only
    instead of repeatedly adding at multiple places like currently
    in bpf_sock_ops_md, bpf_sock_addr_md, sk_reuseport_md...etc.

(4) After "sk = skb->sk", the reg holding sk is in type
    PTR_TO_SOCK_COMMON_OR_NULL.

(5) After bpf_sk_fullsock(), the return type will be in type
    PTR_TO_SOCKET_OR_NULL which is the same as the return type of
    bpf_sk_lookup_xxx().

    However, bpf_sk_fullsock() does not take refcnt.  The
    acquire_reference_state() is only depending on the return type now.
    To avoid it, a new is_acquire_function() is checked before calling
    acquire_reference_state().

(6) The WARN_ON in "release_reference_state()" is no longer an
    internal verifier bug.

    When reg->id is not found in state->refs[], it means the
    bpf_prog does something wrong like
    "bpf_sk_release(bpf_sk_fullsock(skb->sk))" where reference has
    never been acquired by calling "bpf_sk_fullsock(skb->sk)".

    A -EINVAL and a verbose are done instead of WARN_ON.  A test is
    added to the test_verifier in a later patch.

    Since the WARN_ON in "release_reference_state()" is no longer
    needed, "__release_reference_state()" is folded into
    "release_reference_state()" also.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-02-10 19:46:17 -08:00
Martin KaFai Lau
5f4566498d bpf: Fix narrow load on a bpf_sock returned from sk_lookup()
By adding this test to test_verifier:
{
	"reference tracking: access sk->src_ip4 (narrow load)",
	.insns = {
	BPF_SK_LOOKUP,
	BPF_MOV64_REG(BPF_REG_6, BPF_REG_0),
	BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
	BPF_LDX_MEM(BPF_H, BPF_REG_2, BPF_REG_0, offsetof(struct bpf_sock, src_ip4) + 2),
	BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
	BPF_EMIT_CALL(BPF_FUNC_sk_release),
	BPF_EXIT_INSN(),
	},
	.prog_type = BPF_PROG_TYPE_SCHED_CLS,
	.result = ACCEPT,
},

The above test loads 2 bytes from sk->src_ip4 where
sk is obtained by bpf_sk_lookup_tcp().

It hits an internal verifier error from convert_ctx_accesses():
[root@arch-fb-vm1 bpf]# ./test_verifier 665 665
Failed to load prog 'Invalid argument'!
0: (b7) r2 = 0
1: (63) *(u32 *)(r10 -8) = r2
2: (7b) *(u64 *)(r10 -16) = r2
3: (7b) *(u64 *)(r10 -24) = r2
4: (7b) *(u64 *)(r10 -32) = r2
5: (7b) *(u64 *)(r10 -40) = r2
6: (7b) *(u64 *)(r10 -48) = r2
7: (bf) r2 = r10
8: (07) r2 += -48
9: (b7) r3 = 36
10: (b7) r4 = 0
11: (b7) r5 = 0
12: (85) call bpf_sk_lookup_tcp#84
13: (bf) r6 = r0
14: (15) if r0 == 0x0 goto pc+3
 R0=sock(id=1,off=0,imm=0) R6=sock(id=1,off=0,imm=0) R10=fp0,call_-1 fp-8=????0000 fp-16=0000mmmm fp-24=mmmmmmmm fp-32=mmmmmmmm fp-40=mmmmmmmm fp-48=mmmmmmmm refs=1
15: (69) r2 = *(u16 *)(r0 +26)
16: (bf) r1 = r6
17: (85) call bpf_sk_release#86
18: (95) exit

from 14 to 18: safe
processed 20 insns (limit 131072), stack depth 48
bpf verifier is misconfigured
Summary: 0 PASSED, 0 SKIPPED, 1 FAILED

The bpf_sock_is_valid_access() is expecting src_ip4 can be narrowly
loaded (meaning load any 1 or 2 bytes of the src_ip4) by
marking info->ctx_field_size.  However, this marked
ctx_field_size is not used.  This patch fixes it.

Due to the recent refactoring in test_verifier,
this new test will be added to the bpf-next branch
(together with the bpf_tcp_sock patchset)
to avoid merge conflict.

Fixes: c64b798328 ("bpf: Add PTR_TO_SOCKET verifier type")
Cc: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-02-10 19:37:41 -08:00
Martin KaFai Lau
d623876646 bpf: Fix narrow load on a bpf_sock returned from sk_lookup()
By adding this test to test_verifier:
{
	"reference tracking: access sk->src_ip4 (narrow load)",
	.insns = {
	BPF_SK_LOOKUP,
	BPF_MOV64_REG(BPF_REG_6, BPF_REG_0),
	BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
	BPF_LDX_MEM(BPF_H, BPF_REG_2, BPF_REG_0, offsetof(struct bpf_sock, src_ip4) + 2),
	BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
	BPF_EMIT_CALL(BPF_FUNC_sk_release),
	BPF_EXIT_INSN(),
	},
	.prog_type = BPF_PROG_TYPE_SCHED_CLS,
	.result = ACCEPT,
},

The above test loads 2 bytes from sk->src_ip4 where
sk is obtained by bpf_sk_lookup_tcp().

It hits an internal verifier error from convert_ctx_accesses():
[root@arch-fb-vm1 bpf]# ./test_verifier 665 665
Failed to load prog 'Invalid argument'!
0: (b7) r2 = 0
1: (63) *(u32 *)(r10 -8) = r2
2: (7b) *(u64 *)(r10 -16) = r2
3: (7b) *(u64 *)(r10 -24) = r2
4: (7b) *(u64 *)(r10 -32) = r2
5: (7b) *(u64 *)(r10 -40) = r2
6: (7b) *(u64 *)(r10 -48) = r2
7: (bf) r2 = r10
8: (07) r2 += -48
9: (b7) r3 = 36
10: (b7) r4 = 0
11: (b7) r5 = 0
12: (85) call bpf_sk_lookup_tcp#84
13: (bf) r6 = r0
14: (15) if r0 == 0x0 goto pc+3
 R0=sock(id=1,off=0,imm=0) R6=sock(id=1,off=0,imm=0) R10=fp0,call_-1 fp-8=????0000 fp-16=0000mmmm fp-24=mmmmmmmm fp-32=mmmmmmmm fp-40=mmmmmmmm fp-48=mmmmmmmm refs=1
15: (69) r2 = *(u16 *)(r0 +26)
16: (bf) r1 = r6
17: (85) call bpf_sk_release#86
18: (95) exit

from 14 to 18: safe
processed 20 insns (limit 131072), stack depth 48
bpf verifier is misconfigured
Summary: 0 PASSED, 0 SKIPPED, 1 FAILED

The bpf_sock_is_valid_access() is expecting src_ip4 can be narrowly
loaded (meaning load any 1 or 2 bytes of the src_ip4) by
marking info->ctx_field_size.  However, this marked
ctx_field_size is not used.  This patch fixes it.

Due to the recent refactoring in test_verifier,
this new test will be added to the bpf-next branch
(together with the bpf_tcp_sock patchset)
to avoid merge conflict.

Fixes: c64b798328 ("bpf: Add PTR_TO_SOCKET verifier type")
Cc: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-02-09 19:57:22 -08:00
David S. Miller
a655fe9f19 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
An ipvlan bug fix in 'net' conflicted with the abstraction away
of the IPV6 specific support in 'net-next'.

Similarly, a bug fix for mlx5 in 'net' conflicted with the flow
action conversion in 'net-next'.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-08 15:00:17 -08:00
Ingo Molnar
98cb621081 Merge branch 'perf/urgent' into perf/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04 08:45:42 +01:00
Alexei Starovoitov
96049f3afd bpf: introduce BPF_F_LOCK flag
Introduce BPF_F_LOCK flag for map_lookup and map_update syscall commands
and for map_update() helper function.
In all these cases take a lock of existing element (which was provided
in BTF description) before copying (in or out) the rest of map value.

Implementation details that are part of uapi:

Array:
The array map takes the element lock for lookup/update.

Hash:
hash map also takes the lock for lookup/update and tries to avoid the bucket lock.
If old element exists it takes the element lock and updates the element in place.
If element doesn't exist it allocates new one and inserts into hash table
while holding the bucket lock.
In rare case the hashmap has to take both the bucket lock and the element lock
to update old value in place.

Cgroup local storage:
It is similar to array. update in place and lookup are done with lock taken.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 20:55:39 +01:00
Alexei Starovoitov
e16d2f1ab9 bpf: add support for bpf_spin_lock to cgroup local storage
Allow 'struct bpf_spin_lock' to reside inside cgroup local storage.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 20:55:38 +01:00
Alexei Starovoitov
d83525ca62 bpf: introduce bpf_spin_lock
Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let
bpf program serialize access to other variables.

Example:
struct hash_elem {
    int cnt;
    struct bpf_spin_lock lock;
};
struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key);
if (val) {
    bpf_spin_lock(&val->lock);
    val->cnt++;
    bpf_spin_unlock(&val->lock);
}

Restrictions and safety checks:
- bpf_spin_lock is only allowed inside HASH and ARRAY maps.
- BTF description of the map is mandatory for safety analysis.
- bpf program can take one bpf_spin_lock at a time, since two or more can
  cause dead locks.
- only one 'struct bpf_spin_lock' is allowed per map element.
  It drastically simplifies implementation yet allows bpf program to use
  any number of bpf_spin_locks.
- when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed.
- bpf program must bpf_spin_unlock() before return.
- bpf program can access 'struct bpf_spin_lock' only via
  bpf_spin_lock()/bpf_spin_unlock() helpers.
- load/store into 'struct bpf_spin_lock lock;' field is not allowed.
- to use bpf_spin_lock() helper the BTF description of map value must be
  a struct and have 'struct bpf_spin_lock anyname;' field at the top level.
  Nested lock inside another struct is not allowed.
- syscall map_lookup doesn't copy bpf_spin_lock field to user space.
- syscall map_update and program map_update do not update bpf_spin_lock field.
- bpf_spin_lock cannot be on the stack or inside networking packet.
  bpf_spin_lock can only be inside HASH or ARRAY map value.
- bpf_spin_lock is available to root only and to all program types.
- bpf_spin_lock is not allowed in inner maps of map-in-map.
- ld_abs is not allowed inside spin_lock-ed region.
- tracing progs and socket filter progs cannot use bpf_spin_lock due to
  insufficient preemption checks

Implementation details:
- cgroup-bpf class of programs can nest with xdp/tc programs.
  Hence bpf_spin_lock is equivalent to spin_lock_irqsave.
  Other solutions to avoid nested bpf_spin_lock are possible.
  Like making sure that all networking progs run with softirq disabled.
  spin_lock_irqsave is the simplest and doesn't add overhead to the
  programs that don't use it.
- arch_spinlock_t is used when its implemented as queued_spin_lock
- archs can force their own arch_spinlock_t
- on architectures where queued_spin_lock is not available and
  sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used.
- presence of bpf_spin_lock inside map value could have been indicated via
  extra flag during map_create, but specifying it via BTF is cleaner.
  It provides introspection for map key/value and reduces user mistakes.

Next steps:
- allow bpf_spin_lock in other map types (like cgroup local storage)
- introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper
  to request kernel to grab bpf_spin_lock before rewriting the value.
  That will serialize access to map elements.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 20:55:38 +01:00
Martin KaFai Lau
7c4cd051ad bpf: Fix syscall's stackmap lookup potential deadlock
The map_lookup_elem used to not acquiring spinlock
in order to optimize the reader.

It was true until commit 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
The syscall's map_lookup_elem(stackmap) calls bpf_stackmap_copy().
bpf_stackmap_copy() may find the elem no longer needed after the copy is done.
If that is the case, pcpu_freelist_push() saves this elem for reuse later.
This push requires a spinlock.

If a tracing bpf_prog got run in the middle of the syscall's
map_lookup_elem(stackmap) and this tracing bpf_prog is calling
bpf_get_stackid(stackmap) which also requires the same pcpu_freelist's
spinlock, it may end up with a dead lock situation as reported by
Eric Dumazet in https://patchwork.ozlabs.org/patch/1030266/

The situation is the same as the syscall's map_update_elem() which
needs to acquire the pcpu_freelist's spinlock and could race
with tracing bpf_prog.  Hence, this patch fixes it by protecting
bpf_stackmap_copy() with this_cpu_inc(bpf_prog_active)
to prevent tracing bpf_prog from running.

A later syscall's map_lookup_elem commit f1a2e44a3a ("bpf: add queue and stack maps")
also acquires a spinlock and races with tracing bpf_prog similarly.
Hence, this patch is forward looking and protects the majority
of the map lookups.  bpf_map_offload_lookup_elem() is the exception
since it is for network bpf_prog only (i.e. never called by tracing
bpf_prog).

Fixes: 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31 23:18:21 +01:00
Alexei Starovoitov
a89fac57b5 bpf: fix lockdep false positive in percpu_freelist
Lockdep warns about false positive:
[   12.492084] 00000000e6b28347 (&head->lock){+...}, at: pcpu_freelist_push+0x2a/0x40
[   12.492696] but this lock was taken by another, HARDIRQ-safe lock in the past:
[   12.493275]  (&rq->lock){-.-.}
[   12.493276]
[   12.493276]
[   12.493276] and interrupts could create inverse lock ordering between them.
[   12.493276]
[   12.494435]
[   12.494435] other info that might help us debug this:
[   12.494979]  Possible interrupt unsafe locking scenario:
[   12.494979]
[   12.495518]        CPU0                    CPU1
[   12.495879]        ----                    ----
[   12.496243]   lock(&head->lock);
[   12.496502]                                local_irq_disable();
[   12.496969]                                lock(&rq->lock);
[   12.497431]                                lock(&head->lock);
[   12.497890]   <Interrupt>
[   12.498104]     lock(&rq->lock);
[   12.498368]
[   12.498368]  *** DEADLOCK ***
[   12.498368]
[   12.498837] 1 lock held by dd/276:
[   12.499110]  #0: 00000000c58cb2ee (rcu_read_lock){....}, at: trace_call_bpf+0x5e/0x240
[   12.499747]
[   12.499747] the shortest dependencies between 2nd lock and 1st lock:
[   12.500389]  -> (&rq->lock){-.-.} {
[   12.500669]     IN-HARDIRQ-W at:
[   12.500934]                       _raw_spin_lock+0x2f/0x40
[   12.501373]                       scheduler_tick+0x4c/0xf0
[   12.501812]                       update_process_times+0x40/0x50
[   12.502294]                       tick_periodic+0x27/0xb0
[   12.502723]                       tick_handle_periodic+0x1f/0x60
[   12.503203]                       timer_interrupt+0x11/0x20
[   12.503651]                       __handle_irq_event_percpu+0x43/0x2c0
[   12.504167]                       handle_irq_event_percpu+0x20/0x50
[   12.504674]                       handle_irq_event+0x37/0x60
[   12.505139]                       handle_level_irq+0xa7/0x120
[   12.505601]                       handle_irq+0xa1/0x150
[   12.506018]                       do_IRQ+0x77/0x140
[   12.506411]                       ret_from_intr+0x0/0x1d
[   12.506834]                       _raw_spin_unlock_irqrestore+0x53/0x60
[   12.507362]                       __setup_irq+0x481/0x730
[   12.507789]                       setup_irq+0x49/0x80
[   12.508195]                       hpet_time_init+0x21/0x32
[   12.508644]                       x86_late_time_init+0xb/0x16
[   12.509106]                       start_kernel+0x390/0x42a
[   12.509554]                       secondary_startup_64+0xa4/0xb0
[   12.510034]     IN-SOFTIRQ-W at:
[   12.510305]                       _raw_spin_lock+0x2f/0x40
[   12.510772]                       try_to_wake_up+0x1c7/0x4e0
[   12.511220]                       swake_up_locked+0x20/0x40
[   12.511657]                       swake_up_one+0x1a/0x30
[   12.512070]                       rcu_process_callbacks+0xc5/0x650
[   12.512553]                       __do_softirq+0xe6/0x47b
[   12.512978]                       irq_exit+0xc3/0xd0
[   12.513372]                       smp_apic_timer_interrupt+0xa9/0x250
[   12.513876]                       apic_timer_interrupt+0xf/0x20
[   12.514343]                       default_idle+0x1c/0x170
[   12.514765]                       do_idle+0x199/0x240
[   12.515159]                       cpu_startup_entry+0x19/0x20
[   12.515614]                       start_kernel+0x422/0x42a
[   12.516045]                       secondary_startup_64+0xa4/0xb0
[   12.516521]     INITIAL USE at:
[   12.516774]                      _raw_spin_lock_irqsave+0x38/0x50
[   12.517258]                      rq_attach_root+0x16/0xd0
[   12.517685]                      sched_init+0x2f2/0x3eb
[   12.518096]                      start_kernel+0x1fb/0x42a
[   12.518525]                      secondary_startup_64+0xa4/0xb0
[   12.518986]   }
[   12.519132]   ... key      at: [<ffffffff82b7bc28>] __key.71384+0x0/0x8
[   12.519649]   ... acquired at:
[   12.519892]    pcpu_freelist_pop+0x7b/0xd0
[   12.520221]    bpf_get_stackid+0x1d2/0x4d0
[   12.520563]    ___bpf_prog_run+0x8b4/0x11a0
[   12.520887]
[   12.521008] -> (&head->lock){+...} {
[   12.521292]    HARDIRQ-ON-W at:
[   12.521539]                     _raw_spin_lock+0x2f/0x40
[   12.521950]                     pcpu_freelist_push+0x2a/0x40
[   12.522396]                     bpf_get_stackid+0x494/0x4d0
[   12.522828]                     ___bpf_prog_run+0x8b4/0x11a0
[   12.523296]    INITIAL USE at:
[   12.523537]                    _raw_spin_lock+0x2f/0x40
[   12.523944]                    pcpu_freelist_populate+0xc0/0x120
[   12.524417]                    htab_map_alloc+0x405/0x500
[   12.524835]                    __do_sys_bpf+0x1a3/0x1a90
[   12.525253]                    do_syscall_64+0x4a/0x180
[   12.525659]                    entry_SYSCALL_64_after_hwframe+0x49/0xbe
[   12.526167]  }
[   12.526311]  ... key      at: [<ffffffff838f7668>] __key.13130+0x0/0x8
[   12.526812]  ... acquired at:
[   12.527047]    __lock_acquire+0x521/0x1350
[   12.527371]    lock_acquire+0x98/0x190
[   12.527680]    _raw_spin_lock+0x2f/0x40
[   12.527994]    pcpu_freelist_push+0x2a/0x40
[   12.528325]    bpf_get_stackid+0x494/0x4d0
[   12.528645]    ___bpf_prog_run+0x8b4/0x11a0
[   12.528970]
[   12.529092]
[   12.529092] stack backtrace:
[   12.529444] CPU: 0 PID: 276 Comm: dd Not tainted 5.0.0-rc3-00018-g2fa53f892422 #475
[   12.530043] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
[   12.530750] Call Trace:
[   12.530948]  dump_stack+0x5f/0x8b
[   12.531248]  check_usage_backwards+0x10c/0x120
[   12.531598]  ? ___bpf_prog_run+0x8b4/0x11a0
[   12.531935]  ? mark_lock+0x382/0x560
[   12.532229]  mark_lock+0x382/0x560
[   12.532496]  ? print_shortest_lock_dependencies+0x180/0x180
[   12.532928]  __lock_acquire+0x521/0x1350
[   12.533271]  ? find_get_entry+0x17f/0x2e0
[   12.533586]  ? find_get_entry+0x19c/0x2e0
[   12.533902]  ? lock_acquire+0x98/0x190
[   12.534196]  lock_acquire+0x98/0x190
[   12.534482]  ? pcpu_freelist_push+0x2a/0x40
[   12.534810]  _raw_spin_lock+0x2f/0x40
[   12.535099]  ? pcpu_freelist_push+0x2a/0x40
[   12.535432]  pcpu_freelist_push+0x2a/0x40
[   12.535750]  bpf_get_stackid+0x494/0x4d0
[   12.536062]  ___bpf_prog_run+0x8b4/0x11a0

It has been explained that is a false positive here:
https://lkml.org/lkml/2018/7/25/756
Recap:
- stackmap uses pcpu_freelist
- The lock in pcpu_freelist is a percpu lock
- stackmap is only used by tracing bpf_prog
- A tracing bpf_prog cannot be run if another bpf_prog
  has already been running (ensured by the percpu bpf_prog_active counter).

Eric pointed out that this lockdep splats stops other
legit lockdep splats in selftests/bpf/test_progs.c.

Fix this by calling local_irq_save/restore for stackmap.

Another false positive had also been worked around by calling
local_irq_save in commit 89ad2fa3f0 ("bpf: fix lockdep splat").
That commit added unnecessary irq_save/restore to fast path of
bpf hash map. irqs are already disabled at that point, since htab
is holding per bucket spin_lock with irqsave.

Let's reduce overhead for htab by introducing __pcpu_freelist_push/pop
function w/o irqsave and convert pcpu_freelist_push/pop to irqsave
to be used elsewhere (right now only in stackmap).
It stops lockdep false positive in stackmap with a bit of acceptable overhead.

Fixes: 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31 23:18:21 +01:00
Alexei Starovoitov
6cab5e90ab bpf: run bpf programs with preemption disabled
Disabled preemption is necessary for proper access to per-cpu maps
from BPF programs.

But the sender side of socket filters didn't have preemption disabled:
unix_dgram_sendmsg->sk_filter->sk_filter_trim_cap->bpf_prog_run_save_cb->BPF_PROG_RUN

and a combination of af_packet with tun device didn't disable either:
tpacket_snd->packet_direct_xmit->packet_pick_tx_queue->ndo_select_queue->
  tun_select_queue->tun_ebpf_select_queue->bpf_prog_run_clear_cb->BPF_PROG_RUN

Disable preemption before executing BPF programs (both classic and extended).

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31 23:14:55 +01:00
Valdis Kletnieks
1832f4ef58 bpf, cgroups: clean up kerneldoc warnings
Building with W=1 reveals some bitrot:

  CC      kernel/bpf/cgroup.o
kernel/bpf/cgroup.c:238: warning: Function parameter or member 'flags' not described in '__cgroup_bpf_attach'
kernel/bpf/cgroup.c:367: warning: Function parameter or member 'unused_flags' not described in '__cgroup_bpf_detach'

Add a kerneldoc line for 'flags'.

Fixing the warning for 'unused_flags' is best approached by
removing the unused parameter on the function call.

Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31 10:32:01 +01:00
Valdis Kletnieks
de1da68d9c bpf: fix bitrotted kerneldoc
Over the years, the function signature has changed, but the
kerneldoc block hasn't.

Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31 10:31:44 +01:00
Yonghong Song
81f5c6f5db bpf: btf: allow typedef func_proto
Current implementation does not allow typedef func_proto.
But it is actually allowed.
  -bash-4.4$ cat t.c
  typedef int (f) (int);
  f *g;
  -bash-4.4$ clang -O2 -g -c -target bpf t.c -Xclang -target-feature -Xclang +dwarfris
  -bash-4.4$ pahole -JV t.o
  File t.o:
  [1] PTR (anon) type_id=2
  [2] TYPEDEF f type_id=3
  [3] FUNC_PROTO (anon) return=4 args=(4 (anon))
  [4] INT int size=4 bit_offset=0 nr_bits=32 encoding=SIGNED
  -bash-4.4$

This patch related btf verifier to allow such (typedef func_proto)
patterns.

Fixes: 2667a2626f ("bpf: btf: Add BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO")
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-29 19:15:32 -08:00
David S. Miller
ec7146db15 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2019-01-29

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) Teach verifier dead code removal, this also allows for optimizing /
   removing conditional branches around dead code and to shrink the
   resulting image. Code store constrained architectures like nfp would
   have hard time doing this at JIT level, from Jakub.

2) Add JMP32 instructions to BPF ISA in order to allow for optimizing
   code generation for 32-bit sub-registers. Evaluation shows that this
   can result in code reduction of ~5-20% compared to 64 bit-only code
   generation. Also add implementation for most JITs, from Jiong.

3) Add support for __int128 types in BTF which is also needed for
   vmlinux's BTF conversion to work, from Yonghong.

4) Add a new command to bpftool in order to dump a list of BPF-related
   parameters from the system or for a specific network device e.g. in
   terms of available prog/map types or helper functions, from Quentin.

5) Add AF_XDP sock_diag interface for querying sockets from user
   space which provides information about the RX/TX/fill/completion
   rings, umem, memory usage etc, from Björn.

6) Add skb context access for skb_shared_info->gso_segs field, from Eric.

7) Add support for testing flow dissector BPF programs by extending
   existing BPF_PROG_TEST_RUN infrastructure, from Stanislav.

8) Split BPF kselftest's test_verifier into various subgroups of tests
   in order better deal with merge conflicts in this area, from Jakub.

9) Add support for queue/stack manipulations in bpftool, from Stanislav.

10) Document BTF, from Yonghong.

11) Dump supported ELF section names in libbpf on program load
    failure, from Taeung.

12) Silence a false positive compiler warning in verifier's BTF
    handling, from Peter.

13) Fix help string in bpftool's feature probing, from Prashant.

14) Remove duplicate includes in BPF kselftests, from Yue.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-28 19:38:33 -08:00
Jiong Wang
a7b76c8857 bpf: JIT blinds support JMP32
This patch adds JIT blinds support for JMP32.

Like BPF_JMP_REG/IMM, JMP32 version are needed for building raw bpf insn.
They are added to both include/linux/filter.h and
tools/include/linux/filter.h.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26 13:33:01 -08:00
Jiong Wang
503a8865a4 bpf: interpreter support for JMP32
This patch implements interpreting new JMP32 instructions.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26 13:33:01 -08:00
Jiong Wang
56cbd82ef0 bpf: disassembler support JMP32
This patch teaches disassembler about JMP32. There are two places to
update:

  - Class 0x6 now used by BPF_JMP32, not "unused".

  - BPF_JMP32 need to show comparison operands properly.
    The disassemble format is to add an extra "(32)" before the operands if
    it is a sub-register. A better disassemble format for both JMP32 and
    ALU32 just show the register prefix as "w" instead of "r", this is the
    format using by LLVM assembler.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26 13:33:01 -08:00
Jiong Wang
092ed0968b bpf: verifier support JMP32
This patch teach verifier about the new BPF_JMP32 instruction class.
Verifier need to treat it similar as the existing BPF_JMP class.
A BPF_JMP32 insn needs to go through all checks that have been done on
BPF_JMP.

Also, verifier is doing runtime optimizations based on the extra info
conditional jump instruction could offer, especially when the comparison is
between constant and register that the value range of the register could be
improved based on the comparison results. These code are updated
accordingly.

Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26 13:33:01 -08:00
Jiong Wang
a72dafafbd bpf: refactor verifier min/max code for condition jump
The current min/max code does both signed and unsigned comparisons against
the input argument "val" which is "u64" and there is explicit type casting
when the comparison is signed.

As we will need slightly more complexer type casting when JMP32 introduced,
it is better to host the signed type casting. This makes the code more
clean with ignorable runtime overhead.

Also, code for J*GE/GT/LT/LE and JEQ/JNE are very similar, this patch
combine them.

The main purpose for this refactor is to make sure the min/max code will
still be readable and with minimum code duplication after JMP32 introduced.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26 13:33:01 -08:00
Jakub Kicinski
08ca90afba bpf: notify offload JITs about optimizations
Let offload JITs know when instructions are replaced and optimized
out, so they can update their state appropriately.  The optimizations
are best effort, if JIT returns an error from any callback verifier
will stop notifying it as state may now be out of sync, but the
verifier continues making progress.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23 17:35:32 -08:00
Jakub Kicinski
9e4c24e7ee bpf: verifier: record original instruction index
The communication between the verifier and advanced JITs is based
on instruction indexes.  We have to keep them stable throughout
the optimizations otherwise referring to a particular instruction
gets messy quickly.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23 17:35:32 -08:00
Jakub Kicinski
a1b14abc00 bpf: verifier: remove unconditional branches by 0
Unconditional branches by 0 instructions are basically noops
but they can result from earlier optimizations, e.g. a conditional
jumps which would never be taken or a conditional jump around
dead code.

Remove those branches.

v0.2:
 - s/opt_remove_dead_branches/opt_remove_nops/ (Jiong).

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23 17:35:32 -08:00
Jakub Kicinski
52875a04f4 bpf: verifier: remove dead code
Instead of overwriting dead code with jmp -1 instructions
remove it completely for root.  Adjust verifier state and
line info appropriately.

v2:
 - adjust func_info (Alexei);
 - make sure first instruction retains line info (Alexei).
v4: (Yonghong)
 - remove unnecessary if (!insn to remove) checks;
 - always keep last line info if first live instruction lacks one.
v5: (Martin Lau)
 - improve and clarify comments.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23 17:35:31 -08:00
Jakub Kicinski
e2ae4ca266 bpf: verifier: hard wire branches to dead code
Loading programs with dead code becomes more and more
common, as people begin to patch constants at load time.
Turn conditional jumps to unconditional ones, to avoid
potential branch misprediction penalty.

This optimization is enabled for privileged users only.

For branches which just fall through we could just mark
them as not seen and have dead code removal take care of
them, but that seems less clean.

v0.2:
 - don't call capable(CAP_SYS_ADMIN) twice (Jiong).
v3:
 - fix GCC warning;

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23 17:35:31 -08:00
Jakub Kicinski
2cbd95a5c4 bpf: change parameters of call/branch offset adjustment
In preparation for code removal change parameters to branch
and call adjustment functions to be more universal.  The
current parameters assume we are patching a single instruction
with a longer set.

A diagram may help reading the change, this is for the patch
single case, patching instruction 1 with a replacement of 4:
   ____
0 |____|
1 |____| <-- pos                ^
2 |    | <-- end old  ^         |
3 |    |              |  delta  |  len
4 |____|              |         |  (patch region)
5 |    | <-- end new  v         v
6 |____|

end_old = pos + 1
end_new = pos + delta + 1

If we are before the patch region - curr variable and the target
are fully in old coordinates (hence comparing against end_old).
If we are after the region curr is in new coordinates (hence
the comparison to end_new) but target is in mixed coordinates,
so we just check if it falls before end_new, and if so it needs
the adjustment.

Note that we will not fix up branches which land in removed region
in case of removal, which should be okay, as we are only going to
remove dead code.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23 17:35:31 -08:00
Song Liu
6ee52e2a3f perf, bpf: Introduce PERF_RECORD_BPF_EVENT
For better performance analysis of BPF programs, this patch introduces
PERF_RECORD_BPF_EVENT, a new perf_event_type that exposes BPF program
load/unload information to user space.

Each BPF program may contain up to BPF_MAX_SUBPROGS (256) sub programs.
The following example shows kernel symbols for a BPF program with 7 sub
programs:

    ffffffffa0257cf9 t bpf_prog_b07ccb89267cf242_F
    ffffffffa02592e1 t bpf_prog_2dcecc18072623fc_F
    ffffffffa025b0e9 t bpf_prog_bb7a405ebaec5d5c_F
    ffffffffa025dd2c t bpf_prog_a7540d4a39ec1fc7_F
    ffffffffa025fcca t bpf_prog_05762d4ade0e3737_F
    ffffffffa026108f t bpf_prog_db4bd11e35df90d4_F
    ffffffffa0263f00 t bpf_prog_89d64e4abf0f0126_F
    ffffffffa0257cf9 t bpf_prog_ae31629322c4b018__dummy_tracepoi

When a bpf program is loaded, PERF_RECORD_KSYMBOL is generated for each
of these sub programs. Therefore, PERF_RECORD_BPF_EVENT is not needed
for simple profiling.

For annotation, user space need to listen to PERF_RECORD_BPF_EVENT and
gather more information about these (sub) programs via sys_bpf.

Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradeaed.org>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-team@fb.com
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/20190117161521.1341602-4-songliubraving@fb.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-01-21 17:00:57 -03:00
Daniel Borkmann
9d5564ddcf bpf: fix inner map masking to prevent oob under speculation
During review I noticed that inner meta map setup for map in
map is buggy in that it does not propagate all needed data
from the reference map which the verifier is later accessing.

In particular one such case is index masking to prevent out of
bounds access under speculative execution due to missing the
map's unpriv_array/index_mask field propagation. Fix this such
that the verifier is generating the correct code for inlined
lookups in case of unpriviledged use.

Before patch (test_verifier's 'map in map access' dump):

  # bpftool prog dump xla id 3
     0: (62) *(u32 *)(r10 -4) = 0
     1: (bf) r2 = r10
     2: (07) r2 += -4
     3: (18) r1 = map[id:4]
     5: (07) r1 += 272                |
     6: (61) r0 = *(u32 *)(r2 +0)     |
     7: (35) if r0 >= 0x1 goto pc+6   | Inlined map in map lookup
     8: (54) (u32) r0 &= (u32) 0      | with index masking for
     9: (67) r0 <<= 3                 | map->unpriv_array.
    10: (0f) r0 += r1                 |
    11: (79) r0 = *(u64 *)(r0 +0)     |
    12: (15) if r0 == 0x0 goto pc+1   |
    13: (05) goto pc+1                |
    14: (b7) r0 = 0                   |
    15: (15) if r0 == 0x0 goto pc+11
    16: (62) *(u32 *)(r10 -4) = 0
    17: (bf) r2 = r10
    18: (07) r2 += -4
    19: (bf) r1 = r0
    20: (07) r1 += 272                |
    21: (61) r0 = *(u32 *)(r2 +0)     | Index masking missing (!)
    22: (35) if r0 >= 0x1 goto pc+3   | for inner map despite
    23: (67) r0 <<= 3                 | map->unpriv_array set.
    24: (0f) r0 += r1                 |
    25: (05) goto pc+1                |
    26: (b7) r0 = 0                   |
    27: (b7) r0 = 0
    28: (95) exit

After patch:

  # bpftool prog dump xla id 1
     0: (62) *(u32 *)(r10 -4) = 0
     1: (bf) r2 = r10
     2: (07) r2 += -4
     3: (18) r1 = map[id:2]
     5: (07) r1 += 272                |
     6: (61) r0 = *(u32 *)(r2 +0)     |
     7: (35) if r0 >= 0x1 goto pc+6   | Same inlined map in map lookup
     8: (54) (u32) r0 &= (u32) 0      | with index masking due to
     9: (67) r0 <<= 3                 | map->unpriv_array.
    10: (0f) r0 += r1                 |
    11: (79) r0 = *(u64 *)(r0 +0)     |
    12: (15) if r0 == 0x0 goto pc+1   |
    13: (05) goto pc+1                |
    14: (b7) r0 = 0                   |
    15: (15) if r0 == 0x0 goto pc+12
    16: (62) *(u32 *)(r10 -4) = 0
    17: (bf) r2 = r10
    18: (07) r2 += -4
    19: (bf) r1 = r0
    20: (07) r1 += 272                |
    21: (61) r0 = *(u32 *)(r2 +0)     |
    22: (35) if r0 >= 0x1 goto pc+4   | Now fixed inlined inner map
    23: (54) (u32) r0 &= (u32) 0      | lookup with proper index masking
    24: (67) r0 <<= 3                 | for map->unpriv_array.
    25: (0f) r0 += r1                 |
    26: (05) goto pc+1                |
    27: (b7) r0 = 0                   |
    28: (b7) r0 = 0
    29: (95) exit

Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-18 15:19:56 -08:00
Mathieu Malaterre
c8dc79806e bpf: Annotate implicit fall through in cgroup_dev_func_proto
There is a plan to build the kernel with -Wimplicit-fallthrough
and this place in the code produced a warnings (W=1).

This commit removes the following warning:

  kernel/bpf/cgroup.c:719:6: warning: this statement may fall through [-Wimplicit-fallthrough=]

Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-17 16:52:23 +01:00
Mathieu Malaterre
583c531853 bpf: Make function btf_name_offset_valid static
Initially in commit 69b693f0ae ("bpf: btf: Introduce BPF Type Format
(BTF)") the function 'btf_name_offset_valid' was introduced as static
function it was later on changed to a non-static one, and then finally
in commit 23127b33ec ("bpf: Create a new btf_name_by_offset() for
non type name use case") the function prototype was removed.

Revert back to original implementation and make the function static.
Remove warning triggered with W=1:

  kernel/bpf/btf.c:470:6: warning: no previous prototype for 'btf_name_offset_valid' [-Wmissing-prototypes]

Fixes: 23127b33ec ("bpf: Create a new btf_name_by_offset() for non type name use case")
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-17 16:47:05 +01:00
Stanislav Fomichev
4af396ae48 bpf: zero out build_id for BPF_STACK_BUILD_ID_IP
When returning BPF_STACK_BUILD_ID_IP from stack_map_get_build_id_offset,
make sure that build_id field is empty. Since we are using percpu
free list, there is a possibility that we might reuse some previous
bpf_stack_build_id with non-zero build_id.

Fixes: 615755a77b ("bpf: extend stackmap to save binary_build_id+offset instead of address")
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-17 16:42:35 +01:00
Stanislav Fomichev
0b698005a9 bpf: don't assume build-id length is always 20 bytes
Build-id length is not fixed to 20, it can be (`man ld` /--build-id):
  * 128-bit (uuid)
  * 160-bit (sha1)
  * any length specified in ld --build-id=0xhexstring

To fix the issue of missing BPF_STACK_BUILD_ID_VALID for shorter build-ids,
assume that build-id is somewhere in the range of 1 .. 20.
Set the remaining bytes to zero.

v2:
* don't introduce new "len = min(BPF_BUILD_ID_SIZE, nhdr->n_descsz)",
  we already know that nhdr->n_descsz <= BPF_BUILD_ID_SIZE if we enter
  this 'if' condition

Fixes: 615755a77b ("bpf: extend stackmap to save binary_build_id+offset instead of address")
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-17 16:42:35 +01:00
Peter Oskolkov
d0b2818efb bpf: fix a (false) compiler warning
An older GCC compiler complains:

kernel/bpf/verifier.c: In function 'bpf_check':
kernel/bpf/verifier.c:4***:13: error: 'prev_offset' may be used uninitialized
      in this function [-Werror=maybe-uninitialized]
   } else if (krecord[i].insn_offset <= prev_offset) {
             ^
kernel/bpf/verifier.c:4***:38: note: 'prev_offset' was declared here
  u32 i, nfuncs, urec_size, min_size, prev_offset;

Although the compiler is wrong here, the patch makes sure
that prev_offset is always initialized, just to silence the warning.

v2: fix a spelling error in the commit message.

Signed-off-by: Peter Oskolkov <posk@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-17 10:40:16 +01:00
Yonghong Song
b1e8818cab bpf: btf: support 128 bit integer type
Currently, btf only supports up to 64-bit integer.
On the other hand, 128bit support for gcc and clang
has existed for a long time. For example, both gcc 4.8
and llvm 3.7 supports types "__int128" and
"unsigned __int128" for virtually all 64bit architectures
including bpf.

The requirement for __int128 support comes from two areas:
  . bpf program may use __int128. For example, some bcc tools
    (https://github.com/iovisor/bcc/tree/master/tools),
    mostly tcp v6 related, tcpstates.py, tcpaccept.py, etc.,
    are using __int128 to represent the ipv6 addresses.
  . linux itself is using __int128 types. Hence supporting
    __int128 type in BTF is required for vmlinux BTF,
    which will be used by "compile once and run everywhere"
    and other projects.

For 128bit integer, instead of base-10, hex numbers are pretty
printed out as large decimal number is hard to decipher, e.g.,
for ipv6 addresses.

Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-16 22:53:44 +01:00
Yonghong Song
17e3ac8125 bpf: fix bpffs bitfield pretty print
Commit 9d5f9f701b ("bpf: btf: fix struct/union/fwd types
with kind_flag") introduced kind_flag and used bitfield_size
in the btf_member to directly pretty print member values.

The commit contained a bug where the incorrect parameters could be
passed to function btf_bitfield_seq_show(). The bits_offset
parameter in the function expects a value less than 8.
Instead, the member offset in the structure is passed.

The below is btf_bitfield_seq_show() func signature:
  void btf_bitfield_seq_show(void *data, u8 bits_offset,
                             u8 nr_bits, struct seq_file *m)
both bits_offset and nr_bits are u8 type. If the bitfield
member offset is greater than 256, incorrect value will
be printed.

This patch fixed the issue by calculating correct proper
data offset and bits_offset similar to non kind_flag case.

Fixes: 9d5f9f701b ("bpf: btf: fix struct/union/fwd types with kind_flag")
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-11 10:40:54 +01:00
Song Liu
beaf3d1901 bpf: fix panic in stack_map_get_build_id() on i386 and arm32
As Naresh reported, test_stacktrace_build_id() causes panic on i386 and
arm32 systems. This is caused by page_address() returns NULL in certain
cases.

This patch fixes this error by using kmap_atomic/kunmap_atomic instead
of page_address.

Fixes: 615755a77b (" bpf: extend stackmap to save binary_build_id+offset instead of address")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-10 16:02:17 +01:00
Daniel Borkmann
d3bd7413e0 bpf: fix sanitation of alu op with pointer / scalar type from different paths
While 979d63d50c ("bpf: prevent out of bounds speculation on pointer
arithmetic") took care of rejecting alu op on pointer when e.g. pointer
came from two different map values with different map properties such as
value size, Jann reported that a case was not covered yet when a given
alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from
different branches where we would incorrectly try to sanitize based
on the pointer's limit. Catch this corner case and reject the program
instead.

Fixes: 979d63d50c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-05 21:32:38 -08:00
Linus Torvalds
96d4f267e4 Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.

It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access.  But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.

A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model.  And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.

This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.

There were a couple of notable cases:

 - csky still had the old "verify_area()" name as an alias.

 - the iter_iov code had magical hardcoded knowledge of the actual
   values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
   really used it)

 - microblaze used the type argument for a debug printout

but other than those oddities this should be a total no-op patch.

I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something.  Any missed conversion should be trivially fixable, though.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-03 18:57:57 -08:00
Daniel Borkmann
979d63d50c bpf: prevent out of bounds speculation on pointer arithmetic
Jann reported that the original commit back in b2157399cc
("bpf: prevent out-of-bounds speculation") was not sufficient
to stop CPU from speculating out of bounds memory access:
While b2157399cc only focussed on masking array map access
for unprivileged users for tail calls and data access such
that the user provided index gets sanitized from BPF program
and syscall side, there is still a more generic form affected
from BPF programs that applies to most maps that hold user
data in relation to dynamic map access when dealing with
unknown scalars or "slow" known scalars as access offset, for
example:

  - Load a map value pointer into R6
  - Load an index into R7
  - Do a slow computation (e.g. with a memory dependency) that
    loads a limit into R8 (e.g. load the limit from a map for
    high latency, then mask it to make the verifier happy)
  - Exit if R7 >= R8 (mispredicted branch)
  - Load R0 = R6[R7]
  - Load R0 = R6[R0]

For unknown scalars there are two options in the BPF verifier
where we could derive knowledge from in order to guarantee
safe access to the memory: i) While </>/<=/>= variants won't
allow to derive any lower or upper bounds from the unknown
scalar where it would be safe to add it to the map value
pointer, it is possible through ==/!= test however. ii) another
option is to transform the unknown scalar into a known scalar,
for example, through ALU ops combination such as R &= <imm>
followed by R |= <imm> or any similar combination where the
original information from the unknown scalar would be destroyed
entirely leaving R with a constant. The initial slow load still
precedes the latter ALU ops on that register, so the CPU
executes speculatively from that point. Once we have the known
scalar, any compare operation would work then. A third option
only involving registers with known scalars could be crafted
as described in [0] where a CPU port (e.g. Slow Int unit)
would be filled with many dependent computations such that
the subsequent condition depending on its outcome has to wait
for evaluation on its execution port and thereby executing
speculatively if the speculated code can be scheduled on a
different execution port, or any other form of mistraining
as described in [1], for example. Given this is not limited
to only unknown scalars, not only map but also stack access
is affected since both is accessible for unprivileged users
and could potentially be used for out of bounds access under
speculation.

In order to prevent any of these cases, the verifier is now
sanitizing pointer arithmetic on the offset such that any
out of bounds speculation would be masked in a way where the
pointer arithmetic result in the destination register will
stay unchanged, meaning offset masked into zero similar as
in array_index_nospec() case. With regards to implementation,
there are three options that were considered: i) new insn
for sanitation, ii) push/pop insn and sanitation as inlined
BPF, iii) reuse of ax register and sanitation as inlined BPF.

Option i) has the downside that we end up using from reserved
bits in the opcode space, but also that we would require
each JIT to emit masking as native arch opcodes meaning
mitigation would have slow adoption till everyone implements
it eventually which is counter-productive. Option ii) and iii)
have both in common that a temporary register is needed in
order to implement the sanitation as inlined BPF since we
are not allowed to modify the source register. While a push /
pop insn in ii) would be useful to have in any case, it
requires once again that every JIT needs to implement it
first. While possible, amount of changes needed would also
be unsuitable for a -stable patch. Therefore, the path which
has fewer changes, less BPF instructions for the mitigation
and does not require anything to be changed in the JITs is
option iii) which this work is pursuing. The ax register is
already mapped to a register in all JITs (modulo arm32 where
it's mapped to stack as various other BPF registers there)
and used in constant blinding for JITs-only so far. It can
be reused for verifier rewrites under certain constraints.
The interpreter's tmp "register" has therefore been remapped
into extending the register set with hidden ax register and
reusing that for a number of instructions that needed the
prior temporary variable internally (e.g. div, mod). This
allows for zero increase in stack space usage in the interpreter,
and enables (restricted) generic use in rewrites otherwise as
long as such a patchlet does not make use of these instructions.
The sanitation mask is dynamic and relative to the offset the
map value or stack pointer currently holds.

There are various cases that need to be taken under consideration
for the masking, e.g. such operation could look as follows:
ptr += val or val += ptr or ptr -= val. Thus, the value to be
sanitized could reside either in source or in destination
register, and the limit is different depending on whether
the ALU op is addition or subtraction and depending on the
current known and bounded offset. The limit is derived as
follows: limit := max_value_size - (smin_value + off). For
subtraction: limit := umax_value + off. This holds because
we do not allow any pointer arithmetic that would
temporarily go out of bounds or would have an unknown
value with mixed signed bounds where it is unclear at
verification time whether the actual runtime value would
be either negative or positive. For example, we have a
derived map pointer value with constant offset and bounded
one, so limit based on smin_value works because the verifier
requires that statically analyzed arithmetic on the pointer
must be in bounds, and thus it checks if resulting
smin_value + off and umax_value + off is still within map
value bounds at time of arithmetic in addition to time of
access. Similarly, for the case of stack access we derive
the limit as follows: MAX_BPF_STACK + off for subtraction
and -off for the case of addition where off := ptr_reg->off +
ptr_reg->var_off.value. Subtraction is a special case for
the masking which can be in form of ptr += -val, ptr -= -val,
or ptr -= val. In the first two cases where we know that
the value is negative, we need to temporarily negate the
value in order to do the sanitation on a positive value
where we later swap the ALU op, and restore original source
register if the value was in source.

The sanitation of pointer arithmetic alone is still not fully
sufficient as is, since a scenario like the following could
happen ...

  PTR += 0x1000 (e.g. K-based imm)
  PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
  PTR += 0x1000
  PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
  [...]

... which under speculation could end up as ...

  PTR += 0x1000
  PTR -= 0 [ truncated by mitigation ]
  PTR += 0x1000
  PTR -= 0 [ truncated by mitigation ]
  [...]

... and therefore still access out of bounds. To prevent such
case, the verifier is also analyzing safety for potential out
of bounds access under speculative execution. Meaning, it is
also simulating pointer access under truncation. We therefore
"branch off" and push the current verification state after the
ALU operation with known 0 to the verification stack for later
analysis. Given the current path analysis succeeded it is
likely that the one under speculation can be pruned. In any
case, it is also subject to existing complexity limits and
therefore anything beyond this point will be rejected. In
terms of pruning, it needs to be ensured that the verification
state from speculative execution simulation must never prune
a non-speculative execution path, therefore, we mark verifier
state accordingly at the time of push_stack(). If verifier
detects out of bounds access under speculative execution from
one of the possible paths that includes a truncation, it will
reject such program.

Given we mask every reg-based pointer arithmetic for
unprivileged programs, we've been looking into how it could
affect real-world programs in terms of size increase. As the
majority of programs are targeted for privileged-only use
case, we've unconditionally enabled masking (with its alu
restrictions on top of it) for privileged programs for the
sake of testing in order to check i) whether they get rejected
in its current form, and ii) by how much the number of
instructions and size will increase. We've tested this by
using Katran, Cilium and test_l4lb from the kernel selftests.
For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o
and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb
we've used test_l4lb.o as well as test_l4lb_noinline.o. We
found that none of the programs got rejected by the verifier
with this change, and that impact is rather minimal to none.
balancer_kern.o had 13,904 bytes (1,738 insns) xlated and
7,797 bytes JITed before and after the change. Most complex
program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated
and 18,538 bytes JITed before and after and none of the other
tail call programs in bpf_lxc.o had any changes either. For
the older bpf_lxc_opt_-DUNKNOWN.o object we found a small
increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed
before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed
after the change. Other programs from that object file had
similar small increase. Both test_l4lb.o had no change and
remained at 6,544 bytes (817 insns) xlated and 3,401 bytes
JITed and for test_l4lb_noinline.o constant at 5,080 bytes
(634 insns) xlated and 3,313 bytes JITed. This can be explained
in that LLVM typically optimizes stack based pointer arithmetic
by using K-based operations and that use of dynamic map access
is not overly frequent. However, in future we may decide to
optimize the algorithm further under known guarantees from
branch and value speculation. Latter seems also unclear in
terms of prediction heuristics that today's CPUs apply as well
as whether there could be collisions in e.g. the predictor's
Value History/Pattern Table for triggering out of bounds access,
thus masking is performed unconditionally at this point but could
be subject to relaxation later on. We were generally also
brainstorming various other approaches for mitigation, but the
blocker was always lack of available registers at runtime and/or
overhead for runtime tracking of limits belonging to a specific
pointer. Thus, we found this to be minimally intrusive under
given constraints.

With that in place, a simple example with sanitized access on
unprivileged load at post-verification time looks as follows:

  # bpftool prog dump xlated id 282
  [...]
  28: (79) r1 = *(u64 *)(r7 +0)
  29: (79) r2 = *(u64 *)(r7 +8)
  30: (57) r1 &= 15
  31: (79) r3 = *(u64 *)(r0 +4608)
  32: (57) r3 &= 1
  33: (47) r3 |= 1
  34: (2d) if r2 > r3 goto pc+19
  35: (b4) (u32) r11 = (u32) 20479  |
  36: (1f) r11 -= r2                | Dynamic sanitation for pointer
  37: (4f) r11 |= r2                | arithmetic with registers
  38: (87) r11 = -r11               | containing bounded or known
  39: (c7) r11 s>>= 63              | scalars in order to prevent
  40: (5f) r11 &= r2                | out of bounds speculation.
  41: (0f) r4 += r11                |
  42: (71) r4 = *(u8 *)(r4 +0)
  43: (6f) r4 <<= r1
  [...]

For the case where the scalar sits in the destination register
as opposed to the source register, the following code is emitted
for the above example:

  [...]
  16: (b4) (u32) r11 = (u32) 20479
  17: (1f) r11 -= r2
  18: (4f) r11 |= r2
  19: (87) r11 = -r11
  20: (c7) r11 s>>= 63
  21: (5f) r2 &= r11
  22: (0f) r2 += r0
  23: (61) r0 = *(u32 *)(r2 +0)
  [...]

JIT blinding example with non-conflicting use of r10:

  [...]
   d5:	je     0x0000000000000106    _
   d7:	mov    0x0(%rax),%edi       |
   da:	mov    $0xf153246,%r10d     | Index load from map value and
   e0:	xor    $0xf153259,%r10      | (const blinded) mask with 0x1f.
   e7:	and    %r10,%rdi            |_
   ea:	mov    $0x2f,%r10d          |
   f0:	sub    %rdi,%r10            | Sanitized addition. Both use r10
   f3:	or     %rdi,%r10            | but do not interfere with each
   f6:	neg    %r10                 | other. (Neither do these instructions
   f9:	sar    $0x3f,%r10           | interfere with the use of ax as temp
   fd:	and    %r10,%rdi            | in interpreter.)
  100:	add    %rax,%rdi            |_
  103:	mov    0x0(%rdi),%eax
 [...]

Tested that it fixes Jann's reproducer, and also checked that test_verifier
and test_progs suite with interpreter, JIT and JIT with hardening enabled
on x86-64 and arm64 runs successfully.

  [0] Speculose: Analyzing the Security Implications of Speculative
      Execution in CPUs, Giorgi Maisuradze and Christian Rossow,
      https://arxiv.org/pdf/1801.04084.pdf

  [1] A Systematic Evaluation of Transient Execution Attacks and
      Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz,
      Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
      Dmitry Evtyushkin, Daniel Gruss,
      https://arxiv.org/pdf/1811.05441.pdf

Fixes: b2157399cc ("bpf: prevent out-of-bounds speculation")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-02 16:01:24 -08:00
Daniel Borkmann
b7137c4eab bpf: fix check_map_access smin_value test when pointer contains offset
In check_map_access() we probe actual bounds through __check_map_access()
with offset of reg->smin_value + off for lower bound and offset of
reg->umax_value + off for the upper bound. However, even though the
reg->smin_value could have a negative value, the final result of the
sum with off could be positive when pointer arithmetic with known and
unknown scalars is combined. In this case we reject the program with
an error such as "R<x> min value is negative, either use unsigned index
or do a if (index >=0) check." even though the access itself would be
fine. Therefore extend the check to probe whether the actual resulting
reg->smin_value + off is less than zero.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-02 16:01:24 -08:00
Daniel Borkmann
9d7eceede7 bpf: restrict unknown scalars of mixed signed bounds for unprivileged
For unknown scalars of mixed signed bounds, meaning their smin_value is
negative and their smax_value is positive, we need to reject arithmetic
with pointer to map value. For unprivileged the goal is to mask every
map pointer arithmetic and this cannot reliably be done when it is
unknown at verification time whether the scalar value is negative or
positive. Given this is a corner case, the likelihood of breaking should
be very small.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-02 16:01:24 -08:00