2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 06:04:05 +08:00
Commit Graph

9 Commits

Author SHA1 Message Date
Crt Mori
47a3616348 lib: Add strongly typed 64bit int_sqrt
There is no option to perform 64bit integer sqrt on 32bit platform.
Added stronger typed int_sqrt64 enables the 64bit calculations to
be performed on 32bit platforms. Using same algorithm as int_sqrt()
with strong typing provides enough precision also on 32bit platforms,
but it sacrifices some performance. In case values are smaller than
ULONG_MAX the standard int_sqrt is used for calculation to maximize the
performance due to more native calculations.

Signed-off-by: Crt Mori <cmo@melexis.com>
Acked-by: Joe Perches <joe@perches.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-02-04 10:17:21 +00:00
Peter Zijlstra
e813a61400 lib/int_sqrt: adjust comments
Our current int_sqrt() is not rough nor any approximation; it calculates
the exact value of: floor(sqrt()).  Document this.

Link: http://lkml.kernel.org/r/20171020164645.001652117@infradead.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Anshul Garg <aksgarg1989@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Joe Perches <joe@perches.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Michael Davidson <md@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:01 -08:00
Peter Zijlstra
f8ae107eef lib/int_sqrt: optimize initial value compute
The initial value (@m) compute is:

	m = 1UL << (BITS_PER_LONG - 2);
	while (m > x)
		m >>= 2;

Which is a linear search for the highest even bit smaller or equal to @x
We can implement this using a binary search using __fls() (or better when
its hardware implemented).

	m = 1UL << (__fls(x) & ~1UL);

Especially for small values of @x; which are the more common arguments
when doing a CDF on idle times; the linear search is near to worst case,
while the binary search of __fls() is a constant 6 (or 5 on 32bit)
branches.

      cycles:                 branches:              branch-misses:

PRE:

hot:   43.633557 +- 0.034373  45.333132 +- 0.002277  0.023529 +- 0.000681
cold: 207.438411 +- 0.125840  45.333132 +- 0.002277  6.976486 +- 0.004219

SOFTWARE FLS:

hot:   29.576176 +- 0.028850  26.666730 +- 0.004511  0.019463 +- 0.000663
cold: 165.947136 +- 0.188406  26.666746 +- 0.004511  6.133897 +- 0.004386

HARDWARE FLS:

hot:   24.720922 +- 0.025161  20.666784 +- 0.004509  0.020836 +- 0.000677
cold: 132.777197 +- 0.127471  20.666776 +- 0.004509  5.080285 +- 0.003874

Averages computed over all values <128k using a LFSR to generate order.
Cold numbers have a LFSR based branch trace buffer 'confuser' ran between
each int_sqrt() invocation.

Link: http://lkml.kernel.org/r/20171020164644.936577234@infradead.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Joe Perches <joe@perches.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Anshul Garg <aksgarg1989@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Michael Davidson <md@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:01 -08:00
Peter Zijlstra
3f3295709e lib/int_sqrt: optimize small argument
The current int_sqrt() computation is sub-optimal for the case of small
@x.  Which is the interesting case when we're going to do cumulative
distribution functions on idle times, which we assume to be a random
variable, where the target residency of the deepest idle state gives an
upper bound on the variable (5e6ns on recent Intel chips).

In the case of small @x, the compute loop:

	while (m != 0) {
		b = y + m;
		y >>= 1;

		if (x >= b) {
			x -= b;
			y += m;
		}
		m >>= 2;
	}

can be reduced to:

	while (m > x)
		m >>= 2;

Because y==0, b==m and until x>=m y will remain 0.

And while this is computationally equivalent, it runs much faster
because there's less code, in particular less branches.

      cycles:                 branches:              branch-misses:

OLD:

hot:   45.109444 +- 0.044117  44.333392 +- 0.002254  0.018723 +- 0.000593
cold: 187.737379 +- 0.156678  44.333407 +- 0.002254  6.272844 +- 0.004305

PRE:

hot:   67.937492 +- 0.064124  66.999535 +- 0.000488  0.066720 +- 0.001113
cold: 232.004379 +- 0.332811  66.999527 +- 0.000488  6.914634 +- 0.006568

POST:

hot:   43.633557 +- 0.034373  45.333132 +- 0.002277  0.023529 +- 0.000681
cold: 207.438411 +- 0.125840  45.333132 +- 0.002277  6.976486 +- 0.004219

Averages computed over all values <128k using a LFSR to generate order.
Cold numbers have a LFSR based branch trace buffer 'confuser' ran between
each int_sqrt() invocation.

Link: http://lkml.kernel.org/r/20171020164644.876503355@infradead.org
Fixes: 30493cc9dd ("lib/int_sqrt.c: optimize square root algorithm")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Anshul Garg <aksgarg1989@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Joe Perches <joe@perches.com>
Cc: David Miller <davem@davemloft.net>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michael Davidson <md@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:01 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Davidlohr Bueso
30493cc9dd lib/int_sqrt.c: optimize square root algorithm
Optimize the current version of the shift-and-subtract (hardware)
algorithm, described by John von Newmann[1] and Guy L Steele.

Iterating 1,000,000 times, perf shows for the current version:

 Performance counter stats for './sqrt-curr' (10 runs):

         27.170996 task-clock                #    0.979 CPUs utilized            ( +-  3.19% )
                 3 context-switches          #    0.103 K/sec                    ( +-  4.76% )
                 0 cpu-migrations            #    0.004 K/sec                    ( +-100.00% )
               104 page-faults               #    0.004 M/sec                    ( +-  0.16% )
        64,921,199 cycles                    #    2.389 GHz                      ( +-  0.03% )
        28,967,789 stalled-cycles-frontend   #   44.62% frontend cycles idle     ( +-  0.18% )
   <not supported> stalled-cycles-backend
       104,502,623 instructions              #    1.61  insns per cycle
                                             #    0.28  stalled cycles per insn  ( +-  0.00% )
        34,088,368 branches                  # 1254.587 M/sec                    ( +-  0.00% )
             4,901 branch-misses             #    0.01% of all branches          ( +-  1.32% )

       0.027763015 seconds time elapsed                                          ( +-  3.22% )

And for the new version:

Performance counter stats for './sqrt-new' (10 runs):

          0.496869 task-clock                #    0.519 CPUs utilized            ( +-  2.38% )
                 0 context-switches          #    0.000 K/sec
                 0 cpu-migrations            #    0.403 K/sec                    ( +-100.00% )
               104 page-faults               #    0.209 M/sec                    ( +-  0.15% )
           590,760 cycles                    #    1.189 GHz                      ( +-  2.35% )
           395,053 stalled-cycles-frontend   #   66.87% frontend cycles idle     ( +-  3.67% )
   <not supported> stalled-cycles-backend
           398,963 instructions              #    0.68  insns per cycle
                                             #    0.99  stalled cycles per insn  ( +-  0.39% )
            70,228 branches                  #  141.341 M/sec                    ( +-  0.36% )
             3,364 branch-misses             #    4.79% of all branches          ( +-  5.45% )

       0.000957440 seconds time elapsed                                          ( +-  2.42% )

Furthermore, this saves space in instruction text:

   text    data     bss     dec     hex filename
    111       0       0     111      6f lib/int_sqrt-baseline.o
     89       0       0      89      59 lib/int_sqrt.o

[1] http://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC

Signed-off-by: Davidlohr Bueso <davidlohr.bueso@hp.com>
Reviewed-by: Jonathan Gonzalez <jgonzlez@linets.cl>
Tested-by: Jonathan Gonzalez <jgonzlez@linets.cl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 18:28:19 -07:00
Paul Gortmaker
8bc3bcc93a lib: reduce the use of module.h wherever possible
For files only using THIS_MODULE and/or EXPORT_SYMBOL, map
them onto including export.h -- or if the file isn't even
using those, then just delete the include.  Fix up any implicit
include dependencies that were being masked by module.h along
the way.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2012-03-07 15:04:04 -05:00
Peter Williams
f0c00257d6 [PATCH] lib: Fix bug in int_sqrt() for 64 bit longs
The implementation of int_sqrt() assumes that longs have 32 bits.  On
systems that have 64 bit longs this will result in gross errors when the
argument to the function is greater than 2^32 - 1 on such systems.  I doubt
whether any such use is currently made of int_sqrt() but the attached patch
fixes the problem anyway.

Signed-off-by: Peter Williams <pwil3058@bigpond.com.au>
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-03 08:32:08 -08:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00