Update the GHCB accessor functions to add functions for retrieve GHCB
fields by name. Update existing code to use the new accessor functions.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <664172c53a5fb4959914e1a45d88e805649af0ad.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support to KVM for determining if a system is capable of supporting
SEV-ES as well as determining if a guest is an SEV-ES guest.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e66792323982c822350e40c7a1cf67ea2978a70b.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When both KVM support and the CCP driver are built into the kernel instead
of as modules, KVM initialization can happen before CCP initialization. As
a result, sev_platform_status() will return a failure when it is called
from sev_hardware_setup(), when this isn't really an error condition.
Since sev_platform_status() doesn't need to be called at this time anyway,
remove the invocation from sev_hardware_setup().
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <618380488358b56af558f2682203786f09a49483.1607620209.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On systems that do not have hardware enforced cache coherency between
encrypted and unencrypted mappings of the same physical page, the
hypervisor can use the VM page flush MSR (0xc001011e) to flush the cache
contents of an SEV guest page. When a small number of pages are being
flushed, this can be used in place of issuing a WBINVD across all CPUs.
CPUID 0x8000001f_eax[2] is used to determine if the VM page flush MSR is
available. Add a CPUID feature to indicate it is supported and define the
MSR.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <f1966379e31f9b208db5257509c4a089a87d33d0.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_machine_check to x86.h to avoid two exact copies
of the same function in kvm.c and svm.c.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20201029135600.122392-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
The selftest even triggers a non-critical bug that is unrelated
to diag318, fix will follow later.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJf0iDFAAoJEBF7vIC1phx8WukP/iRNbs2HP/cOo/PneF2UMMm5
sLwRbjqPXOcz2dvmgTVkf5R5hDwCtg9DEwACalrHH2JHCSxp+RJ1LlDpjvPdKMEz
w6zizKRCnjsYsmASAtbE0L+JcKok+yeJ4hCjlR79AGpgIcOM4aqZFgKItq0a8Gnf
/nKQCiEHqckRcG9q5cDJHairloeMrb85+1TlZH79SifN4iS+ac1VQh34jmmxL2hW
06aJxxaAeSn8wrJfx9L1J6+icsycofiawD4N4glQgSG5jFy7W/TlXS8egoUklgfr
uNeKukufW/eMsIbC7p6VUJOm/kdScl/5iIHkcW+61o1Q2dBhgByGpb4gWBlqrLzr
nVVKpTJEkDX04NWZ8MrLJIGHeEaVdIQp6TG3fsO8UtF3zmj+hmf9G9rX/FWluyK+
l7ThONffTLYorUFU2R9Hex+3N+YNA5njzXO9PY3Mzfrcy1Z/IK+OpVCZFNsvAbK9
s/FfKe+IYZ1uOm6qb7/yWxtJruk/92R3ZBdnaaC8wfN3L+zSs/a9TcLbLj8O2fnC
VpdKkATwvsvo97UK6YKLNsq9jGmKImsudiFoiCkfrPHEwQRMPwPtrqpjq+3XdfYw
LTHhwXyCNS1oyS2H59uO07dD+ZJvBIgSmFkl7KuhZPL/fFfHiA88Xbv0WWCyobXQ
40r2R/MAR8syI4dBvoOE
=hT2c
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-5.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: Features and Test for 5.11
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
The selftest even triggers a non-critical bug that is unrelated
to diag318, fix will follow later.
Until commit e7c587da12 ("x86/speculation: Use synthetic bits for
IBRS/IBPB/STIBP"), KVM was testing both Intel and AMD CPUID bits before
allowing the guest to write MSR_IA32_SPEC_CTRL and MSR_IA32_PRED_CMD.
Testing only Intel bits on VMX processors, or only AMD bits on SVM
processors, fails if the guests are created with the "opposite" vendor
as the host.
While at it, also tweak the host CPU check to use the vendor-agnostic
feature bit X86_FEATURE_IBPB, since we only care about the availability
of the MSR on the host here and not about specific CPUID bits.
Fixes: e7c587da12 ("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP")
Cc: stable@vger.kernel.org
Reported-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AVX512_FP16 is supported by Intel processors, like Sapphire Rapids.
It could gain better performance for it's faster compared to FP32
if the precision or magnitude requirements are met. It's availability
is indicated by CPUID.(EAX=7,ECX=0):EDX[bit 23].
Expose it in KVM supported CPUID, then guest could make use of it; no
new registers are used, only new instructions.
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Message-Id: <20201208033441.28207-3-kyung.min.park@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enumerate AVX512 Half-precision floating point (FP16) CPUID feature
flag. Compared with using FP32, using FP16 cut the number of bits
required for storage in half, reducing the exponent from 8 bits to 5,
and the mantissa from 23 bits to 10. Using FP16 also enables developers
to train and run inference on deep learning models fast when all
precision or magnitude (FP32) is not needed.
A processor supports AVX512 FP16 if CPUID.(EAX=7,ECX=0):EDX[bit 23]
is present. The AVX512 FP16 requires AVX512BW feature be implemented
since the instructions for manipulating 32bit masks are associated with
AVX512BW.
The only in-kernel usage of this is kvm passthrough. The CPU feature
flag is shown as "avx512_fp16" in /proc/cpuinfo.
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Message-Id: <20201208033441.28207-2-kyung.min.park@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both user_msr_test and userspace_msr_exit_test tests the functionality
of kvm_msr_filter. Instead of testing this feature in two tests, merge
them together, so there is only one test for this feature.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Message-Id: <20201204172530.2958493-1-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a selftest to test that when the ioctl KVM_X86_SET_MSR_FILTER is
called with an MSR list, those MSRs exit to userspace.
This test uses 3 MSRs to test this:
1. MSR_IA32_XSS, an MSR the kernel knows about.
2. MSR_IA32_FLUSH_CMD, an MSR the kernel does not know about.
3. MSR_NON_EXISTENT, an MSR invented in this test for the purposes of
passing a fake MSR from the guest to userspace. KVM just acts as a
pass through.
Userspace is also able to inject a #GP. This is demonstrated when
MSR_IA32_XSS and MSR_IA32_FLUSH_CMD are misused in the test. When this
happens a #GP is initiated in userspace to be thrown in the guest which is
handled gracefully by the exception handling framework introduced earlier
in this series.
Tests for the generic instruction emulator were also added. For this to
work the module parameter kvm.force_emulation_prefix=1 has to be enabled.
If it isn't enabled the tests will be skipped.
A test was also added to ensure the MSR permission bitmap is being set
correctly by executing reads and writes of MSR_FS_BASE and MSR_GS_BASE
in the guest while alternating which MSR userspace should intercept. If
the permission bitmap is being set correctly only one of the MSRs should
be coming through at a time, and the guest should be able to read and
write the other one directly.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Message-Id: <20201012194716.3950330-5-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Saves one byte in __vmx_vcpu_run for the same functionality.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20201029140457.126965-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now we do count pfault (pseudo page faults aka async page faults
start and completion events). What we do not count is, if an async page
fault would have been possible by the host, but it was disabled by the
guest (e.g. interrupts off, pfault disabled, secure execution....). Let
us count those as well in the pfault_sync counter.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Link: https://lore.kernel.org/r/20201125090658.38463-1-borntraeger@de.ibm.com
The DIAGNOSE 0x0318 instruction, unique to s390x, is a privileged call
that must be intercepted via SIE, handled in userspace, and the
information set by the instruction is communicated back to KVM.
To test the instruction interception, an ad-hoc handler is defined which
simply has a VM execute the instruction and then userspace will extract
the necessary info. The handler is defined such that the instruction
invocation occurs only once. It is up to the caller to determine how the
info returned by this handler should be used.
The diag318 info is communicated from userspace to KVM via a sync_regs
call. This is tested during a sync_regs test, where the diag318 info is
requested via the handler, then the info is stored in the appropriate
register in KVM via a sync registers call.
If KVM does not support diag318, then the tests will print a message
stating that diag318 was skipped, and the asserts will simply test
against a value of 0.
Signed-off-by: Collin Walling <walling@linux.ibm.com>
Link: https://lore.kernel.org/r/20201207154125.10322-1-walling@linux.ibm.com
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
gmap allocations can be attributed to a process.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Almost all kvm allocations in the s390x KVM code can be attributed to
the process that triggers the allocation (in other words, no global
allocation for other guests). This will help the memcg controller to
make the right decisions.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Janosch Frank <frankja@linux.ibm.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
In the commit 1c96dcceae
("KVM: x86: fix apic_accept_events vs check_nested_events"),
we accidently started latching SIPIs that are received while the cpu is not
waiting for them.
This causes vCPUs to never enter a halted state.
Fixes: 1c96dcceae ("KVM: x86: fix apic_accept_events vs check_nested_events")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201203143319.159394-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since the ASID is now stored in svm->asid, pre_sev_run should also place
it there and not directly in the VMCB control area.
Reported-by: Ashish Kalra <Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SVM generally ignores fixed-1 bits. Set them manually so that we
do not end up by mistake without those bits set in struct kvm_vcpu;
it is part of userspace API that KVM always returns value with the
bits set.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an extremely verbose trace point to the TDP MMU to log all SPTE
changes, regardless of callstack / motivation. This is useful when a
complete picture of the paging structure is needed or a change cannot be
explained with the other, existing trace points.
Tested: ran the demand paging selftest on an Intel Skylake machine with
all the trace points used by the TDP MMU enabled and observed
them firing with expected values.
This patch can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/3813
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201027175944.1183301-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU was initially implemented without some of the usual
tracepoints found in mmu.c. Correct this discrepancy by adding the
missing trace points to the TDP MMU.
Tested: ran the demand paging selftest on an Intel Skylake machine with
all the trace points used by the TDP MMU enabled and observed
them firing with expected values.
This patch can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/3812
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201027175944.1183301-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similarly to what vmx/vmx.c does, use vcpu->arch.cr4 to check if CR4
bits PGE, PKE and OSXSAVE have changed. When switching between VMCB01
and VMCB02, CPUID has to be adjusted every time if CR4.PKE or CR4.OSXSAVE
change; without this patch, instead, CR4 would be checked against the
previous value for L2 on vmentry, and against the previous value for
L1 on vmexit, and CPUID would not be updated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM does not have separate ASIDs for L1 and L2; either the nested
hypervisor and nested guests share a single ASID, or on older processor
the ASID is used only to implement TLB flushing.
Either way, ASIDs are handled at the VM level. In preparation
for having different VMCBs passed to VMLOAD/VMRUN/VMSAVE for L1 and
L2, store the current ASID to struct vcpu_svm and only move it to
the VMCB in svm_vcpu_run. This way, TLB flushes can be applied
no matter which VMCB will be active during the next svm_vcpu_run.
Signed-off-by: Cathy Avery <cavery@redhat.com>
Message-Id: <20201011184818.3609-2-cavery@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This macro is useless, and could cause gcc warning:
arch/x86/kernel/kvmclock.c:47:0: warning: macro "HV_CLOCK_SIZE" is not
used [-Wunused-macros]
Let's remove it.
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <1604651963-10067-1-git-send-email-alex.shi@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Almost all tests do this anyway and the ones that don't don't
appear to care. Only vmx_set_nested_state_test assumes that
a feature (VMX) is disabled until later setting the supported
CPUIDs. It's better to disable that explicitly anyway.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20201111122636.73346-11-drjones@redhat.com>
[Restore CPUID_VMX, or vmx_set_nested_state breaks. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20201111122636.73346-12-drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20201111122636.73346-10-drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce new vm_create variants that also takes a number of vcpus,
an amount of per-vcpu pages, and optionally a list of vcpuids. These
variants will create default VMs with enough additional pages to
cover the vcpu stacks, per-vcpu pages, and pagetable pages for all.
The new 'default' variant uses VM_MODE_DEFAULT, whereas the other
new variant accepts the mode as a parameter.
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20201111122636.73346-6-drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The code is almost 100% the same anyway. Just move it to common
and add a few arch-specific macros.
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Message-Id: <20201111122636.73346-5-drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nothing sets USE_CLEAR_DIRTY_LOG anymore, so anything it surrounds
is dead code.
However, it is the recommended way to use the dirty page bitmap
for new enough kernel, so use it whenever KVM has the
KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 capability.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On emulated VM-entry and VM-exit, update the CPUID bits that reflect
CR4.OSXSAVE and CR4.PKE.
This fixes a bug where the CPUID bits could continue to reflect L2 CR4
values after emulated VM-exit to L1. It also fixes a related bug where
the CPUID bits could continue to reflect L1 CR4 values after emulated
VM-entry to L2. The latter bug is mainly relevant to SVM, wherein
CPUID is not a required intercept. However, it could also be relevant
to VMX, because the code to conditionally update these CPUID bits
assumes that the guest CPUID and the guest CR4 are always in sync.
Fixes: 8eb3f87d90 ("KVM: nVMX: fix guest CR4 loading when emulating L2 to L1 exit")
Fixes: 2acf923e38 ("KVM: VMX: Enable XSAVE/XRSTOR for guest")
Fixes: b9baba8614 ("KVM, pkeys: expose CPUID/CR4 to guest")
Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Cc: Haozhong Zhang <haozhong.zhang@intel.com>
Cc: Dexuan Cui <dexuan.cui@intel.com>
Cc: Huaitong Han <huaitong.han@intel.com>
Message-Id: <20201029170648.483210-1-jmattson@google.com>
It's only used to override the existing dirty ring size/count. If
with a bigger ring count, we test async of dirty ring. If with a
smaller ring count, we test ring full code path. Async is default.
It has no use for non-dirty-ring tests.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012241.6208-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously the dirty ring test was working in synchronous way, because
only with a vmexit (with that it was the ring full event) we'll know
the hardware dirty bits will be flushed to the dirty ring.
With this patch we first introduce a vcpu kick mechanism using SIGUSR1,
which guarantees a vmexit and also therefore the flushing of hardware
dirty bits. Once this is in place, we can keep the vcpu dirty work
asynchronous of the whole collection procedure now. Still, we need
to be very careful that when reaching the ring buffer soft limit
(KVM_EXIT_DIRTY_RING_FULL) we must collect the dirty bits before
continuing the vcpu.
Further increase the dirty ring size to current maximum to make sure
we torture more on the no-ring-full case, which should be the major
scenario when the hypervisors like QEMU would like to use this feature.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012239.6159-1-peterx@redhat.com>
[Use KVM_SET_SIGNAL_MASK+sigwait instead of a signal handler. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the initial dirty ring buffer test.
The current test implements the userspace dirty ring collection, by
only reaping the dirty ring when the ring is full.
So it's still running synchronously like this:
vcpu main thread
1. vcpu dirties pages
2. vcpu gets dirty ring full
(userspace exit)
3. main thread waits until full
(so hardware buffers flushed)
4. main thread collects
5. main thread continues vcpu
6. vcpu continues, goes back to 1
We can't directly collects dirty bits during vcpu execution because
otherwise we can't guarantee the hardware dirty bits were flushed when
we collect and we're very strict on the dirty bits so otherwise we can
fail the future verify procedure. A follow up patch will make this
test to support async just like the existing dirty log test, by adding
a vcpu kick mechanism.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012237.6111-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a hook for the checks after vcpu_run() completes. Preparation
for the dirty ring test because we'll need to take care of another
exit reason.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012235.6063-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Because kvm dirty rings and kvm dirty log is used in an exclusive way,
Let's avoid creating the dirty_bitmap when kvm dirty ring is enabled.
At the meantime, since the dirty_bitmap will be conditionally created
now, we can't use it as a sign of "whether this memory slot enabled
dirty tracking". Change users like that to check against the kvm
memory slot flags.
Note that there still can be chances where the kvm memory slot got its
dirty_bitmap allocated, _if_ the memory slots are created before
enabling of the dirty rings and at the same time with the dirty
tracking capability enabled, they'll still with the dirty_bitmap.
However it should not hurt much (e.g., the bitmaps will always be
freed if they are there), and the real users normally won't trigger
this because dirty bit tracking flag should in most cases only be
applied to kvm slots only before migration starts, that should be far
latter than kvm initializes (VM starts).
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012226.5868-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There's no good reason to use both the dirty bitmap logging and the
new dirty ring buffer to track dirty bits. We should be able to even
support both of them at the same time, but it could complicate things
which could actually help little. Let's simply make it the rule
before we enable dirty ring on any arch, that we don't allow these two
interfaces to be used together.
The big world switch would be KVM_CAP_DIRTY_LOG_RING capability
enablement. That's where we'll switch from the default dirty logging
way to the dirty ring way. As long as kvm->dirty_ring_size is setup
correctly, we'll once and for all switch to the dirty ring buffer mode
for the current virtual machine.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012224.5818-1-peterx@redhat.com>
[Change errno from EINVAL to ENXIO. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is heavily based on previous work from Lei Cao
<lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1]
KVM currently uses large bitmaps to track dirty memory. These bitmaps
are copied to userspace when userspace queries KVM for its dirty page
information. The use of bitmaps is mostly sufficient for live
migration, as large parts of memory are be dirtied from one log-dirty
pass to another. However, in a checkpointing system, the number of
dirty pages is small and in fact it is often bounded---the VM is
paused when it has dirtied a pre-defined number of pages. Traversing a
large, sparsely populated bitmap to find set bits is time-consuming,
as is copying the bitmap to user-space.
A similar issue will be there for live migration when the guest memory
is huge while the page dirty procedure is trivial. In that case for
each dirty sync we need to pull the whole dirty bitmap to userspace
and analyse every bit even if it's mostly zeros.
The preferred data structure for above scenarios is a dense list of
guest frame numbers (GFN). This patch series stores the dirty list in
kernel memory that can be memory mapped into userspace to allow speedy
harvesting.
This patch enables dirty ring for X86 only. However it should be
easily extended to other archs as well.
[1] https://patchwork.kernel.org/patch/10471409/
Signed-off-by: Lei Cao <lei.cao@stratus.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012222.5767-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The context will be needed to implement the kvm dirty ring.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012044.5151-5-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_clear_guest_page is not used anymore after "KVM: X86: Don't track dirty
for KVM_SET_[TSS_ADDR|IDENTITY_MAP_ADDR]", except from kvm_clear_guest.
We can just inline it in its sole user.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Originally, we have three code paths that can dirty a page without
vcpu context for X86:
- init_rmode_identity_map
- init_rmode_tss
- kvmgt_rw_gpa
init_rmode_identity_map and init_rmode_tss will be setup on
destination VM no matter what (and the guest cannot even see them), so
it does not make sense to track them at all.
To do this, allow __x86_set_memory_region() to return the userspace
address that just allocated to the caller. Then in both of the
functions we directly write to the userspace address instead of
calling kvm_write_*() APIs.
Another trivial change is that we don't need to explicitly clear the
identity page table root in init_rmode_identity_map() because no
matter what we'll write to the whole page with 4M huge page entries.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012044.5151-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_SUPPORTED_HV_CPUID is now supported as both vCPU and VM ioctl,
test that.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200929150944.1235688-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_SUPPORTED_HV_CPUID is a vCPU ioctl but its output is now
independent from vCPU and in some cases VMMs may want to use it as a system
ioctl instead. In particular, QEMU doesn CPU feature expansion before any
vCPU gets created so KVM_GET_SUPPORTED_HV_CPUID can't be used.
Convert KVM_GET_SUPPORTED_HV_CPUID to 'dual' system/vCPU ioctl with the
same meaning.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200929150944.1235688-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't allow the events to accumulate in the eventfd counter, drain them
as they are handled.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20201027135523.646811-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't allow the events to accumulate in the eventfd counter, drain them
as they are handled.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20201027135523.646811-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Where events are consumed in the kernel, for example by KVM's
irqfd_wakeup() and VFIO's virqfd_wakeup(), they currently lack a
mechanism to drain the eventfd's counter.
Since the wait queue is already locked while the wakeup functions are
invoked, all they really need to do is call eventfd_ctx_do_read().
Add a check for the lock, and export it for them.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20201027135523.646811-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As far as I can tell, when we use posted interrupts we silently cut off
the events from userspace, if it's listening on the same eventfd that
feeds the irqfd.
I like that behaviour. Let's do it all the time, even without posted
interrupts. It makes it much easier to handle IRQ remapping invalidation
without having to constantly add/remove the fd from the userspace poll
set. We can just leave userspace polling on it, and the bypass will...
well... bypass it.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20201026175325.585623-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows an exclusive wait_queue_entry to be added at the head of the
queue, instead of the tail as normal. Thus, it gets to consume events
first without allowing non-exclusive waiters to be woken at all.
The (first) intended use is for KVM IRQFD, which currently has
inconsistent behaviour depending on whether posted interrupts are
available or not. If they are, KVM will bypass the eventfd completely
and deliver interrupts directly to the appropriate vCPU. If not, events
are delivered through the eventfd and userspace will receive them when
polling on the eventfd.
By using add_wait_queue_priority(), KVM will be able to consistently
consume events within the kernel without accidentally exposing them
to userspace when they're supposed to be bypassed. This, in turn, means
that userspace doesn't have to jump through hoops to avoid listening
on the erroneously noisy eventfd and injecting duplicate interrupts.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20201027143944.648769-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Background: We have a lightweight HV, it needs INIT-VMExit and
SIPI-VMExit to wake-up APs for guests since it do not monitor
the Local APIC. But currently virtual wait-for-SIPI(WFS) state
is not supported in nVMX, so when running on top of KVM, the L1
HV cannot receive the INIT-VMExit and SIPI-VMExit which cause
the L2 guest cannot wake up the APs.
According to Intel SDM Chapter 25.2 Other Causes of VM Exits,
SIPIs cause VM exits when a logical processor is in
wait-for-SIPI state.
In this patch:
1. introduce SIPI exit reason,
2. introduce wait-for-SIPI state for nVMX,
3. advertise wait-for-SIPI support to guest.
When L1 hypervisor is not monitoring Local APIC, L0 need to emulate
INIT-VMExit and SIPI-VMExit to L1 to emulate INIT-SIPI-SIPI for
L2. L2 LAPIC write would be traped by L0 Hypervisor(KVM), L0 should
emulate the INIT/SIPI vmexit to L1 hypervisor to set proper state
for L2's vcpu state.
Handle procdure:
Source vCPU:
L2 write LAPIC.ICR(INIT).
L0 trap LAPIC.ICR write(INIT): inject a latched INIT event to target
vCPU.
Target vCPU:
L0 emulate an INIT VMExit to L1 if is guest mode.
L1 set guest VMCS, guest_activity_state=WAIT_SIPI, vmresume.
L0 set vcpu.mp_state to INIT_RECEIVED if (vmcs12.guest_activity_state
== WAIT_SIPI).
Source vCPU:
L2 write LAPIC.ICR(SIPI).
L0 trap LAPIC.ICR write(INIT): inject a latched SIPI event to traget
vCPU.
Target vCPU:
L0 emulate an SIPI VMExit to L1 if (vcpu.mp_state == INIT_RECEIVED).
L1 set CS:IP, guest_activity_state=ACTIVE, vmresume.
L0 resume to L2.
L2 start-up.
Signed-off-by: Yadong Qi <yadong.qi@intel.com>
Message-Id: <20200922052343.84388-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20201106065122.403183-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>