Failure to update a bpf_link because it has been auto-detached by a dying
cgroup currently results in EINVAL error, even though the arguments passed
to bpf() syscall are not wrong.
bpf_links attaching to netns in this case will return ENOLINK, which
carries the message that the link is no longer attached to anything.
Change cgroup bpf_links to do the same to keep the uAPI errors consistent.
Fixes: 0c991ebc8c ("bpf: Implement bpf_prog replacement for an active bpf_cgroup_link")
Suggested-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-6-jakub@cloudflare.com
Extend bpf() syscall subcommands that operate on bpf_link, that is
LINK_CREATE, LINK_UPDATE, OBJ_GET_INFO, to accept attach types tied to
network namespaces (only flow dissector at the moment).
Link-based and prog-based attachment can be used interchangeably, but only
one can exist at a time. Attempts to attach a link when a prog is already
attached directly, and the other way around, will be met with -EEXIST.
Attempts to detach a program when link exists result in -EINVAL.
Attachment of multiple links of same attach type to one netns is not
supported with the intention to lift the restriction when a use-case
presents itself. Because of that link create returns -E2BIG when trying to
create another netns link, when one already exists.
Link-based attachments to netns don't keep a netns alive by holding a ref
to it. Instead links get auto-detached from netns when the latter is being
destroyed, using a pernet pre_exit callback.
When auto-detached, link lives in defunct state as long there are open FDs
for it. -ENOLINK is returned if a user tries to update a defunct link.
Because bpf_link to netns doesn't hold a ref to struct net, special care is
taken when releasing, updating, or filling link info. The netns might be
getting torn down when any of these link operations are in progress. That
is why auto-detach and update/release/fill_info are synchronized by the
same mutex. Also, link ops have to always check if auto-detach has not
happened yet and if netns is still alive (refcnt > 0).
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-5-jakub@cloudflare.com
Move functions to manage BPF programs attached to netns that are not
specific to flow dissector to a dedicated module named
bpf/net_namespace.c.
The set of functions will grow with the addition of bpf_link support for
netns attached programs. This patch prepares ground by creating a place
for it.
This is a code move with no functional changes intended.
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-4-jakub@cloudflare.com
In order to:
(1) attach more than one BPF program type to netns, or
(2) support attaching BPF programs to netns with bpf_link, or
(3) support multi-prog attach points for netns
we will need to keep more state per netns than a single pointer like we
have now for BPF flow dissector program.
Prepare for the above by extracting netns_bpf that is part of struct net,
for storing all state related to BPF programs attached to netns.
Turn flow dissector callbacks for querying/attaching/detaching a program
into generic ones that operate on netns_bpf. Next patch will move the
generic callbacks into their own module.
This is similar to how it is organized for cgroup with cgroup_bpf.
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-3-jakub@cloudflare.com
Split out the part of attach callback that happens with attach/detach lock
acquired. This structures the prog attach callback in a way that opens up
doors for moving the locking out of flow_dissector and into generic
callbacks for attaching/detaching progs to netns in subsequent patches.
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20200531082846.2117903-2-jakub@cloudflare.com
On systems with recent enough glibc, reallocarray compat won't kick in, so
reallocarray() itself has to come from stdlib.h include. But _GNU_SOURCE is
necessary to enable it. So add it.
Fixes: bf99c936f9 ("libbpf: Add BPF ring buffer support")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200601202601.2139477-1-andriin@fb.com
Currenty lsm uses bpf_tracing_func_proto helpers which do
not include stack trace or perf event output. It's useful
to have those for bpftrace lsm support [1].
Using tracing_prog_func_proto helpers for lsm programs.
[1] https://github.com/iovisor/bpftrace/pull/1347
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200531154255.896551-1-jolsa@kernel.org
In order to use standard 'xdp' prefix, rename convert_to_xdp_frame
utility routine in xdp_convert_buff_to_frame and replace all the
occurrences
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/6344f739be0d1a08ab2b9607584c4d5478c8c083.1590698295.git.lorenzo@kernel.org
Ferenc Fejes says:
====================
This option makes it possible to programatically bind sockets
to netdevices. With the help of this option sockets
of VRF unaware applications could be distributed between
multiple VRFs with an eBPF program. This lets the applications
benefit from multiple possible routes.
v2:
- splitting up the patch to three parts
- lock_sk parameter for optional locking in sock_bindtoindex - Stanislav Fomichev
- testing the SO_BINDTODEVICE option - Andrii Nakryiko
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This test intended to verify if SO_BINDTODEVICE option works in
bpf_setsockopt. Because we already in the SOL_SOCKET level in this
connect bpf prog its safe to verify the sanity in the beginning of
the connect_v4_prog by calling the bind_to_device test helper.
The testing environment already created by the test_sock_addr.sh
script so this test assume that two netdevices already existing in
the system: veth pair with names test_sock_addr1 and test_sock_addr2.
The test will try to bind the socket to those devices first.
Then the test assume there are no netdevice with "nonexistent_dev"
name so the bpf_setsockopt will give use ENODEV error.
At the end the test remove the device binding from the socket
by binding it to an empty name.
Signed-off-by: Ferenc Fejes <fejes@inf.elte.hu>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/3f055b8e45c65639c5c73d0b4b6c589e60b86f15.1590871065.git.fejes@inf.elte.hu
The sock_bindtoindex intended for kernel wide usage however
it will lock the socket regardless of the context. This modification
relax this behavior optionally: locking the socket will be optional
by calling the sock_bindtoindex with lock_sk = true.
The modification applied to all users of the sock_bindtoindex.
Signed-off-by: Ferenc Fejes <fejes@inf.elte.hu>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/bee6355da40d9e991b2f2d12b67d55ebb5f5b207.1590871065.git.fejes@inf.elte.hu
buf_prevkey in generic_map_lookup_batch() is allocated with
kmalloc(). It's safe to free it with kfree().
Fixes: cb4d03ab49 ("bpf: Add generic support for lookup batch op")
Signed-off-by: Denis Efremov <efremov@linux.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200601162814.17426-1-efremov@linux.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
John Fastabend says:
====================
If a socket is running a BPF_SK_SKB_SREAM_VERDICT program and KTLS is
enabled the data stream may be broken if both TLS stream parser and
BPF stream parser try to handle data. Fix this here by making KTLS
stream parser run first to ensure TLS messages are received correctly
and then calling the verdict program. This analogous to how we handle
a similar conflict on the TX side.
Note, this is a fix but it doesn't make sense to push this late to
bpf tree so targeting bpf-next and keeping fixes tags.
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This adds a test for bpf ingress policy. To ensure data writes happen
as expected with extra TLS headers we run these tests with data
verification enabled by default. This will test receive packets have
"PASS" stamped into the front of the payload.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/159079363965.5745.3390806911628980210.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
David Ahern says:
====================
Implementation of Daniel's proposal for allowing DEVMAP entries to be
a device index, program fd pair.
Programs are run after XDP_REDIRECT and have access to both Rx device
and Tx device.
v4
- moved struct bpf_devmap_val from uapi to devmap.c, named the union
and dropped the prefix from the elements - Jesper
- fixed 2 bugs in selftests
v3
- renamed struct to bpf_devmap_val
- used offsetofend to check for expected map size, modification of
Toke's comment
- check for explicit value sizes
- adjusted switch statement in dev_map_run_prog per Andrii's comment
- changed SEC shortcut to xdp_devmap
- changed selftests to use skeleton and new map declaration
v2
- moved dev_map_ext_val definition to uapi to formalize the API for devmap
extensions; add bpf_ prefix to the prog_fd and prog_id entries
- changed devmap code to handle struct in a way that it can support future
extensions
- fixed subject in libbpf patch
v1
- fixed prog put on invalid program - Toke
- changed write value from id to fd per Toke's comments about capabilities
- add test cases
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
KTLS uses a stream parser to collect TLS messages and send them to
the upper layer tls receive handler. This ensures the tls receiver
has a full TLS header to parse when it is run. However, when a
socket has BPF_SK_SKB_STREAM_VERDICT program attached before KTLS
is enabled we end up with two stream parsers running on the same
socket.
The result is both try to run on the same socket. First the KTLS
stream parser runs and calls read_sock() which will tcp_read_sock
which in turn calls tcp_rcv_skb(). This dequeues the skb from the
sk_receive_queue. When this is done KTLS code then data_ready()
callback which because we stacked KTLS on top of the bpf stream
verdict program has been replaced with sk_psock_start_strp(). This
will in turn kick the stream parser again and eventually do the
same thing KTLS did above calling into tcp_rcv_skb() and dequeuing
a skb from the sk_receive_queue.
At this point the data stream is broke. Part of the stream was
handled by the KTLS side some other bytes may have been handled
by the BPF side. Generally this results in either missing data
or more likely a "Bad Message" complaint from the kTLS receive
handler as the BPF program steals some bytes meant to be in a
TLS header and/or the TLS header length is no longer correct.
We've already broke the idealized model where we can stack ULPs
in any order with generic callbacks on the TX side to handle this.
So in this patch we do the same thing but for RX side. We add
a sk_psock_strp_enabled() helper so TLS can learn a BPF verdict
program is running and add a tls_sw_has_ctx_rx() helper so BPF
side can learn there is a TLS ULP on the socket.
Then on BPF side we omit calling our stream parser to avoid
breaking the data stream for the KTLS receiver. Then on the
KTLS side we call BPF_SK_SKB_STREAM_VERDICT once the KTLS
receiver is done with the packet but before it posts the
msg to userspace. This gives us symmetry between the TX and
RX halfs and IMO makes it usable again. On the TX side we
process packets in this order BPF -> TLS -> TCP and on
the receive side in the reverse order TCP -> TLS -> BPF.
Discovered while testing OpenSSL 3.0 Alpha2.0 release.
Fixes: d829e9c411 ("tls: convert to generic sk_msg interface")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/159079361946.5745.605854335665044485.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add tests to verify ability to add an XDP program to a
entry in a DEVMAP.
Add negative tests to show DEVMAP programs can not be
attached to devices as a normal XDP program, and accesses
to egress_ifindex require BPF_XDP_DEVMAP attach type.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-6-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We will need this block of code called from tls context shortly
lets refactor the redirect logic so its easy to use. This also
cleans up the switch stmt so we have fewer fallthrough cases.
No logic changes are intended.
Fixes: d829e9c411 ("tls: convert to generic sk_msg interface")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/159079360110.5745.7024009076049029819.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Support SEC("xdp_devmap*") as a short cut for loading the program with
type BPF_PROG_TYPE_XDP and expected attach type BPF_XDP_DEVMAP.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-5-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add xdp_txq_info as the Tx counterpart to xdp_rxq_info. At the
moment only the device is added. Other fields (queue_index)
can be added as use cases arise.
>From a UAPI perspective, add egress_ifindex to xdp context for
bpf programs to see the Tx device.
Update the verifier to only allow accesses to egress_ifindex by
XDP programs with BPF_XDP_DEVMAP expected attach type.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-4-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add BPF_XDP_DEVMAP attach type for use with programs associated with a
DEVMAP entry.
Allow DEVMAPs to associate a program with a device entry by adding
a bpf_prog.fd to 'struct bpf_devmap_val'. Values read show the program
id, so the fd and id are a union. bpf programs can get access to the
struct via vmlinux.h.
The program associated with the fd must have type XDP with expected
attach type BPF_XDP_DEVMAP. When a program is associated with a device
index, the program is run on an XDP_REDIRECT and before the buffer is
added to the per-cpu queue. At this point rxq data is still valid; the
next patch adds tx device information allowing the prorgam to see both
ingress and egress device indices.
XDP generic is skb based and XDP programs do not work with skb's. Block
the use case by walking maps used by a program that is to be attached
via xdpgeneric and fail if any of them are DEVMAP / DEVMAP_HASH with
Block attach of BPF_XDP_DEVMAP programs to devices.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-3-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In bpf_seq_printf() helper, when user specified a "%s" in the
format string, strncpy_from_unsafe() is used to read the actual string
to a buffer. The string could be a format string or a string in
the kernel data structure. It is really unlikely that the string
will reside in the user memory.
This is different from Commit b2a5212fb6 ("bpf: Restrict bpf_trace_printk()'s %s
usage and add %pks, %pus specifier") which still used
strncpy_from_unsafe() for "%s" to preserve the old behavior.
If in the future, bpf_seq_printf() indeed needs to read user
memory, we can implement "%pus" format string.
Based on discussion in [1], if the intent is to read kernel memory,
strncpy_from_unsafe_strict() should be used. So this patch
changed to use strncpy_from_unsafe_strict().
[1]: https://lore.kernel.org/bpf/20200521152301.2587579-1-hch@lst.de/T/
Fixes: 492e639f0c ("bpf: Add bpf_seq_printf and bpf_seq_write helpers")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/bpf/20200529004810.3352219-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add 'struct bpf_devmap_val' to formalize the expected values that can
be passed in for a DEVMAP. Update devmap code to use the struct.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-2-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add "rx_queue_mapping" to bpf_sock. This gives read access for the
existing field (sk_rx_queue_mapping) of struct sock from bpf_sock.
Semantics for the bpf_sock rx_queue_mapping access are similar to
sk_rx_queue_get(), i.e the value NO_QUEUE_MAPPING is not allowed
and -1 is returned in that case. This is useful for transmit queue
selection based on the received queue index which is cached in the
socket in the receive path.
v3: Addressed review comments to add usecase in patch description,
and fixed default value for rx_queue_mapping.
v2: fixed build error for CONFIG_XPS wrapping, reported by
kbuild test robot <lkp@intel.com>
Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Andrii Nakryiko says:
====================
Implement a new BPF ring buffer, as presented at BPF virtual conference ([0]).
It presents an alternative to perf buffer, following its semantics closely,
but allowing sharing same instance of ring buffer across multiple CPUs
efficiently.
Most patches have extensive commentary explaining various aspects, so I'll
keep cover letter short. Overall structure of the patch set:
- patch #1 adds BPF ring buffer implementation to kernel and necessary
verifier support;
- patch #2 adds libbpf consumer implementation for BPF ringbuf;
- patch #3 adds selftest, both for single BPF ring buf use case, as well as
using it with array/hash of maps;
- patch #4 adds extensive benchmarks and provide some analysis in commit
message, it builds upon selftests/bpf's bench runner.
- patch #5 adds most of patch #1 commit message as a doc under
Documentation/bpf/ringbuf.rst.
Litmus tests, validating consumer/producer protocols and memory orderings,
were moved out as discussed in [1] and are going to be posted against -rcu
tree and put under Documentation/litmus-tests/bpf-rb.
[0] https://docs.google.com/presentation/d/18ITdg77Bj6YDOH2LghxrnFxiPWe0fAqcmJY95t_qr0w
[1] https://lkml.org/lkml/2020/5/22/1011
v3->v4:
- fix ringbuf freeing (vunmap, __free_page); verified with a trivial loop
creating and closing ringbuf map endlessly (Daniel);
v2->v3:
- dropped unnecessary smp_wmb() (Paul);
- verifier reference type enhancement patch was dropped (Alexei);
- better verifier message for various memory access checks (Alexei);
- clarified a bit roundup_len() bit shifting (Alexei);
- converted doc to .rst (Alexei);
- fixed warning on 32-bit arches regarding tautological ring area size check.
v1->v2:
- commit()/discard()/output() accept flags (NO_WAKEUP/FORCE_WAKEUP) (Stanislav);
- bpf_ringbuf_query() added, returning available data size, ringbuf size,
consumer/producer positions, needed to implement smarter notification policy
(Stanislav);
- added ringbuf UAPI constants to include/uapi/linux/bpf.h (Jonathan);
- fixed sample size check, added proper ringbuf size check (Jonathan, Alexei);
- wake_up_all() is done through irq_work (Alexei);
- consistent use of smp_load_acquire/smp_store_release, no
READ_ONCE/WRITE_ONCE (Alexei);
- added Documentation/bpf/ringbuf.txt (Stanislav);
- updated litmus test with smp_load_acquire/smp_store_release changes;
- added ring_buffer__consume() API to libbpf for busy-polling;
- ring_buffer__poll() on success returns number of records consumed;
- fixed EPOLL notifications, don't assume available data, done similarly to
perfbuf's implementation;
- both ringbuf and perfbuf now have --rb-sampled mode, instead of
pb-raw/pb-custom mode, updated benchmark results;
- extended ringbuf selftests to validate epoll logic/manual notification
logic, as well as bpf_ringbuf_query().
====================
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
For write-only stacks and queues bpf_map_update_elem should be allowed, but
bpf_map_lookup_elem and bpf_map_lookup_and_delete_elem should fail with EPERM.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-6-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add commit description from patch #1 as a stand-alone documentation under
Documentation/bpf, as it might be more convenient format, in long term
perspective.
Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-6-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Both singleton BPF ringbuf and BPF ringbuf with map-in-map use cases are tested.
Also reserve+submit/discards and output variants of API are validated.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-4-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Declaring and instantiating BPF ring buffer doesn't require any changes to
libbpf, as it's just another type of maps. So using existing BTF-defined maps
syntax with __uint(type, BPF_MAP_TYPE_RINGBUF) and __uint(max_elements,
<size-of-ring-buf>) is all that's necessary to create and use BPF ring buffer.
This patch adds BPF ring buffer consumer to libbpf. It is very similar to
perf_buffer implementation in terms of API, but also attempts to fix some
minor problems and inconveniences with existing perf_buffer API.
ring_buffer support both single ring buffer use case (with just using
ring_buffer__new()), as well as allows to add more ring buffers, each with its
own callback and context. This allows to efficiently poll and consume
multiple, potentially completely independent, ring buffers, using single
epoll instance.
The latter is actually a problem in practice for applications
that are using multiple sets of perf buffers. They have to create multiple
instances for struct perf_buffer and poll them independently or in a loop,
each approach having its own problems (e.g., inability to use a common poll
timeout). struct ring_buffer eliminates this problem by aggregating many
independent ring buffer instances under the single "ring buffer manager".
Second, perf_buffer's callback can't return error, so applications that need
to stop polling due to error in data or data signalling the end, have to use
extra mechanisms to signal that polling has to stop. ring_buffer's callback
can return error, which will be passed through back to user code and can be
acted upon appropariately.
Two APIs allow to consume ring buffer data:
- ring_buffer__poll(), which will wait for data availability notification
and will consume data only from reported ring buffer(s); this API allows
to efficiently use resources by reading data only when it becomes
available;
- ring_buffer__consume(), will attempt to read new records regardless of
data availablity notification sub-system. This API is useful for cases
when lowest latency is required, in expense of burning CPU resources.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-3-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.
Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
- more efficient memory utilization by sharing ring buffer across CPUs;
- preserving ordering of events that happen sequentially in time, even
across multiple CPUs (e.g., fork/exec/exit events for a task).
These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer. Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.
Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.
One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.
Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).
The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).
Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.
There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
- variable-length records;
- if there is no more space left in ring buffer, reservation fails, no
blocking;
- memory-mappable data area for user-space applications for ease of
consumption and high performance;
- epoll notifications for new incoming data;
- but still the ability to do busy polling for new data to achieve the
lowest latency, if necessary.
BPF ringbuf provides two sets of APIs to BPF programs:
- bpf_ringbuf_output() allows to *copy* data from one place to a ring
buffer, similarly to bpf_perf_event_output();
- bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
split the whole process into two steps. First, a fixed amount of space is
reserved. If successful, a pointer to a data inside ring buffer data area
is returned, which BPF programs can use similarly to a data inside
array/hash maps. Once ready, this piece of memory is either committed or
discarded. Discard is similar to commit, but makes consumer ignore the
record.
bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.
bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().
The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.
Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.
bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
- BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
- BPF_RB_RING_SIZE returns the size of ring buffer;
- BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.
One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.
Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.
The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
- consumer counter shows up to which logical position consumer consumed the
data;
- producer counter denotes amount of data reserved by all producers.
Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.
Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.
Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.
One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().
Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.
Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
- per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
outlined above (ordering and memory consumption);
- linked list-based implementations; while some were multi-producer designs,
consuming these from user-space would be very complicated and most
probably not performant; memory-mapping contiguous piece of memory is
simpler and more performant for user-space consumers;
- io_uring is SPSC, but also requires fixed-sized elements. Naively turning
SPSC queue into MPSC w/ lock would have subpar performance compared to
locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
elements would be too limiting for BPF programs, given existing BPF
programs heavily rely on variable-sized perf buffer already;
- specialized implementations (like a new printk ring buffer, [0]) with lots
of printk-specific limitations and implications, that didn't seem to fit
well for intended use with BPF programs.
[0] https://lwn.net/Articles/779550/
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The map_lookup_and_delete_elem() function should check for both FMODE_CAN_WRITE
and FMODE_CAN_READ permissions because it returns a map element to user space.
Fixes: bd513cd08f ("bpf: add MAP_LOOKUP_AND_DELETE_ELEM syscall")
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-5-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Make comments inside the test_map_rdonly and test_map_wronly tests
consistent with logic.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-4-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The test_map_rdonly and test_map_wronly tests should close file descriptors
which they open.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-3-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Trivial fix to a typo in the test_map_wronly test: "read" -> "write"
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-2-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In case the cpu_bufs are sparsely allocated they are not all
free'ed. These changes will fix this.
Fixes: fb84b82246 ("libbpf: add perf buffer API")
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159056888305.330763.9684536967379110349.stgit@ebuild
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lets test using probe* in SCHED_CLS network programs as well just
to be sure these keep working. Its cheap to add the extra test
and provides a second context to test outside of sk_msg after
we generalized probe* helpers to all networking types.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159033911685.12355.15951980509828906214.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The test itself is not particularly useful but it encodes a common
pattern we have.
Namely do a sk storage lookup then depending on data here decide if
we need to do more work or alternatively allow packet to PASS. Then
if we need to do more work consult task_struct for more information
about the running task. Finally based on this additional information
drop or pass the data. In this case the suspicious check is not so
realisitic but it encodes the general pattern and uses the helpers
so we test the workflow.
This is a load test to ensure verifier correctly handles this case.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159033909665.12355.6166415847337547879.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Often it is useful when applying policy to know something about the
task. If the administrator has CAP_SYS_ADMIN rights then they can
use kprobe + networking hook and link the two programs together to
accomplish this. However, this is a bit clunky and also means we have
to call both the network program and kprobe program when we could just
use a single program and avoid passing metadata through sk_msg/skb->cb,
socket, maps, etc.
To accomplish this add probe_* helpers to bpf_base_func_proto programs
guarded by a perfmon_capable() check. New supported helpers are the
following,
BPF_FUNC_get_current_task
BPF_FUNC_probe_read_user
BPF_FUNC_probe_read_kernel
BPF_FUNC_probe_read_user_str
BPF_FUNC_probe_read_kernel_str
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159033905529.12355.4368381069655254932.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add these generic helpers that may be useful to use from sk_msg programs.
The helpers do not depend on ctx so we can simply add them here,
BPF_FUNC_perf_event_output
BPF_FUNC_get_current_uid_gid
BPF_FUNC_get_current_pid_tgid
BPF_FUNC_get_current_cgroup_id
BPF_FUNC_get_current_ancestor_cgroup_id
BPF_FUNC_get_cgroup_classid
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159033903373.12355.15489763099696629346.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since dynamic symbols are used for dynamic linking it makes sense to
use them (readelf --dyn-syms) for abi check.
Found with some configuration on powerpc where linker puts
local *.plt_call.* symbols into .so.
Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200525061846.16524-1-yauheni.kaliuta@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Current 'make install' results in only pkg-config and library binaries
being installed. For consistency also install headers as part of
"make install"
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200526174612.5447-1-nborisov@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This new API, perf_buffer__consume, can be used as follows:
- When you have a perf ring where wakeup_events is higher than 1,
and you have remaining data in the rings you would like to pull
out on exit (or maybe based on a timeout).
- For low latency cases where you burn a CPU that constantly polls
the queues.
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159048487929.89441.7465713173442594608.stgit@ebuild
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
System calls encode returned errors as negative values. Fix a typo that
breaks this convention for bpf(LINK_UPDATE) when bpf_link doesn't support
update operation.
Fixes: f9d041271c ("bpf: Refactor bpf_link update handling")
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200525122928.1164495-1-jakub@cloudflare.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>