Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch fixes this allyesconfig target build error with older
binutils.
LD arch/x86/crypto/built-in.o
ld: arch/x86/crypto/sha-mb/built-in.o: No such file: No such file or directory
Cc: stable@vger.kernel.org # 3.18+
Signed-off-by: Vinson Lee <vlee@twitter.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the multi-buffer job manager which is responsible
for submitting scatter-gather buffers from several SHA1 jobs to the
multi-buffer algorithm. It also contains the flush routine to that's
called by the crypto daemon to complete the job when no new jobs arrive
before the deadline of maximum latency of a SHA1 crypto job.
The SHA1 multi-buffer crypto algorithm is defined and initialized in
this patch.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces "by8" AES CTR mode AVX optimization inspired by
Intel Optimized IPSEC Cryptograhpic library. For additional information,
please see:
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=22972
The functions aes_ctr_enc_128_avx_by8(), aes_ctr_enc_192_avx_by8() and
aes_ctr_enc_256_avx_by8() are adapted from
Intel Optimized IPSEC Cryptographic library. When both AES and AVX features
are enabled in a platform, the glue code in AESNI module overrieds the
existing "by4" CTR mode en/decryption with the "by8"
AES CTR mode en/decryption.
On a Haswell desktop, with turbo disabled and all cpus running
at maximum frequency, the "by8" CTR mode optimization
shows better performance results across data & key sizes
as measured by tcrypt.
The average performance improvement of the "by8" version over the "by4"
version is as follows:
For 128 bit key and data sizes >= 256 bytes, there is a 10-16% improvement.
For 192 bit key and data sizes >= 256 bytes, there is a 20-22% improvement.
For 256 bit key and data sizes >= 256 bytes, there is a 20-25% improvement.
A typical run of tcrypt with AES CTR mode encryption of the "by4" and "by8"
optimization shows the following results:
tcrypt with "by4" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 343 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 336 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 491 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1130 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7309 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 346 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 361 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 543 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1321 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9649 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 369 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 366 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1531 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10522 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 336 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 350 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 487 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1129 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7287 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 350 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 359 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 635 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1324 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9595 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 364 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 377 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 604 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1527 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10549 cycles (8192 bytes)
tcrypt with "by8" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 340 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 330 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 450 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1043 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6597 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 339 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 352 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 539 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1153 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8458 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 353 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 360 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 512 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1277 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8745 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 348 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 335 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 451 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1030 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6611 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 354 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 346 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 488 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1154 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8390 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 357 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 362 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 515 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1284 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8681 cycles (8192 bytes)
crypto: Incorporate feed back to AES CTR mode optimization patch
Specifically, the following:
a) alignment around main loop in aes_ctrby8_avx_x86_64.S
b) .rodata around data constants used in the assembely code.
c) the use of CONFIG_AVX in the glue code.
d) fix up white space.
e) informational message for "by8" AES CTR mode optimization
f) "by8" AES CTR mode optimization can be simply enabled
if the platform supports both AES and AVX features. The
optimization works superbly on Sandybridge as well.
Testing on Haswell shows no performance change since the last.
Testing on Sandybridge shows that the "by8" AES CTR mode optimization
greatly improves performance.
tcrypt log with "by4" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 408 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 707 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1864 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12813 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 395 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 432 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 780 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2132 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15765 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 416 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 438 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 842 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2383 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16945 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 389 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 409 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 704 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1865 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12783 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 409 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 434 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 792 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2151 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15804 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 421 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 444 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 840 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2394 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16928 cycles (8192 bytes)
tcrypt log with "by8" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------
testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 401 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 522 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1136 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7046 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 394 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 418 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 559 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1263 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9072 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 408 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 428 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1385 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9224 cycles (8192 bytes)
testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 390 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 402 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 530 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1135 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7079 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 414 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 417 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 572 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1312 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9073 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 415 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 454 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 598 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1407 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9288 cycles (8192 bytes)
crypto: Fix redundant checks
a) Fix the redundant check for cpu_has_aes
b) Fix the key length check when invoking the CTR mode "by8"
encryptor/decryptor.
crypto: fix typo in AES ctr mode transform
Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com>
Reviewed-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This git patch adds x86_64 AVX2 optimization of SHA1
transform to crypto support. The patch has been tested with 3.14.0-rc1
kernel.
On a Haswell desktop, with turbo disabled and all cpus running
at maximum frequency, tcrypt shows AVX2 performance improvement
from 3% for 256 bytes update to 16% for 1024 bytes update over
AVX implementation.
This patch adds sha1_avx2_transform(), the glue, build and
configuration changes needed for AVX2 optimization of
SHA1 transform to crypto support.
sha1-ssse3 is one module which adds the necessary optimization
support (SSSE3/AVX/AVX2) for the low-level SHA1 transform function.
With better optimization support, transform function is overridden
as the case may be. In the case of AVX2, due to performance reasons
across datablock sizes, the AVX or AVX2 transform function is used
at run-time as it suits best. The Makefile change therefore appends
the necessary objects to the linkage. Due to this, the patch merely
appends AVX2 transform to the existing build mix and Kconfig support
and leaves the configuration build support as is.
Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com>
Reviewed-by: Marek Vasut <marex@denx.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We rename aesni-intel_avx.S to aesni-intel_avx-x86_64.S to indicate
that it is only used by x86_64 architecture.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
It seems commit d764593a "crypto: aesni - AVX and AVX2 version of AESNI-GCM
encode and decode" breaks a build on x86_32 since it's designed only for
x86_64. This patch makes a compilation unit conditional to CONFIG_64BIT and
functions usage to CONFIG_X86_64.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We have added AVX and AVX2 routines that optimize AESNI-GCM encode/decode.
These routines are optimized for encrypt and decrypt of large buffers.
In tests we have seen up to 6% speedup for 1K, 11% speedup for 2K and
18% speedup for 8K buffer over the existing SSE version. These routines
should provide even better speedup for future Intel x86_64 cpus.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move all users of ablk_helper under x86/ to the generic version
and delete the x86 specific version.
Acked-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 3d387ef08c (Revert "crypto: blowfish - add AVX2/x86_64 implementation
of blowfish cipher") reverted too much as it removed the 'assembler supports
AVX2' check and therefore disabled remaining AVX2 implementations of Camellia
and Serpent. Patch restores the check and enables these implementations.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch reinstates commits
67822649d739761214ee0b95a7f85731d939625a2d31e518a4
Now that module softdeps are in the kernel we can use that to resolve
the boot issue which cause the revert.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This reverts commits
67822649d739761214ee0b95a7f85731d939625a2d31e518a4
Unfortunately this change broke boot on some systems that used an
initrd which does not include the newly created crct10dif modules.
As these modules are required by sd_mod under certain configurations
this is a serious problem.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This reverts commit cf1521a1a5.
Instruction (vpgatherdd) that this implementation relied on turned out to be
slow performer on real hardware (i5-4570). The previous 8-way twofish/AVX
implementation is therefore faster and this implementation should be removed.
Converting this implementation to use the same method as in twofish/AVX for
table look-ups would give additional ~3% speed up vs twofish/AVX, but would
hardly be worth of the added code and binary size.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This reverts commit 6048801070.
Instruction (vpgatherdd) that this implementation relied on turned out to be
slow performer on real hardware (i5-4570). The previous 4-way blowfish
implementation is therefore faster and this implementation should be removed.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Glue code that plugs the PCLMULQDQ accelerated CRC T10 DIF hash into the
crypto framework. The config CRYPTO_CRCT10DIF_PCLMUL should be turned
on to enable the feature. The crc_t10dif crypto library function will
use this faster algorithm when crct10dif_pclmul module is loaded.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch adds AVX2/AES-NI/x86-64 implementation of Camellia cipher, requiring
32 parallel blocks for input (512 bytes). Compared to AVX implementation, this
version is extended to use the 256-bit wide YMM registers. For AES-NI
instructions data is split to two 128-bit registers and merged afterwards.
Even with this additional handling, performance should be higher compared
to the AES-NI/AVX implementation.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch adds AVX2/x86-64 implementation of Serpent cipher, requiring 16 parallel
blocks for input (256 bytes). Implementation is based on the AVX implementation
and extends to use the 256-bit wide YMM registers. Since serpent does not use
table look-ups, this implementation should be close to two times faster than
the AVX implementation.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch adds AVX2/x86-64 implementation of Twofish cipher, requiring 16 parallel
blocks for input (256 bytes). Table look-ups are performed using vpgatherdd
instruction directly from vector registers and thus should be faster than
earlier implementations. Implementation also uses 256-bit wide YMM registers,
which should give additional speed up compared to the AVX implementation.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch adds AVX2/x86-64 implementation of Blowfish cipher, requiring 32 parallel
blocks for input (256 bytes). Table look-ups are performed using vpgatherdd
instruction directly from vector registers and thus should be faster than
earlier implementations.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We added glue code and config options to create crypto
module that uses SSE/AVX/AVX2 optimized SHA512 x86_64 assembly routines.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We added glue code and config options to create crypto
module that uses SSE/AVX/AVX2 optimized SHA256 x86_64 assembly routines.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
These modules require AVX support in assembler, so add new check to Makefile
for this.
Other option would be to use CONFIG_AS_AVX inside source files, but that would
result dummy/empty/no-fuctionality modules being created.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds crc32 algorithms to shash crypto api. One is wrapper to
gerneric crc32_le function. Second is crc32 pclmulqdq implementation. It
use hardware provided PCLMULQDQ instruction to accelerate the CRC32 disposal.
This instruction present from Intel Westmere and AMD Bulldozer CPUs.
For intel core i5 I got 450MB/s for table implementation and 2100MB/s
for pclmulqdq implementation.
Signed-off-by: Alexander Boyko <alexander_boyko@xyratex.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the crc_pcl function that calculates CRC32C checksum using the
PCLMULQDQ instruction on processors that support this feature. This will
provide speedup over using CRC32 instruction only.
The usage of PCLMULQDQ necessitate the invocation of kernel_fpu_begin and
kernel_fpu_end and incur some overhead. So the new crc_pcl function is only
invoked for buffer size of 512 bytes or more. Larger sized
buffers will expect to see greater speedup. This feature is best used coupled
with eager_fpu which reduces the kernel_fpu_begin/end overhead. For
buffer size of 1K the speedup is around 1.6x and for buffer size greater than
4K, the speedup is around 3x compared to original implementation in crc32c-intel
module. Test was performed on Sandy Bridge based platform with constant frequency
set for cpu.
A white paper detailing the algorithm can be found here:
http://download.intel.com/design/intarch/papers/323405.pdf
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch renames the crc32c-intel.c file to crc32c-intel_glue.c file
in preparation for linking with the new crc32c-pcl-intel-asm.S file,
which contains optimized crc32c calculation based on PCLMULQDQ
instruction.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that serpent-sse2 glue code has been made generic, it can be split to
separate module.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move ablk-* functions to separate module to share common code between cipher
implementations.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit ea4d26ae ("raid5: add AVX optimized RAID5 checksumming")
introduced x86/ arch wide defines for AFLAGS and CFLAGS indicating AVX
support in binutils based on the same test we have in x86/crypto/ right
now. To minimize duplication drop our implementation in favour to the
one in x86/.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch adds 3-way parallel x86_64 assembly implementation of twofish as new
module. New assembler functions crypt data in three blocks chunks, improving
cipher performance on out-of-order CPUs.
Patch has been tested with tcrypt and automated filesystem tests.
Summary of the tcrypt benchmarks:
Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB)
encrypt: 1.3x speed
decrypt: 1.3x speed
Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC)
encrypt: 1.07x speed
decrypt: 1.4x speed
Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR)
encrypt: 1.4x speed
Twofish 3-way-asm vs AES asm (128bit 8kb block ECB)
encrypt: 1.0x speed
decrypt: 1.0x speed
Twofish 3-way-asm vs AES asm (128bit 8kb block CBC)
encrypt: 0.84x speed
decrypt: 1.09x speed
Twofish 3-way-asm vs AES asm (128bit 8kb block CTR)
encrypt: 1.15x speed
Full output:
http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txthttp://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txthttp://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt
Tests were run on:
vendor_id : AuthenticAMD
cpu family : 16
model : 10
model name : AMD Phenom(tm) II X6 1055T Processor
Also userspace test were run on:
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Xeon(R) CPU E7330 @ 2.40GHz
stepping : 11
Userspace test results:
Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II:
encrypt: 1.27x
decrypt: 1.25x
Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330:
encrypt: 1.36x
decrypt: 1.36x
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch adds x86_64 assembly implementation of blowfish. Two set of assembler
functions are provided. First set is regular 'one-block at time'
encrypt/decrypt functions. Second is 'four-block at time' functions that
gain performance increase on out-of-order CPUs. Performance of 4-way
functions should be equal to 1-way functions with in-order CPUs.
Summary of the tcrypt benchmarks:
Blowfish assembler vs blowfish C (256bit 8kb block ECB)
encrypt: 2.2x speed
decrypt: 2.3x speed
Blowfish assembler vs blowfish C (256bit 8kb block CBC)
encrypt: 1.12x speed
decrypt: 2.5x speed
Blowfish assembler vs blowfish C (256bit 8kb block CTR)
encrypt: 2.5x speed
Full output:
http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-blowfish-asm-x86_64.txthttp://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-blowfish-c-x86_64.txt
Tests were run on:
vendor_id : AuthenticAMD
cpu family : 16
model : 10
model name : AMD Phenom(tm) II X6 1055T Processor
stepping : 0
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This is an assembler implementation of the SHA1 algorithm using the
Supplemental SSE3 (SSSE3) instructions or, when available, the
Advanced Vector Extensions (AVX).
Testing with the tcrypt module shows the raw hash performance is up to
2.3 times faster than the C implementation, using 8k data blocks on a
Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25%
faster.
Since this implementation uses SSE/YMM registers it cannot safely be
used in every situation, e.g. while an IRQ interrupts a kernel thread.
The implementation falls back to the generic SHA1 variant, if using
the SSE/YMM registers is not possible.
With this algorithm I was able to increase the throughput of a single
IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using
the SSSE3 variant -- a speedup of +34.8%.
Saving and restoring SSE/YMM state might make the actual throughput
fluctuate when there are FPU intensive userland applications running.
For example, meassuring the performance using iperf2 directly on the
machine under test gives wobbling numbers because iperf2 uses the FPU
for each packet to check if the reporting interval has expired (in the
above test I got min/max/avg: 402/484/464 MBit/s).
Using this algorithm on a IPsec gateway gives much more reasonable and
stable numbers, albeit not as high as in the directly connected case.
Here is the result from an RFC 2544 test run with a EXFO Packet Blazer
FTB-8510:
frame size sha1-generic sha1-ssse3 delta
64 byte 37.5 MBit/s 37.5 MBit/s 0.0%
128 byte 56.3 MBit/s 62.5 MBit/s +11.0%
256 byte 87.5 MBit/s 100.0 MBit/s +14.3%
512 byte 131.3 MBit/s 150.0 MBit/s +14.2%
1024 byte 162.5 MBit/s 193.8 MBit/s +19.3%
1280 byte 175.0 MBit/s 212.5 MBit/s +21.4%
1420 byte 175.0 MBit/s 218.7 MBit/s +25.0%
1518 byte 150.0 MBit/s 181.2 MBit/s +20.8%
The throughput for the largest frame size is lower than for the
previous size because the IP packets need to be fragmented in this
case to make there way through the IPsec tunnel.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Loading fpu without aesni-intel does nothing. Loading aesni-intel
without fpu causes modes like xts to fail. (Unloading
aesni-intel will restore those modes.)
One solution would be to make aesni-intel depend on fpu, but it
seems cleaner to just combine the modules.
This is probably responsible for bugs like:
https://bugzilla.redhat.com/show_bug.cgi?id=589390
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
PCLMULQDQ is used to accelerate the most time-consuming part of GHASH,
carry-less multiplication. More information about PCLMULQDQ can be
found at:
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/
Because PCLMULQDQ changes XMM state, its usage must be enclosed with
kernel_fpu_begin/end, which can be used only in process context, the
acceleration is implemented as crypto_ahash. That is, request in soft
IRQ context will be defered to the cryptd kernel thread.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Blkcipher touching FPU need to be enclosed by kernel_fpu_begin() and
kernel_fpu_end(). If they are invoked in cipher algorithm
implementation, they will be invoked for each block, so that
performance will be hurt, because they are "slow" operations. This
patch implements "fpu" template, which makes these operations to be
invoked for each request.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Intel AES-NI is a new set of Single Instruction Multiple Data (SIMD)
instructions that are going to be introduced in the next generation of
Intel processor, as of 2009. These instructions enable fast and secure
data encryption and decryption, using the Advanced Encryption Standard
(AES), defined by FIPS Publication number 197. The architecture
introduces six instructions that offer full hardware support for
AES. Four of them support high performance data encryption and
decryption, and the other two instructions support the AES key
expansion procedure.
The white paper can be downloaded from:
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
AES may be used in soft_irq context, but MMX/SSE context can not be
touched safely in soft_irq context. So in_interrupt() is checked, if
in IRQ or soft_irq context, the general x86_64 implementation are used
instead.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
From NHM processor onward, Intel processors can support hardware accelerated
CRC32c algorithm with the new CRC32 instruction in SSE 4.2 instruction set.
The patch detects the availability of the feature, and chooses the most proper
way to calculate CRC32c checksum.
Byte code instructions are used for compiler compatibility.
No MMX / XMM registers is involved in the implementation.
Signed-off-by: Austin Zhang <austin.zhang@intel.com>
Signed-off-by: Kent Liu <kent.liu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is almost no difference between 32 & 64 bit glue code.
Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>