2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 12:13:57 +08:00
Commit Graph

5 Commits

Author SHA1 Message Date
David Sterba
306e16ce13 btrfs: rename variables clashing with global function names
reported by gcc -Wshadow:
page_index, page_offset, new_inode, dev_name

Signed-off-by: David Sterba <dsterba@suse.cz>
2011-05-02 13:57:19 +02:00
Li Zefan
3a39c18d63 btrfs: Extract duplicate decompress code
Add a common function to copy decompressed data from working buffer
to bio pages.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2010-12-22 23:15:50 +08:00
Li Zefan
a6fa6fae40 btrfs: Add lzo compression support
Lzo is a much faster compression algorithm than gzib, so would allow
more users to enable transparent compression, and some users can
choose from compression ratio and speed for different applications

Usage:

 # mount -t btrfs -o compress[=<zlib,lzo>] dev /mnt
or
 # mount -t btrfs -o compress-force[=<zlib,lzo>] dev /mnt

"-o compress" without argument is still allowed for compatability.

Compatibility:

If we mount a filesystem with lzo compression, it will not be able be
mounted in old kernels. One reason is, otherwise btrfs will directly
dump compressed data, which sits in inline extent, to user.

Performance:

The test copied a linux source tarball (~400M) from an ext4 partition
to the btrfs partition, and then extracted it.

(time in second)
           lzo        zlib        nocompress
copy:      10.6       21.7        14.9
extract:   70.1       94.4        66.6

(data size in MB)
           lzo        zlib        nocompress
copy:      185.87     108.69      394.49
extract:   193.80     132.36      381.21

Changelog:

v1 -> v2:
- Select LZO_COMPRESS and LZO_DECOMPRESS in btrfs Kconfig.
- Add incompability flag.
- Fix error handling in compress code.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2010-12-22 23:15:47 +08:00
Li Zefan
261507a02c btrfs: Allow to add new compression algorithm
Make the code aware of compression type, instead of always assuming
zlib compression.

Also make the zlib workspace function as common code for all
compression types.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
2010-12-22 23:15:45 +08:00
Chris Mason
c8b978188c Btrfs: Add zlib compression support
This is a large change for adding compression on reading and writing,
both for inline and regular extents.  It does some fairly large
surgery to the writeback paths.

Compression is off by default and enabled by mount -o compress.  Even
when the -o compress mount option is not used, it is possible to read
compressed extents off the disk.

If compression for a given set of pages fails to make them smaller, the
file is flagged to avoid future compression attempts later.

* While finding delalloc extents, the pages are locked before being sent down
to the delalloc handler.  This allows the delalloc handler to do complex things
such as cleaning the pages, marking them writeback and starting IO on their
behalf.

* Inline extents are inserted at delalloc time now.  This allows us to compress
the data before inserting the inline extent, and it allows us to insert
an inline extent that spans multiple pages.

* All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
are changed to record both an in-memory size and an on disk size, as well
as a flag for compression.

From a disk format point of view, the extent pointers in the file are changed
to record the on disk size of a given extent and some encoding flags.
Space in the disk format is allocated for compression encoding, as well
as encryption and a generic 'other' field.  Neither the encryption or the
'other' field are currently used.

In order to limit the amount of data read for a single random read in the
file, the size of a compressed extent is limited to 128k.  This is a
software only limit, the disk format supports u64 sized compressed extents.

In order to limit the ram consumed while processing extents, the uncompressed
size of a compressed extent is limited to 256k.  This is a software only limit
and will be subject to tuning later.

Checksumming is still done on compressed extents, and it is done on the
uncompressed version of the data.  This way additional encodings can be
layered on without having to figure out which encoding to checksum.

Compression happens at delalloc time, which is basically singled threaded because
it is usually done by a single pdflush thread.  This makes it tricky to
spread the compression load across all the cpus on the box.  We'll have to
look at parallel pdflush walks of dirty inodes at a later time.

Decompression is hooked into readpages and it does spread across CPUs nicely.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 14:49:59 -04:00