This patch, based on Linaro's Cortex Strings library, improves
the performance of the assembly optimized memset() function.
Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org>
Signed-off-by: Deepak Saxena <dsaxena@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch, based on Linaro's Cortex Strings library, improves
the performance of the assembly optimized memmove() function.
Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org>
Signed-off-by: Deepak Saxena <dsaxena@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch, based on Linaro's Cortex Strings library, improves
the performance of the assembly optimized memcpy() function.
Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org>
Signed-off-by: Deepak Saxena <dsaxena@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Whilst our defconfig is certainly usable, there are a few extra features
we can enable to make it considerably more useful, particularly if
people are using it for testing:
- KVM
- SWAP
- Hugepages
- ARMv8 crypto
This patch enables these options in our defconfig. Note that the ordering
has changed slightly, since this is the result of a new savedefconfig
make target.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If one process calls sys_reboot and that process then stops other
CPUs while those CPUs are within a spin_lock() region we can
potentially encounter a deadlock scenario like below.
CPU 0 CPU 1
----- -----
spin_lock(my_lock)
smp_send_stop()
<send IPI> handle_IPI()
disable_preemption/irqs
while(1);
<PREEMPT>
spin_lock(my_lock) <--- Waits forever
We shouldn't attempt to run any other tasks after we send a stop
IPI to a CPU so disable preemption so that this task runs to
completion. We use local_irq_disable() here for cross-arch
consistency with x86.
Based-on-work-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Arun KS <getarunks@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch ports most of commit 19ab428f4b "ARM: 7759/1: decouple CPU
offlining from reboot/shutdown" by Stephen Warren from arch/arm to
arch/arm64.
machine_shutdown() is a hook for kexec. Add a comment saying so, since
it isn't obvious from the function name.
Halt, power-off, and restart have different requirements re: stopping
secondary CPUs than kexec has. The former simply require the secondary
CPUs to be quiesced somehow, whereas kexec requires them to be
completely non-operational, so that no matter where the kexec target
images are written in RAM, they won't influence operation of the
secondary CPUS,which could happen if the CPUs were still executing some
kind of pin loop. To this end, modify machine_halt, power_off, and
restart to call smp_send_stop() directly, rather than calling
machine_shutdown().
In machine_shutdown(), replace the call to smp_send_stop() with a call
to disable_nonboot_cpus(). This completely disables all but one CPU,
thus satisfying the kexec requirements a couple paragraphs above.
Signed-off-by: Arun KS <getarunks@gmail.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Support for arch_irq_work_raise() was missing from
arm64 (a prerequisite for FULL_NOHZ).
This patch is based on the arm32 patch ARM 7872/1.
commit bf18525fd7
Author: Stephen Boyd <sboyd@codeaurora.org>
Date: Tue Oct 29 20:32:56 2013 +0100
ARM: 7872/1: Support arch_irq_work_raise() via self IPIs
By default, IRQ work is run from the tick interrupt (see
irq_work_run() in update_process_times()). When we're in full
NOHZ mode, restarting the tick requires the use of IRQ work and
if the only place we run IRQ work is in the tick interrupt we
have an unbreakable cycle. Implement arch_irq_work_raise() via
self IPIs to break this cycle and get the tick started again.
Note that we implement this via IPIs which are only available on
SMP builds. This shouldn't be a problem because full NOHZ is only
supported on SMP builds anyway.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Kevin Hilman <khilman@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Larry Bassel <larry.bassel@linaro.org>
Reviewed-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for parsing the explicit topology bindings to discover the
topology of the system.
Since it is not currently clear how to map multi-level clusters for the
scheduler all leaf clusters are presented to the scheduler at the same
level. This should be enough to provide good support for current systems.
Signed-off-by: Mark Brown <broonie@linaro.org>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As a legacy of the way 32 bit ARM did things the topology code uses a null
topology map by default and then overwrites it by mapping cores with no
information to a cluster by themselves later. In order to make it simpler
to reset things as part of recovering from parse failures in firmware
information directly set this configuration on init. A core will always be
its own sibling so there should be no risk of confusion with firmware
provided information.
Signed-off-by: Mark Brown <broonie@linaro.org>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Remove unused and deprecated mc_capable() and smt_capable().
Both were added recently by f6e763b93a ("arm64: topology:
Implement basic CPU topology support"). Uses of both were removed
by 8e7fbcbc22 ("sched: Remove stale power aware scheduling
remnants and dysfunctional knobs").
Signed-off-by: Zi Shen Lim <zlim@broadcom.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This reverts commit bc07c2c6e9.
While the aim is increased security for --x memory maps, it does not
protect against kernel level reads. Until SECCOMP is implemented for
arm64, revert this patch to avoid giving a false idea of execute-only
mappings.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQF8BAABCgBmBQJTdT+DXxSAAAAAAC4AKGlzc3Vlci1mcHJAbm90YXRpb25zLm9w
ZW5wZ3AuZmlmdGhob3JzZW1hbi5uZXQ5Q0QyQTBEQTZBRDhGNzMzMDE3NUUyQkJD
MjM3MjA3RTk1NzRGQTdEAAoJEMI3IH6VdPp9jL8H/3kzXh+5rZycb5r48E6Cic/a
Gl0NmRjGtbsxLZcvd8NR3cDol1c9mEAelFrwSA3ar0W91hDf9gsEgxYSBcGKfX/b
sxqzhFoArMDitvu8QQ38SMIlXaGokW3sevj4B93ljw9DqhFR/BvJctmVfyNuPLpp
fFZh0JRyHnkMkXKMJKtYyiXRgfGiJ90rGHPRZLJW7zCIk0/oYd4LESpnqWC+cGKg
w8WIe0Vu4CsiQffkWRmMMJmcJIVayJXAtMHOyBNCKMnYziZSqs+JIUwhbPCxci51
vTxWOFs/CAeZp8mrlHR2TD3dHtzP8c/NSL7E3k4QA0tYReA8T3XHwhRmqtHCp7E=
=sllM
-----END PGP SIGNATURE-----
Merge tag 'for-3.16' of git://git.linaro.org/people/ard.biesheuvel/linux-arm into upstream
FPSIMD register bank context switching and crypto algorithms
optimisations for arm64 from Ard Biesheuvel.
* tag 'for-3.16' of git://git.linaro.org/people/ard.biesheuvel/linux-arm:
arm64/crypto: AES-ECB/CBC/CTR/XTS using ARMv8 NEON and Crypto Extensions
arm64: pull in <asm/simd.h> from asm-generic
arm64/crypto: AES in CCM mode using ARMv8 Crypto Extensions
arm64/crypto: AES using ARMv8 Crypto Extensions
arm64/crypto: GHASH secure hash using ARMv8 Crypto Extensions
arm64/crypto: SHA-224/SHA-256 using ARMv8 Crypto Extensions
arm64/crypto: SHA-1 using ARMv8 Crypto Extensions
arm64: add support for kernel mode NEON in interrupt context
arm64: defer reloading a task's FPSIMD state to userland resume
arm64: add abstractions for FPSIMD state manipulation
asm-generic: allow generic unaligned access if the arch supports it
Conflicts:
arch/arm64/include/asm/thread_info.h
This adds ARMv8 implementations of AES in ECB, CBC, CTR and XTS modes,
both for ARMv8 with Crypto Extensions and for plain ARMv8 NEON.
The Crypto Extensions version can only run on ARMv8 implementations that
have support for these optional extensions.
The plain NEON version is a table based yet time invariant implementation.
All S-box substitutions are performed in parallel, leveraging the wide range
of ARMv8's tbl/tbx instructions, and the huge NEON register file, which can
comfortably hold the entire S-box and still have room to spare for doing the
actual computations.
The key expansion routines were borrowed from aes_generic.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds support for the AES-CCM encryption algorithm for CPUs that
have support for the AES part of the ARM v8 Crypto Extensions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds support for the AES symmetric encryption algorithm for CPUs
that have support for the AES part of the ARM v8 Crypto Extensions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
This is a port to ARMv8 (Crypto Extensions) of the Intel implementation of the
GHASH Secure Hash (used in the Galois/Counter chaining mode). It relies on the
optional PMULL/PMULL2 instruction (polynomial multiply long, what Intel call
carry-less multiply).
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds support for the SHA-224 and SHA-256 Secure Hash Algorithms
for CPUs that have support for the SHA-2 part of the ARM v8 Crypto Extensions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds support for the SHA-1 Secure Hash Algorithm for CPUs that
have support for the SHA-1 part of the ARM v8 Crypto Extensions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Some kernel files may include both linux/compat.h and asm/compat.h directly
or indirectly. Since both header files contain is_compat_task() under
!CONFIG_COMPAT, compiling them with !CONFIG_COMPAT will eventually fail.
Such files include kernel/auditsc.c, kernel/seccomp.c and init/do_mountfs.c
(do_mountfs.c may read asm/compat.h via asm/ftrace.h once ftrace is
implemented).
So this patch proactively
1) removes is_compat_task() under !CONFIG_COMPAT from asm/compat.h
2) replaces asm/compat.h to linux/compat.h in kernel/*.c,
but asm/compat.h is still necessary in ptrace.c and process.c because
they use is_compat_thread().
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This macro, regs_return_value, is used mainly for audit to record system
call's results, but may also be used in test_kprobes.c.
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As done in arm, this change makes it easy to confirm we invoke syscall
related hooks, including syscall tracepoint, audit and seccomp which would
be implemented later, in correct order. That is, undoing operations in the
opposite order on exit that they were done on entry.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently syscall_trace() is called only for ptrace.
With additional TIF_xx flags defined, it is now called in all the cases
of audit, ftrace and seccomp in addition to ptrace.
Acked-by: Richard Guy Briggs <rgb@redhat.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since mdscr_el1 is part of the debug register group, it is highly likely
to be trapped by a hypervisor to prevent virtual machines from debugging
(buggering?) each other. Unfortunately, this absolutely destroys our
performance, since we access the register on many of our low-level
fault handling paths to keep track of the various debug state machines.
This patch removes our dependency on mdscr_el1 in the case that debugging
is not being used. More specifically we:
- Use TIF_SINGLESTEP to indicate that a task is stepping at EL0 and
avoid disabling step in the MDSCR when we don't need to.
MDSCR_EL1.SS handling is moved to kernel_entry, when trapping from
userspace.
- Ensure debug exceptions are re-enabled on *all* exception entry
paths, even the debug exception handling path (where we re-enable
exceptions after invoking the handler). Since we can now rely on
MDSCR_EL1.SS being cleared by the entry code, exception handlers can
usually enable debug immediately before enabling interrupts.
- Remove all debug exception unmasking from ret_to_user and
el1_preempt, since we will never get here with debug exceptions
masked.
This results in a slight change to kernel debug behaviour, where we now
step into interrupt handlers and data aborts from EL1 when debugging the
kernel, which is actually a useful thing to do. A side-effect of this is
that it *does* potentially prevent stepping off {break,watch}points when
there is a high-frequency interrupt source (e.g. a timer), so a debugger
would need to use either breakpoints or manually disable interrupts to
get around this issue.
With this patch applied, guest performance is restored under KVM when
debug register accesses are trapped (and we get a measurable performance
increase on the host on Cortex-A57 too).
Cc: Ian Campbell <ian.campbell@citrix.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to ensure ordering and completion of inner-shareable maintenance
instructions (cache and TLB) on AArch64, we can use the -ish suffix to
the dmb and dsb instructions respectively.
This patch updates our low-level cache and tlb maintenance routines to
use the inner-shareable barrier variants where appropriate.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to ensure completion of inner-shareable maintenance instructions
(cache and TLB) on AArch64, we can use the -ish suffix to the dsb
instruction.
This patch relaxes our dsb sy instructions to dsb ish where possible.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
set_cpu_boot_mode_flag is used to identify which exception levels are
encountered across the system by CPUs trying to enter the kernel. The
basic algorithm is: if a CPU is booting at EL2, it will set a flag at
an offset of #4 from __boot_cpu_mode, a cacheline-aligned variable.
Otherwise, a flag is set at an offset of zero into the same cacheline.
This enables us to check that all CPUs booted at the same exception
level.
This cacheline is written with the stage-1 MMU off (that is, via a
strongly-ordered mapping) and will bypass any clean lines in the cache,
leading to potential coherence problems when the variable is later
checked via the normal, cacheable mapping of the kernel image.
This patch reworks the broken flushing code so that we:
(1) Use a DMB to order the strongly-ordered write of the cacheline
against the subsequent cache-maintenance operation (by-VA
operations only hazard against normal, cacheable accesses).
(2) Use a single dc ivac instruction to invalidate any clean lines
containing a stale copy of the line after it has been updated.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The recently introduced acquire/release accessors refer to smp_mb()
in the !CONFIG_SMP case. This is confusing when reading the code, so use
barrier() directly when we know we're UP.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that all callers of the barrier macros are updated to pass the
mandatory options, update the macros so the option is actually used.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When calling our low-level barrier macros directly, we can often suffice
with more relaxed behaviour than the default "all accesses, full system"
option.
This patch updates the users of dsb() to specify the option which they
actually require.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The tlb maintainence functions: __cpu_flush_user_tlb_range and
__cpu_flush_kern_tlb_range do not take into consideration the page
granule when looping through the address range, and repeatedly flush
tlb entries for the same page when operating with 64K pages.
This patch re-works the logic s.t. we instead advance the loop by
1 << (PAGE_SHIFT - 12), so avoid repeating ourselves.
Also the routines have been converted from assembler to static inline
functions to aid with legibility and potential compiler optimisations.
The isb() has been removed from flush_tlb_kernel_range(.) as it is
only needed when changing the execute permission of a mapping. If one
needs to set an area of the kernel as execute/non-execute an isb()
must be inserted after the call to flush_tlb_kernel_range.
Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some users of xchg() don't bother using the return value, which results
in a compiler warning like the following (from kgdb):
In file included from linux/arch/arm64/include/asm/atomic.h:27:0,
from include/linux/atomic.h:4,
from include/linux/spinlock.h:402,
from include/linux/seqlock.h:35,
from include/linux/time.h:5,
from include/uapi/linux/timex.h:56,
from include/linux/timex.h:56,
from include/linux/sched.h:19,
from include/linux/pid_namespace.h:4,
from kernel/debug/debug_core.c:30:
kernel/debug/debug_core.c: In function ‘kgdb_cpu_enter’:
linux/arch/arm64/include/asm/cmpxchg.h:75:3: warning: value computed is not used [-Wunused-value]
((__typeof__(*(ptr)))__xchg((unsigned long)(x),(ptr),sizeof(*(ptr))))
^
linux/arch/arm64/include/asm/atomic.h:132:30: note: in expansion of macro ‘xchg’
#define atomic_xchg(v, new) (xchg(&((v)->counter), new))
kernel/debug/debug_core.c:504:4: note: in expansion of macro ‘atomic_xchg’
atomic_xchg(&kgdb_active, cpu);
^
This patch makes use of the same trick as we do for cmpxchg, by assigning
the return value to a dummy variable in the xchg() macro itself.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We have the capability to map 1GB level 1 blocks when using a 4K
granule.
This patch adjusts the create_mapping logic s.t. when mapping physical
memory on boot, we attempt to use a 1GB block if both the VA and PA
start and end are 1GB aligned. This both reduces the levels of lookup
required to resolve a kernel logical address, as well as reduces TLB
pressure on cores that support 1GB TLB entries.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Tested-by: Jungseok Lee <jays.lee@samsung.com>
[catalin.marinas@arm.com: s/prot_sect_kernel/PROT_SECT_NORMAL_EXEC/]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The primary aim of this patchset is to remove the pgprot_default and
prot_sect_default global variables and rely strictly on predefined
values. The original goal was to be able to run SMP kernels on UP
hardware by not setting the Shareability bit. However, it is unlikely to
see UP ARMv8 hardware and even if we do, the Shareability bit is no
longer assumed to disable cacheable accesses.
A side effect is that the device mappings now have the Shareability
attribute set. The hardware, however, should ignore it since Device
accesses are always Outer Shareable.
Following the removal of the two global variables, there is some PROT_*
macro reshuffling and cleanup, including the __PAGE_* macros (replaced
by PAGE_*).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
The ARMv8 architecture allows execute-only user permissions by clearing
the PTE_UXN and PTE_USER bits. The kernel, however, can still access
such page, so execute-only page permission does not protect against
read(2)/write(2) etc. accesses. Systems requiring such protection must
implement/enable features like SECCOMP.
This patch changes the arm64 __P100 and __S100 protection_map[] macros
to the new __PAGE_EXECONLY attributes. A side effect is that
pte_valid_user() no longer triggers for __PAGE_EXECONLY since PTE_USER
isn't set. To work around this, the check is done on the PTE_NG bit via
the pte_valid_ng() macro. VM_READ is also checked now for page faults.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This information is useful for instruction emulators to detect
read/write and access size without having to decode the faulting
instruction. The current patch exports it via sigcontext (struct
esr_context) and is only valid for SIGSEGV and SIGBUS.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch removes the aux_context structure (and the containing file)
to allow the placement of the _aarch64_ctx end magic based on the
context stored on the signal stack.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For AArch32, bit 11 (WnR) of the FSR/ESR register is set when the fault
was caused by a write access and applications like Qemu rely on such
information being provided in sigcontext. This patch introduces the
ESR_EL1 tracking for the arm64 kernel faults and sets bit 11 accordingly
in compat sigcontext.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The synchronisation with the boot thread already happens in __cpu_up()
via wait_for_completion_timeout(). In addition, __cpu_up() calls are
protected by the cpu_add_remove_lock mutex and already serialised.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The hardware provides the maximum cache line size in the system via the
CTR_EL0.CWG bits. This patch implements the cache_line_size() function
to read such information, together with a sanity check if the statically
defined L1_CACHE_BYTES is smaller than the hardware value.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
This patch modifies kernel_neon_begin() and kernel_neon_end(), so
they may be called from any context. To address the case where only
a couple of registers are needed, kernel_neon_begin_partial(u32) is
introduced which takes as a parameter the number of bottom 'n' NEON
q-registers required. To mark the end of such a partial section, the
regular kernel_neon_end() should be used.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
If a task gets scheduled out and back in again and nothing has touched
its FPSIMD state in the mean time, there is really no reason to reload
it from memory. Similarly, repeated calls to kernel_neon_begin() and
kernel_neon_end() will preserve and restore the FPSIMD state every time.
This patch defers the FPSIMD state restore to the last possible moment,
i.e., right before the task returns to userland. If a task does not return to
userland at all (for any reason), the existing FPSIMD state is preserved
and may be reused by the owning task if it gets scheduled in again on the
same CPU.
This patch adds two more functions to abstract away from straight FPSIMD
register file saves and restores:
- fpsimd_restore_current_state -> ensure current's FPSIMD state is loaded
- fpsimd_flush_task_state -> invalidate live copies of a task's FPSIMD state
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
There are two tacit assumptions in the FPSIMD handling code that will no longer
hold after the next patch that optimizes away some FPSIMD state restores:
. the FPSIMD registers of this CPU contain the userland FPSIMD state of
task 'current';
. when switching to a task, its FPSIMD state will always be restored from
memory.
This patch adds the following functions to abstract away from straight FPSIMD
register file saves and restores:
- fpsimd_preserve_current_state -> ensure current's FPSIMD state is saved
- fpsimd_update_current_state -> replace current's FPSIMD state
Where necessary, the signal handling and fork code are updated to use the above
wrappers instead of poking into the FPSIMD registers directly.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
- only an email address change to the MAINTAINERS file
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJTZjv8AAoJEAAOaEEZVoIVo2gQAJr3WA+VGZXFXhhdmSqcGyqo
rtJWUWiVfiJyW52YiXTbySDtTFj9YFCi2Z4GFVJY7m74+rNyWBhdPXd1x30HUXuX
imUTGeJ739fSEj1DOL49E/R9KDuTi4lmgoEBwvwLdjnP3gjpPOXRjezjY8D+fhhh
WxKlSIQab5qwrcjBr7FqV/dA6MvRmwvTHYYfSXx1H3HALyi1rJcqVo9W3FeRhWvY
qivT4+2a6A78ZBnxSZ4kA187w9ThBDaMpF76Scmh51YK+iDUOZQWcqVBvOiK3mBJ
A7qNfB+1BN8/YWlMCi2eHwbwNxPHUiGrBL9DVHiHk6wKHkI8cM7m8GH7G8JNbQ4C
oBgzUj9jkK2aA5WMcFJ+Y/QeRy2Ls/gujZHU7ziVHcS/j+T6uPRjCAzr8eoZp9Xj
WMCew7UQaxTG//UtUOBYSblqR1cjtH6WGzhqlmceBdl+haanK27zUwwG0VgLLIIC
6VIXnLMHFNfiG+l4S7Yrfam5kXY/BEbjZXP0Et66cpQ60B6PRsg/p6RvTiLlnW+F
cenbmtm3xGg9OPZoz4TvIPfXJRD5jkXHkuWOV4pTyVnI76CitBhzeIXjgGlO9ei7
4g17+dQkoFKpU61Jc/L2O6zn+C4bl7UWBgZLHabiyxEIqQAAspuJpBx/CBCMaCv6
NNUDew91UH0NBn14eNmU
=JLHy
-----END PGP SIGNATURE-----
Merge tag 'locks-v3.15-3' of git://git.samba.org/jlayton/linux
Pull file locking change from Jeff Layton:
"Only an email address change to the MAINTAINERS file"
* tag 'locks-v3.15-3' of git://git.samba.org/jlayton/linux:
MAINTAINERS: email address change for Jeff Layton