The current duplication is a high-maintenance mess, and it's painful to
add new items.
This increases the size of the event array, but we'll eventually want
most of the VM events tracked on a per-cgroup basis anyway.
Link: http://lkml.kernel.org/r/20170404220148.28338-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We only ever count single events, drop the @nr parameter. Rename the
function accordingly. Remove low-information kerneldoc.
Link: http://lkml.kernel.org/r/20170404220148.28338-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 59dc76b0d4 ("mm: vmscan: reduce size of inactive file
list") we noticed bigger IO spikes during changes in cache access
patterns.
The patch in question shrunk the inactive list size to leave more room
for the current workingset in the presence of streaming IO. However,
workingset transitions that previously happened on the inactive list are
now pushed out of memory and incur more refaults to complete.
This patch disables active list protection when refaults are being
observed. This accelerates workingset transitions, and allows more of
the new set to establish itself from memory, without eating into the
ability to protect the established workingset during stable periods.
The workloads that were measurably affected for us were hit pretty bad
by it, with refault/majfault rates doubling and tripling during cache
transitions, and the machines sustaining half-hour periods of 100% IO
utilization, where they'd previously have sub-minute peaks at 60-90%.
Stateful services that handle user data tend to be more conservative
with kernel upgrades. As a result we hit most page cache issues with
some delay, as was the case here.
The severity seemed to warrant a stable tag.
Fixes: 59dc76b0d4 ("mm: vmscan: reduce size of inactive file list")
Link: http://lkml.kernel.org/r/20170404220052.27593-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cgroups currently don't report how much shmem they use, which can be
useful data to have, in particular since shmem is included in the
cache/file item while being reclaimed like anonymous memory.
Add a counter to track shmem pages during charging and uncharging.
Link: http://lkml.kernel.org/r/20170221164343.32252-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Chris Down <cdown@fb.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge pages are accounted as single units in the memcg's "file_mapped"
counter. Account the correct number of base pages, like we do in the
corresponding node counter.
Link: http://lkml.kernel.org/r/20170322005111.3156-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If there's contention on slab_mutex, queueing the per-cache destruction
work item on the system_wq can unnecessarily create and tie up a lot of
kworkers.
Rename memcg_kmem_cache_create_wq to memcg_kmem_cache_wq and make it
global and use that workqueue for the destruction work items too. While
at it, convert the workqueue from an unbound workqueue to a per-cpu one
with concurrency limited to 1. It's generally preferable to use per-cpu
workqueues and concurrency limit of 1 is safe enough.
This is suggested by Joonsoo Kim.
Link: http://lkml.kernel.org/r/20170117235411.9408-11-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code. This is one of the patches to address the issue.
While a memcg kmem_cache is listed on its root cache's ->children list,
there is no direct way to iterate all kmem_caches which are assocaited
with a memory cgroup. The only way to iterate them is walking all
caches while filtering out caches which don't match, which would be most
of them.
This makes memcg destruction operations O(N^2) where N is the total
number of slab caches which can be huge. This combined with the
synchronous RCU operations can tie up a CPU and affect the whole machine
for many hours when memory reclaim triggers offlining and destruction of
the stale memcgs.
This patch adds mem_cgroup->kmem_caches list which goes through
memcg_cache_params->kmem_caches_node of all kmem_caches which are
associated with the memcg. All memcg specific iterations, including
stat file access, are updated to use the new list instead.
Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nils Holland and Klaus Ethgen have reported unexpected OOM killer
invocations with 32b kernel starting with 4.8 kernels
kworker/u4:5 invoked oom-killer: gfp_mask=0x2400840(GFP_NOFS|__GFP_NOFAIL), nodemask=0, order=0, oom_score_adj=0
kworker/u4:5 cpuset=/ mems_allowed=0
CPU: 1 PID: 2603 Comm: kworker/u4:5 Not tainted 4.9.0-gentoo #2
[...]
Mem-Info:
active_anon:58685 inactive_anon:90 isolated_anon:0
active_file:274324 inactive_file:281962 isolated_file:0
unevictable:0 dirty:649 writeback:0 unstable:0
slab_reclaimable:40662 slab_unreclaimable:17754
mapped:7382 shmem:202 pagetables:351 bounce:0
free:206736 free_pcp:332 free_cma:0
Node 0 active_anon:234740kB inactive_anon:360kB active_file:1097296kB inactive_file:1127848kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:29528kB dirty:2596kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 184320kB anon_thp: 808kB writeback_tmp:0kB unstable:0kB pages_scanned:0 all_unreclaimable? no
DMA free:3952kB min:788kB low:984kB high:1180kB active_anon:0kB inactive_anon:0kB active_file:7316kB inactive_file:0kB unevictable:0kB writepending:96kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:3200kB slab_unreclaimable:1408kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 813 3474 3474
Normal free:41332kB min:41368kB low:51708kB high:62048kB active_anon:0kB inactive_anon:0kB active_file:532748kB inactive_file:44kB unevictable:0kB writepending:24kB present:897016kB managed:836248kB mlocked:0kB slab_reclaimable:159448kB slab_unreclaimable:69608kB kernel_stack:1112kB pagetables:1404kB bounce:0kB free_pcp:528kB local_pcp:340kB free_cma:0kB
lowmem_reserve[]: 0 0 21292 21292
HighMem free:781660kB min:512kB low:34356kB high:68200kB active_anon:234740kB inactive_anon:360kB active_file:557232kB inactive_file:1127804kB unevictable:0kB writepending:2592kB present:2725384kB managed:2725384kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:800kB local_pcp:608kB free_cma:0kB
the oom killer is clearly pre-mature because there there is still a lot
of page cache in the zone Normal which should satisfy this lowmem
request. Further debugging has shown that the reclaim cannot make any
forward progress because the page cache is hidden in the active list
which doesn't get rotated because inactive_list_is_low is not memcg
aware.
The code simply subtracts per-zone highmem counters from the respective
memcg's lru sizes which doesn't make any sense. We can simply end up
always seeing the resulting active and inactive counts 0 and return
false. This issue is not limited to 32b kernels but in practice the
effect on systems without CONFIG_HIGHMEM would be much harder to notice
because we do not invoke the OOM killer for allocations requests
targeting < ZONE_NORMAL.
Fix the issue by tracking per zone lru page counts in mem_cgroup_per_node
and subtract per-memcg highmem counts when memcg is enabled. Introduce
helper lruvec_zone_lru_size which redirects to either zone counters or
mem_cgroup_get_zone_lru_size when appropriate.
We are losing empty LRU but non-zero lru size detection introduced by
ca707239e8 ("mm: update_lru_size warn and reset bad lru_size") because
of the inherent zone vs. node discrepancy.
Fixes: f8d1a31163 ("mm: consider whether to decivate based on eligible zones inactive ratio")
Link: http://lkml.kernel.org/r/20170104100825.3729-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Nils Holland <nholland@tisys.org>
Tested-by: Nils Holland <nholland@tisys.org>
Reported-by: Klaus Ethgen <Klaus@Ethgen.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup core and the memory controller need to track socket ownership
for different purposes, but the tracking sites being entirely different
is kind of ugly.
Be a better citizen and rename the memory controller callbacks to match
the cgroup core callbacks, then move them to the same place.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160914194846.11153-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When selecting an oom victim, we use the same heuristic for both memory
cgroup and global oom. The only difference is the scope of tasks to
select the victim from. So we could just export an iterator over all
memcg tasks and keep all oom related logic in oom_kill.c, but instead we
duplicate pieces of it in memcontrol.c reusing some initially private
functions of oom_kill.c in order to not duplicate all of it. That looks
ugly and error prone, because any modification of select_bad_process
should also be propagated to mem_cgroup_out_of_memory.
Let's rework this as follows: keep all oom heuristic related code private
to oom_kill.c and make oom_kill.c use exported memcg functions when it's
really necessary (like in case of iterating over memcg tasks).
Link: http://lkml.kernel.org/r/1470056933-7505-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should account for stacks regardless of stack size, and we need to
account in sub-page units if THREAD_SIZE < PAGE_SIZE. Change the units
to kilobytes and Move it into account_kernel_stack().
Fixes: 12580e4b54 ("mm: memcontrol: report kernel stack usage in cgroup2 memory.stat")
Link: http://lkml.kernel.org/r/9b5314e3ee5eda61b0317ec1563768602c1ef438.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minchan Kim reported setting the following warning on a 32-bit system
although it can affect 64-bit systems.
WARNING: CPU: 4 PID: 1322 at mm/memcontrol.c:998 mem_cgroup_update_lru_size+0x103/0x110
mem_cgroup_update_lru_size(f44b4000, 1, -7): zid 1 lru_size 1 but empty
Modules linked in:
CPU: 4 PID: 1322 Comm: cp Not tainted 4.7.0-rc4-mm1+ #143
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
dump_stack+0x76/0xaf
__warn+0xea/0x110
? mem_cgroup_update_lru_size+0x103/0x110
warn_slowpath_fmt+0x3b/0x40
mem_cgroup_update_lru_size+0x103/0x110
isolate_lru_pages.isra.61+0x2e2/0x360
shrink_active_list+0xac/0x2a0
? __delay+0xe/0x10
shrink_node_memcg+0x53c/0x7a0
shrink_node+0xab/0x2a0
do_try_to_free_pages+0xc6/0x390
try_to_free_pages+0x245/0x590
LRU list contents and counts are updated separately. Counts are updated
before pages are added to the LRU and updated after pages are removed.
The warning above is from a check in mem_cgroup_update_lru_size that
ensures that list sizes of zero are empty.
The problem is that node-lru needs to account for highmem pages if
CONFIG_HIGHMEM is set. One impact of the implementation is that the
sizes are updated in multiple passes when pages from multiple zones were
isolated. This happens whether HIGHMEM is set or not. When multiple
zones are isolated, it's possible for a debugging check in memcg to be
tripped.
This patch forces all the zone counts to be updated before the memcg
function is called.
Link: http://lkml.kernel.org/r/1468588165-12461-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Minchan Kim <minchan@kernel.org>
Reported-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg needs adjustment after moving LRUs to the node. Limits are
tracked per memcg but the soft-limit excess is tracked per zone. As
global page reclaim is based on the node, it is easy to imagine a
situation where a zone soft limit is exceeded even though the memcg
limit is fine.
This patch moves the soft limit tree the node. Technically, all the
variable names should also change but people are already familiar by the
meaning of "mz" even if "mn" would be a more appropriate name now.
Link: http://lkml.kernel.org/r/1467970510-21195-15-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Earlier patches focused on having direct reclaim and kswapd use data
that is node-centric for reclaiming but shrink_node() itself still uses
too much zone information. This patch removes unnecessary zone-based
information with the most important decision being whether to continue
reclaim or not. Some memcg APIs are adjusted as a result even though
memcg itself still uses some zone information.
[mgorman@techsingularity.net: optimization]
Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.
Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic. Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes. It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.
Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies. For example, the scans are
per-zone but using per-node counters. We also mark a node as congested
when a zone is congested. This causes weird problems that are fixed
later but is easier to review.
In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions
1. Long-term isolation of highmem pages when reclaim is lowmem
When pages are skipped, they are immediately added back onto the LRU
list. If lowmem reclaim persisted for long periods of time, the same
highmem pages get continually scanned. The idea would be that lowmem
keeps those pages on a separate list until a reclaim for highmem pages
arrives that splices the highmem pages back onto the LRU. It potentially
could be implemented similar to the UNEVICTABLE list.
That would reduce the skip rate with the potential corner case is that
highmem pages have to be scanned and reclaimed to free lowmem slab pages.
2. Linear scan lowmem pages if the initial LRU shrink fails
This will break LRU ordering but may be preferable and faster during
memory pressure than skipping LRU pages.
Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 23047a96d7 ("mm: workingset: per-cgroup cache thrash
detection") added a page->mem_cgroup lookup to the cache eviction,
refault, and activation paths, as well as locking to the activation
path, and the vm-scalability tests showed a regression of -23%.
While the test in question is an artificial worst-case scenario that
doesn't occur in real workloads - reading two sparse files in parallel
at full CPU speed just to hammer the LRU paths - there is still some
optimizations that can be done in those paths.
Inline the lookup functions to eliminate calls. Also, page->mem_cgroup
doesn't need to be stabilized when counting an activation; we merely
need to hold the RCU lock to prevent the memcg from being freed.
This cuts down on overhead quite a bit:
23047a96d7 063f6715e77a7be5770d6081fe
---------------- --------------------------
%stddev %change %stddev
\ | \
21621405 +- 0% +11.3% 24069657 +- 2% vm-scalability.throughput
[linux@roeck-us.net: drop unnecessary include file]
[hannes@cmpxchg.org: add WARN_ON_ONCE()s]
Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org
Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.org
Reported-by: Ye Xiaolong <xiaolong.ye@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Handle memcg_kmem_enabled check out to the caller. This reduces the
number of function definitions making the code easier to follow. At
the same time it doesn't result in code bloat, because all of these
functions are used only in one or two places.
- Move __GFP_ACCOUNT check to the caller as well so that one wouldn't
have to dive deep into memcg implementation to see which allocations
are charged and which are not.
- Refresh comments.
Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory controller has quite a bit of state that usually outlives the
cgroup and pins its CSS until said state disappears. At the same time
it imposes a 16-bit limit on the CSS ID space to economically store IDs
in the wild. Consequently, when we use cgroups to contain frequent but
small and short-lived jobs that leave behind some page cache, we quickly
run into the 64k limitations of outstanding CSSs. Creating a new cgroup
fails with -ENOSPC while there are only a few, or even no user-visible
cgroups in existence.
Although pinning CSSs past cgroup removal is common, there are only two
instances that actually need an ID after a cgroup is deleted: cache
shadow entries and swapout records.
Cache shadow entries reference the ID weakly and can deal with the CSS
having disappeared when it's looked up later. They pose no hurdle.
Swap-out records do need to pin the css to hierarchically attribute
swapins after the cgroup has been deleted; though the only pages that
remain swapped out after offlining are tmpfs/shmem pages. And those
references are under the user's control, so they are manageable.
This patch introduces a private 16-bit memcg ID and switches swap and
cache shadow entries over to using that. This ID can then be recycled
after offlining when the CSS remains pinned only by objects that don't
specifically need it.
This script demonstrates the problem by faulting one cache page in a new
cgroup and deleting it again:
set -e
mkdir -p pages
for x in `seq 128000`; do
[ $((x % 1000)) -eq 0 ] && echo $x
mkdir /cgroup/foo
echo $$ >/cgroup/foo/cgroup.procs
echo trex >pages/$x
echo $$ >/cgroup/cgroup.procs
rmdir /cgroup/foo
done
When run on an unpatched kernel, we eventually run out of possible IDs
even though there are no visible cgroups:
[root@ham ~]# ./cssidstress.sh
[...]
65000
mkdir: cannot create directory '/cgroup/foo': No space left on device
After this patch, the IDs get released upon cgroup destruction and the
cache and css objects get released once memory reclaim kicks in.
[hannes@cmpxchg.org: init the IDR]
Link: http://lkml.kernel.org/r/20160621154601.GA22431@cmpxchg.org
Fixes: b2052564e6 ("mm: memcontrol: continue cache reclaim from offlined groups")
Link: http://lkml.kernel.org/r/20160617162516.GD19084@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: John Garcia <john.garcia@mesosphere.io>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Nikolay Borisov <kernel@kyup.com>
Cc: <stable@vger.kernel.org> [3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The inactive file list should still be large enough to contain readahead
windows and freshly written file data, but it no longer is the only
source for detecting multiple accesses to file pages. The workingset
refault measurement code causes recently evicted file pages that get
accessed again after a shorter interval to be promoted directly to the
active list.
With that mechanism in place, we can afford to (on a larger system)
dedicate more memory to the active file list, so we can actually cache
more of the frequently used file pages in memory, and not have them
pushed out by streaming writes, once-used streaming file reads, etc.
This can help things like database workloads, where only half the page
cache can currently be used to cache the database working set. This
patch automatically increases that fraction on larger systems, using the
same ratio that has already been used for anonymous memory.
[hannes@cmpxchg.org: cgroup-awareness]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Konstantin Khlebnikov pointed out (nearly four years ago, when lumpy
reclaim was removed) that lru_size can be updated by -nr_taken once per
call to isolate_lru_pages(), instead of page by page.
Update it inside isolate_lru_pages(), or at its two callsites? I chose
to update it at the callsites, rearranging and grouping the updates by
nr_taken and nr_scanned together in both.
With one exception, mem_cgroup_update_lru_size(,lru,) is then used where
__mod_zone_page_state(,NR_LRU_BASE+lru,) is used; and we shall be adding
some more calls in a future commit. Make the code a little smaller and
simpler by incorporating stat update in lru_size update.
The exception was move_active_pages_to_lru(), which aggregated the
pgmoved stat update separately from the individual lru_size updates; but
I still think this a simplification worth making.
However, the __mod_zone_page_state is not peculiar to mem_cgroups: so
better use the name update_lru_size, calls mem_cgroup_update_lru_size
when CONFIG_MEMCG.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Workingset code was recently made memcg aware, but shadow node shrinker
is still global. As a result, one small cgroup can consume all memory
available for shadow nodes, possibly hurting other cgroups by reclaiming
their shadow nodes, even though reclaim distances stored in its shadow
nodes have no effect. To avoid this, we need to make shadow node
shrinker memcg aware.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As kmem accounting is now either enabled for all cgroups or disabled
system-wide, there's no point in having memcg_kmem_online() helper -
instead one can use memcg_kmem_enabled() and mem_cgroup_online(), as
shrink_slab() now does.
There are only two places left where this helper is used -
__memcg_kmem_charge() and memcg_create_kmem_cache(). The former can
only be called if memcg_kmem_enabled() returned true. Since the cgroup
it operates on is online, mem_cgroup_is_root() check will be enough.
memcg_create_kmem_cache() can't use mem_cgroup_online() helper instead
of memcg_kmem_online(), because it relies on the fact that in
memcg_offline_kmem() memcg->kmem_state is changed before
memcg_deactivate_kmem_caches() is called, but there we can just
open-code the check.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Show how much memory is allocated to kernel stacks.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Show how much memory is used for storing reclaimable and unreclaimable
in-kernel data structures allocated from slab caches.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several users that nest lock_page_memcg() inside lock_page()
to prevent page->mem_cgroup from changing. But the page lock prevents
pages from moving between cgroups, so that is unnecessary overhead.
Remove lock_page_memcg() in contexts with locked contexts and fix the
debug code in the page stat functions to be okay with the page lock.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that migration doesn't clear page->mem_cgroup of live pages anymore,
it's safe to make lock_page_memcg() and the memcg stat functions take
pages, and spare the callers from memcg objects.
[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Changing a page's memcg association complicates dealing with the page,
so we want to limit this as much as possible. Page migration e.g. does
not have to do that. Just like page cache replacement, it can forcibly
charge a replacement page, and then uncharge the old page when it gets
freed. Temporarily overcharging the cgroup by a single page is not an
issue in practice, and charging is so cheap nowadays that this is much
preferrable to the headache of messing with live pages.
The only place that still changes the page->mem_cgroup binding of live
pages is when pages move along with a task to another cgroup. But that
path isolates the page from the LRU, takes the page lock, and the move
lock (lock_page_memcg()). That means page->mem_cgroup is always stable
in callers that have the page isolated from the LRU or locked. Lighter
unlocked paths, like writeback accounting, can use lock_page_memcg().
[akpm@linux-foundation.org: fix build]
[vdavydov@virtuozzo.com: fix lockdep splat]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cache thrash detection (see a528910e12 "mm: thrash detection-based
file cache sizing" for details) currently only works on the system
level, not inside cgroups. Worse, as the refaults are compared to the
global number of active cache, cgroups might wrongfully get all their
refaults activated when their pages are hotter than those of others.
Move the refault machinery from the zone to the lruvec, and then tag
eviction entries with the memcg ID. This makes the thrash detection
work correctly inside cgroups.
[sergey.senozhatsky@gmail.com: do not return from workingset_activation() with locked rcu and page]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches tag the page cache radix tree eviction entries with the
memcg an evicted page belonged to, thus making per-cgroup LRU reclaim
work properly and be as adaptive to new cache workingsets as global
reclaim already is.
This should have been part of the original thrash detection patch
series, but was deferred due to the complexity of those patches.
This patch (of 5):
So far the only sites that needed to exclude charge migration to
stabilize page->mem_cgroup have been per-cgroup page statistics, hence
the name mem_cgroup_begin_page_stat(). But per-cgroup thrash detection
will add another site that needs to ensure page->mem_cgroup lifetime.
Rename these locking functions to the more generic lock_page_memcg() and
unlock_page_memcg(). Since charge migration is a cgroup1 feature only,
we might be able to delete it at some point, and these now easy to
identify locking sites along with it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix up trivial spelling errors, noticed while reading the code.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MEM_CGROUP_STAT_NSTATS is just a delimiter for cgroup1 statistics, not
an actual array entry. Reuse it for the first cgroup2 stat entry, like
in the event array.
Fixes: b2807f07f4 ("mm: memcontrol: add "sock" to cgroup2 memory.stat")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide statistics on how much of a cgroup's memory footprint is made up
of socket buffers from network connections owned by the group.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_lruvec_online() takes lruvec, but it only needs memcg. Since
get_scan_count(), which is the only user of this function, now possesses
pointer to memcg, let's pass memcg directly to mem_cgroup_online() instead
of picking it out of lruvec and rename the function accordingly.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset introduces swap accounting to cgroup2.
This patch (of 7):
In the legacy hierarchy we charge memsw, which is dubious, because:
- memsw.limit must be >= memory.limit, so it is impossible to limit
swap usage less than memory usage. Taking into account the fact that
the primary limiting mechanism in the unified hierarchy is
memory.high while memory.limit is either left unset or set to a very
large value, moving memsw.limit knob to the unified hierarchy would
effectively make it impossible to limit swap usage according to the
user preference.
- memsw.usage != memory.usage + swap.usage, because a page occupying
both swap entry and a swap cache page is charged only once to memsw
counter. As a result, it is possible to effectively eat up to
memory.limit of memory pages *and* memsw.limit of swap entries, which
looks unexpected.
That said, we should provide a different swap limiting mechanism for
cgroup2.
This patch adds mem_cgroup->swap counter, which charges the actual number
of swap entries used by a cgroup. It is only charged in the unified
hierarchy, while the legacy hierarchy memsw logic is left intact.
The swap usage can be monitored using new memory.swap.current file and
limited using memory.swap.max.
Note, to charge swap resource properly in the unified hierarchy, we have
to make swap_entry_free uncharge swap only when ->usage reaches zero, not
just ->count, i.e. when all references to a swap entry, including the one
taken by swap cache, are gone. This is necessary, because otherwise
swap-in could result in uncharging swap even if the page is still in swap
cache and hence still occupies a swap entry. At the same time, this
shouldn't break memsw counter logic, where a page is never charged twice
for using both memory and swap, because in case of legacy hierarchy we
uncharge swap on commit (see mem_cgroup_commit_charge).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The creation and teardown of struct mem_cgroup is fairly messy and
that has attracted mistakes and subtle bugs before.
The main cause for this is that there is no clear model about what
needs to happen when, and that attracts more chaos. So create one:
1. mem_cgroup_alloc() should allocate struct mem_cgroup and its
auxiliary members and initialize work items, locks etc. so that the
object it returns is fully initialized and in a neutral state.
2. mem_cgroup_css_alloc() will use mem_cgroup_alloc() to obtain a new
memcg object and configure it and the system according to the role
of the new memory-controlled cgroup in the hierarchy.
3. mem_cgroup_css_online() is no longer needed to synchronize with
iterators, but it verifies css->id which isn't available earlier.
4. mem_cgroup_css_offline() implements stuff that needs to happen upon
the user-visible destruction of a cgroup, which includes stopping
all user interfacing as well as releasing certain structures when
continued memory consumption would be unexpected at that point.
5. mem_cgroup_css_free() prepares the system and the memcg object for
the object's disappearance, neutralizes its state, and then gives
it back to mem_cgroup_free().
6. mem_cgroup_free() releases struct mem_cgroup and auxiliary memory.
[arnd@arndb.de: fix SLOB build regression]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no more external users of struct cg_proto, flatten the
structure into struct mem_cgroup.
Since using those struct members doesn't stand out as much anymore,
add cgroup2 static branches to make it clearer which code is legacy.
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
What CONFIG_INET and CONFIG_LEGACY_KMEM guard inside the memory
controller code is insignificant, having these conditionals is not
worth the complication and fragility that comes with them.
[akpm@linux-foundation.org: rework mem_cgroup_css_free() statement ordering]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let the user know that CONFIG_MEMCG_KMEM does not apply to the cgroup2
interface. This also makes legacy-only code sections stand out better.
[arnd@arndb.de: mm: memcontrol: only manage socket pressure for CONFIG_INET]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup2 memory controller will account important in-kernel memory
consumers per default. Move all necessary components to CONFIG_MEMCG.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On any given memcg, the kmem accounting feature has three separate
states: not initialized, structures allocated, and actively accounting
slab memory. These are represented through a combination of the
kmem_acct_activated and kmem_acct_active flags, which is confusing.
Convert to a kmem_state enum with the states NONE, ALLOCATED, and
ONLINE. Then rename the functions to modify the state accordingly.
This follows the nomenclature of css object states more closely.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup. We need
to get information from caller to know whether it was mapped with PMD or
PTE.
We do uncharge when last reference on the page gone. At that point if
we see PageTransHuge() it means we need to unchange whole huge page.
The tricky part is partial unmap -- when we try to unmap part of huge
page. We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered. In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker. This
should be good enough.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
According to <linux/jump_label.h> the direct use of struct static_key is
deprecated. Update the socket and slab accounting code accordingly.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reported-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let the networking stack know when a memcg is under reclaim pressure so
that it can clamp its transmit windows accordingly.
Whenever the reclaim efficiency of a cgroup's LRU lists drops low enough
for a MEDIUM or HIGH vmpressure event to occur, assert a pressure state
in the socket and tcp memory code that tells it to curb consumption
growth from sockets associated with said control group.
Traditionally, vmpressure reports for the entire subtree of a memcg
under pressure, which drops useful information on the individual groups
reclaimed. However, it's too late to change the userinterface, so add a
second reporting mode that reports on the level of reclaim instead of at
the level of pressure, and use that report for sockets.
vmpressure events are naturally edge triggered, so for hysteresis assert
socket pressure for a second to allow for subsequent vmpressure events
to occur before letting the socket code return to normal.
This will likely need finetuning for a wider variety of workloads, but
for now stick to the vmpressure presets and keep hysteresis simple.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Socket memory can be a significant share of overall memory consumed by
common workloads. In order to provide reasonable resource isolation in
the unified hierarchy, this type of memory needs to be included in the
tracking/accounting of a cgroup under active memory resource control.
Overhead is only incurred when a non-root control group is created AND
the memory controller is instructed to track and account the memory
footprint of that group. cgroup.memory=nosocket can be specified on the
boot commandline to override any runtime configuration and forcibly
exclude socket memory from active memory resource control.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The unified hierarchy memory controller is going to use this jump label
as well to control the networking callbacks. Move it to the memory
controller code and give it a more generic name.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There won't be any separate counters for socket memory consumed by
protocols other than TCP in the future. Remove the indirection and link
sockets directly to their owning memory cgroup.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There won't be a tcp control soft limit, so integrating the memcg code
into the global skmem limiting scheme complicates things unnecessarily.
Replace this with simple and clear charge and uncharge calls--hidden
behind a jump label--to account skb memory.
Note that this is not purely aesthetic: as a result of shoehorning the
per-memcg code into the same memory accounting functions that handle the
global level, the old code would compare the per-memcg consumption
against the smaller of the per-memcg limit and the global limit. This
allowed the total consumption of multiple sockets to exceed the global
limit, as long as the individual sockets stayed within bounds. After
this change, the code will always compare the per-memcg consumption to
the per-memcg limit, and the global consumption to the global limit, and
thus close this loophole.
Without a soft limit, the per-memcg memory pressure state in sockets is
generally questionable. However, we did it until now, so we continue to
enter it when the hard limit is hit, and packets are dropped, to let
other sockets in the cgroup know that they shouldn't grow their transmit
windows, either. However, keep it simple in the new callback model and
leave memory pressure lazily when the next packet is accepted (as
opposed to doing it synchroneously when packets are processed). When
packets are dropped, network performance will already be in the toilet,
so that should be a reasonable trade-off.
As described above, consumption is now checked on the per-memcg level
and the global level separately. Likewise, memory pressure states are
maintained on both the per-memcg level and the global level, and a
socket is considered under pressure when either level asserts as much.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tcp_memcontrol replicates the global sysctl_mem limit array per cgroup,
but it only ever sets these entries to the value of the memory_allocated
page_counter limit. Use the latter directly.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of allocated sockets is used for calculations in the soft
limit phase, where packets are accepted but the socket is under memory
pressure.
Since there is no soft limit phase in tcp_memcontrol, and memory
pressure is only entered when packets are already dropped, this is
actually dead code. Remove it.
As this is the last user of parent_cg_proto(), remove that too.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the jump-label from sock_update_memcg() and sock_release_memcg() to
the callsite, and so eliminate those function calls when socket
accounting is not enabled.
This also eliminates the need for dummy functions because the calls will
be optimized away if the Kconfig options are not enabled.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A later patch will need this symbol in files other than memcontrol.c, so
export it now and replace mem_cgroup_root_css at the same time.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two bits defined for cg_proto->flags - MEMCG_SOCK_ACTIVATED
and MEMCG_SOCK_ACTIVE - both are set in tcp_update_limit, but the former
is never cleared while the latter can be cleared by unsetting the limit.
This allows to disable tcp socket accounting for new sockets after it
was enabled by writing -1 to memory.kmem.tcp.limit_in_bytes while still
guaranteeing that memcg_socket_limit_enabled static key will be
decremented on memcg destruction.
This functionality looks dubious, because it is not clear what a use
case would be. By enabling tcp accounting a user accepts the price. If
they then find the performance degradation unacceptable, they can always
restart their workload with tcp accounting disabled. It does not seem
there is any need to flip it while the workload is running.
Besides, it contradicts to how kmem accounting API works: writing
whatever to memory.kmem.limit_in_bytes enables kmem accounting for the
cgroup in question, after which it cannot be disabled. Therefore one
might expect that writing -1 to memory.kmem.tcp.limit_in_bytes just
enables socket accounting w/o limiting it, which might be useful by
itself, but it isn't true.
Since this API peculiarity is not documented anywhere, I propose to drop
it. This will allow to simplify the code by dropping cg_proto->flags.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, if we want to account all objects of a particular kmem cache,
we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is
inconvenient. This patch introduces SLAB_ACCOUNT flag which if passed
to kmem_cache_create will force accounting for every allocation from
this cache even if __GFP_ACCOUNT is not passed.
This patch does not make any of the existing caches use this flag - it
will be done later in the series.
Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o
SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and
hence cannot have different sets of SLAB_* flags. Thus using this flag
will probably reduce the number of merged slabs even if kmem accounting
is not used (only compiled in).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Black-list kmem accounting policy (aka __GFP_NOACCOUNT) turned out to be
fragile and difficult to maintain, because there seem to be many more
allocations that should not be accounted than those that should be.
Besides, false accounting an allocation might result in much worse
consequences than not accounting at all, namely increased memory
consumption due to pinned dead kmem caches.
So this patch switches kmem accounting to the white-policy: now only
those kmem allocations that are marked as __GFP_ACCOUNT are accounted to
memcg. Currently, no kmem allocations are marked like this. The
following patches will mark several kmem allocations that are known to
be easily triggered from userspace and therefore should be accounted to
memcg.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 8f4fc071b1 ("gfp: add __GFP_NOACCOUNT").
Black-list kmem accounting policy (aka __GFP_NOACCOUNT) turned out to be
fragile and difficult to maintain, because there seem to be many more
allocations that should not be accounted than those that should be.
Besides, false accounting an allocation might result in much worse
consequences than not accounting at all, namely increased memory
consumption due to pinned dead kmem caches.
So it was decided to switch to the white-list policy. This patch
reverts bits introducing the black-list policy. The white-list policy
will be introduced later in the series.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
After v4.3's commit 0610c25daa ("memcg: fix dirty page migration")
mem_cgroup_migrate() doesn't have much to offer in page migration: convert
migrate_misplaced_transhuge_page() to set_page_memcg() instead.
Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its
remaining callers are replace_page_cache_page() and shmem_replace_page():
both of whom passed lrucare true, so just eliminate that argument.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the previous patch ("memcg: unify slab and other kmem pages
charging"), __mem_cgroup_from_kmem had to handle two types of kmem - slab
pages and pages allocated with alloc_kmem_pages - memcg in the page
struct. Now we can unify it. Since after it, this function becomes tiny
we can fold it into mem_cgroup_from_kmem.
[hughd@google.com: move mem_cgroup_from_kmem into list_lru.c]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and
uncharging kmem pages to memcg, but currently they are not used for
charging slab pages (i.e. they are only used for charging pages allocated
with alloc_kmem_pages). The only reason why the slab subsystem uses
special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it
needs to charge to the memcg of kmem cache while memcg_charge_kmem charges
to the memcg that the current task belongs to.
To remove this diversity, this patch adds an extra argument to
__memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is
not NULL, the function tries to charge to the memcg it points to,
otherwise it charge to the current context. Next, it makes the slab
subsystem use this function to charge slab pages.
Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only
in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since
__memcg_kmem_charge stores a pointer to the memcg in the page struct, we
don't need memcg_uncharge_slab anymore and can use free_kmem_pages.
Besides, one can now detect which memcg a slab page belongs to by reading
/proc/kpagecgroup.
Note, this patch switches slab to charge-after-alloc design. Since this
design is already used for all other memcg charges, it should not make any
difference.
[hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Charging kmem pages proceeds in two steps. First, we try to charge the
allocation size to the memcg the current task belongs to, then we allocate
a page and "commit" the charge storing the pointer to the memcg in the
page struct.
Such a design looks overcomplicated, because there is not much sense in
trying charging the allocation before actually allocating a page: we won't
be able to consume much memory over the limit even if we charge after
doing the actual allocation, besides we already charge user pages post
factum, so being pedantic with kmem pages just looks pointless.
So this patch simplifies the design by merging the "charge" and the
"commit" steps into the same function, which takes the allocated page.
Also, rename the charge and uncharge methods to memcg_kmem_charge and
memcg_kmem_uncharge and make the charge method return error code instead
of bool to conform to mem_cgroup_try_charge.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make mem_cgroup_inactive_anon_is_low return bool due to this particular
function only using either one or zero as its return value.
No functional change.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__memcg_kmem_bypass() decides whether a kmem allocation should be bypassed
to the root memcg. Some conditions that it tests are valid criteria
regarding who should be held accountable; however, there are a couple
unnecessary tests for cold paths - __GFP_FAIL and fatal_signal_pending().
The previous patch updated try_charge() to handle both __GFP_FAIL and
dying tasks correctly and the only thing these two tests are doing is
making accounting less accurate and sprinkling tests for cold path
conditions in the hot paths. There's nothing meaningful gained by these
extra tests.
This patch removes the two unnecessary tests from __memcg_kmem_bypass().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_kmem_newpage_charge() and memcg_kmem_get_cache() are testing the
same series of conditions to decide whether to bypass kmem accounting.
Collect the tests into __memcg_kmem_bypass().
This is pure refactoring.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, try_charge() tries to reclaim memory synchronously when the
high limit is breached; however, if the allocation doesn't have
__GFP_WAIT, synchronous reclaim is skipped. If a process performs only
speculative allocations, it can blow way past the high limit. This is
actually easily reproducible by simply doing "find /". slab/slub
allocator tries speculative allocations first, so as long as there's
memory which can be consumed without blocking, it can keep allocating
memory regardless of the high limit.
This patch makes try_charge() always punt the over-high reclaim to the
return-to-userland path. If try_charge() detects that high limit is
breached, it adds the overage to current->memcg_nr_pages_over_high and
schedules execution of mem_cgroup_handle_over_high() which performs
synchronous reclaim from the return-to-userland path.
As long as kernel doesn't have a run-away allocation spree, this should
provide enough protection while making kmemcg behave more consistently.
It also has the following benefits.
- All over-high reclaims can use GFP_KERNEL regardless of the specific
gfp mask in use, e.g. GFP_NOFS, when the limit was breached.
- It copes with prio inversion. Previously, a low-prio task with
small memory.high might perform over-high reclaim with a bunch of
locks held. If a higher prio task needed any of these locks, it
would have to wait until the low prio task finished reclaim and
released the locks. By handing over-high reclaim to the task exit
path this issue can be avoided.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task_struct->memcg_oom is a sub-struct containing fields which are used
for async memcg oom handling. Most task_struct fields aren't packaged
this way and it can lead to unnecessary alignment paddings. This patch
flattens it.
* task.memcg_oom.memcg -> task.memcg_in_oom
* task.memcg_oom.gfp_mask -> task.memcg_oom_gfp_mask
* task.memcg_oom.order -> task.memcg_oom_order
* task.memcg_oom.may_oom -> task.memcg_may_oom
In addition, task.memcg_may_oom is relocated to where other bitfields are
which reduces the size of task_struct.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
For memcg domains, the amount of available memory was calculated as
min(the amount currently in use + headroom according to memcg,
total clean memory)
This isn't quite correct as what should be capped by the amount of
clean memory is the headroom, not the sum of memory in use and
headroom. For example, if a memcg domain has a significant amount of
dirty memory, the above can lead to a value which is lower than the
current amount in use which doesn't make much sense. In most
circumstances, the above leads to a number which is somewhat but not
drastically lower.
As the amount of memory which can be readily allocated to the memcg
domain is capped by the amount of system-wide clean memory which is
not already assigned to the memcg itself, the number we want is
the amount currently in use +
min(headroom according to memcg, clean memory elsewhere in the system)
This patch updates mem_cgroup_wb_stats() to return the number of
filepages and headroom instead of the calculated available pages.
mdtc_cap_avail() is renamed to mdtc_calc_avail() and performs the
above calculation from file, headroom, dirty and globally clean pages.
v2: Dummy mem_cgroup_wb_stats() implementation wasn't updated leading
to build failure when !CGROUP_WRITEBACK. Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: c2aa723a60 ("writeback: implement memcg writeback domain based throttling")
Signed-off-by: Jens Axboe <axboe@fb.com>
Commit 733a572e66 ("memcg: make mem_cgroup_read_{stat|event}() iterate
possible cpus instead of online") removed the last use of the per memcg
pcp_counter_lock but forgot to remove the variable.
Kill the vestigial variable.
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup core only recently grew generic notification support. Wire up
"memory.events" so that it triggers a file modified event whenever its
content changes.
v2: Refreshed on top of mem_cgroup relocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Replace cgroup_subsys->disabled tests in controllers with
cgroup_subsys_enabled(). cgroup_subsys_enabled() requires literal
subsys name as its parameter and thus can't be used for cgroup core
which iterates through controllers. For cgroup core, introduce and
use cgroup_ssid_enabled() which uses slower static_key_enabled() test
and can be indexed by subsys ID.
This leaves cgroup_subsys->disabled unused. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
It is only used in mem_cgroup_try_charge, so fold it in and zap it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset introduces a new user API for tracking user memory pages
that have not been used for a given period of time. The purpose of this
is to provide the userspace with the means of tracking a workload's
working set, i.e. the set of pages that are actively used by the
workload. Knowing the working set size can be useful for partitioning the
system more efficiently, e.g. by tuning memory cgroup limits
appropriately, or for job placement within a compute cluster.
==== USE CASES ====
The unified cgroup hierarchy has memory.low and memory.high knobs, which
are defined as the low and high boundaries for the workload working set
size. However, the working set size of a workload may be unknown or
change in time. With this patch set, one can periodically estimate the
amount of memory unused by each cgroup and tune their memory.low and
memory.high parameters accordingly, therefore optimizing the overall
memory utilization.
Another use case is balancing workloads within a compute cluster. Knowing
how much memory is not really used by a workload unit may help take a more
optimal decision when considering migrating the unit to another node
within the cluster.
Also, as noted by Minchan, this would be useful for per-process reclaim
(https://lwn.net/Articles/545668/). With idle tracking, we could reclaim idle
pages only by smart user memory manager.
==== USER API ====
The user API consists of two new files:
* /sys/kernel/mm/page_idle/bitmap. This file implements a bitmap where each
bit corresponds to a page, indexed by PFN. When the bit is set, the
corresponding page is idle. A page is considered idle if it has not been
accessed since it was marked idle. To mark a page idle one should set the
bit corresponding to the page by writing to the file. A value written to the
file is OR-ed with the current bitmap value. Only user memory pages can be
marked idle, for other page types input is silently ignored. Writing to this
file beyond max PFN results in the ENXIO error. Only available when
CONFIG_IDLE_PAGE_TRACKING is set.
This file can be used to estimate the amount of pages that are not
used by a particular workload as follows:
1. mark all pages of interest idle by setting corresponding bits in the
/sys/kernel/mm/page_idle/bitmap
2. wait until the workload accesses its working set
3. read /sys/kernel/mm/page_idle/bitmap and count the number of bits set
* /proc/kpagecgroup. This file contains a 64-bit inode number of the
memory cgroup each page is charged to, indexed by PFN. Only available when
CONFIG_MEMCG is set.
This file can be used to find all pages (including unmapped file pages)
accounted to a particular cgroup. Using /sys/kernel/mm/page_idle/bitmap, one
can then estimate the cgroup working set size.
For an example of using these files for estimating the amount of unused
memory pages per each memory cgroup, please see the script attached
below.
==== REASONING ====
The reason to introduce the new user API instead of using
/proc/PID/{clear_refs,smaps} is that the latter has two serious
drawbacks:
- it does not count unmapped file pages
- it affects the reclaimer logic
The new API attempts to overcome them both. For more details on how it
is achieved, please see the comment to patch 6.
==== PATCHSET STRUCTURE ====
The patch set is organized as follows:
- patch 1 adds page_cgroup_ino() helper for the sake of
/proc/kpagecgroup and patches 2-3 do related cleanup
- patch 4 adds /proc/kpagecgroup, which reports cgroup ino each page is
charged to
- patch 5 introduces a new mmu notifier callback, clear_young, which is
a lightweight version of clear_flush_young; it is used in patch 6
- patch 6 implements the idle page tracking feature, including the
userspace API, /sys/kernel/mm/page_idle/bitmap
- patch 7 exports idle flag via /proc/kpageflags
==== SIMILAR WORKS ====
Originally, the patch for tracking idle memory was proposed back in 2011
by Michel Lespinasse (see http://lwn.net/Articles/459269/). The main
difference between Michel's patch and this one is that Michel implemented
a kernel space daemon for estimating idle memory size per cgroup while
this patch only provides the userspace with the minimal API for doing the
job, leaving the rest up to the userspace. However, they both share the
same idea of Idle/Young page flags to avoid affecting the reclaimer logic.
==== PERFORMANCE EVALUATION ====
SPECjvm2008 (https://www.spec.org/jvm2008/) was used to evaluate the
performance impact introduced by this patch set. Three runs were carried
out:
- base: kernel without the patch
- patched: patched kernel, the feature is not used
- patched-active: patched kernel, 1 minute-period daemon is used for
tracking idle memory
For tracking idle memory, idlememstat utility was used:
https://github.com/locker/idlememstat
testcase base patched patched-active
compiler 537.40 ( 0.00)% 532.26 (-0.96)% 538.31 ( 0.17)%
compress 305.47 ( 0.00)% 301.08 (-1.44)% 300.71 (-1.56)%
crypto 284.32 ( 0.00)% 282.21 (-0.74)% 284.87 ( 0.19)%
derby 411.05 ( 0.00)% 413.44 ( 0.58)% 412.07 ( 0.25)%
mpegaudio 189.96 ( 0.00)% 190.87 ( 0.48)% 189.42 (-0.28)%
scimark.large 46.85 ( 0.00)% 46.41 (-0.94)% 47.83 ( 2.09)%
scimark.small 412.91 ( 0.00)% 415.41 ( 0.61)% 421.17 ( 2.00)%
serial 204.23 ( 0.00)% 213.46 ( 4.52)% 203.17 (-0.52)%
startup 36.76 ( 0.00)% 35.49 (-3.45)% 35.64 (-3.05)%
sunflow 115.34 ( 0.00)% 115.08 (-0.23)% 117.37 ( 1.76)%
xml 620.55 ( 0.00)% 619.95 (-0.10)% 620.39 (-0.03)%
composite 211.50 ( 0.00)% 211.15 (-0.17)% 211.67 ( 0.08)%
time idlememstat:
17.20user 65.16system 2:15:23elapsed 1%CPU (0avgtext+0avgdata 8476maxresident)k
448inputs+40outputs (1major+36052minor)pagefaults 0swaps
==== SCRIPT FOR COUNTING IDLE PAGES PER CGROUP ====
#! /usr/bin/python
#
import os
import stat
import errno
import struct
CGROUP_MOUNT = "/sys/fs/cgroup/memory"
BUFSIZE = 8 * 1024 # must be multiple of 8
def get_hugepage_size():
with open("/proc/meminfo", "r") as f:
for s in f:
k, v = s.split(":")
if k == "Hugepagesize":
return int(v.split()[0]) * 1024
PAGE_SIZE = os.sysconf("SC_PAGE_SIZE")
HUGEPAGE_SIZE = get_hugepage_size()
def set_idle():
f = open("/sys/kernel/mm/page_idle/bitmap", "wb", BUFSIZE)
while True:
try:
f.write(struct.pack("Q", pow(2, 64) - 1))
except IOError as err:
if err.errno == errno.ENXIO:
break
raise
f.close()
def count_idle():
f_flags = open("/proc/kpageflags", "rb", BUFSIZE)
f_cgroup = open("/proc/kpagecgroup", "rb", BUFSIZE)
with open("/sys/kernel/mm/page_idle/bitmap", "rb", BUFSIZE) as f:
while f.read(BUFSIZE): pass # update idle flag
idlememsz = {}
while True:
s1, s2 = f_flags.read(8), f_cgroup.read(8)
if not s1 or not s2:
break
flags, = struct.unpack('Q', s1)
cgino, = struct.unpack('Q', s2)
unevictable = (flags >> 18) & 1
huge = (flags >> 22) & 1
idle = (flags >> 25) & 1
if idle and not unevictable:
idlememsz[cgino] = idlememsz.get(cgino, 0) + \
(HUGEPAGE_SIZE if huge else PAGE_SIZE)
f_flags.close()
f_cgroup.close()
return idlememsz
if __name__ == "__main__":
print "Setting the idle flag for each page..."
set_idle()
raw_input("Wait until the workload accesses its working set, "
"then press Enter")
print "Counting idle pages..."
idlememsz = count_idle()
for dir, subdirs, files in os.walk(CGROUP_MOUNT):
ino = os.stat(dir)[stat.ST_INO]
print dir + ": " + str(idlememsz.get(ino, 0) / 1024) + " kB"
==== END SCRIPT ====
This patch (of 8):
Add page_cgroup_ino() helper to memcg.
This function returns the inode number of the closest online ancestor of
the memory cgroup a page is charged to. It is required for exporting
information about which page is charged to which cgroup to userspace,
which will be introduced by a following patch.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the exported functions in this header are not marked extern so
change the rest to follow the same style.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only user is cgwb_bdi_init and that one depends on
CONFIG_CGROUP_WRITEBACK which in turn depends on CONFIG_MEMCG so it
doesn't make much sense to definte an empty stub for !CONFIG_MEMCG.
Moreover ERR_PTR(-EINVAL) is ugly and would lead to runtime crashes if
used in unguarded code paths. Better fail during compilation.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup structure is defined in mm/memcontrol.c currently which means
that the code outside of this file has to use external API even for
trivial access stuff.
This patch exports mm_struct with its dependencies and makes some of the
exported functions inlines. This even helps to reduce the code size a bit
(make defconfig + CONFIG_MEMCG=y)
text data bss dec hex filename
12355346 1823792 1089536 15268674 e8fb42 vmlinux.before
12354970 1823792 1089536 15268298 e8f9ca vmlinux.after
This is not much (370B) but better than nothing.
We also save a function call in some hot paths like callers of
mem_cgroup_count_vm_event which is used for accounting.
The patch doesn't introduce any functional changes.
[vdavykov@parallels.com: inline memcg_kmem_is_active]
[vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG]
[akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx]
[akpm@linux-foundation.org: export mem_cgroup_from_task() to modules]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup writeback support from Jens Axboe:
"This is the big pull request for adding cgroup writeback support.
This code has been in development for a long time, and it has been
simmering in for-next for a good chunk of this cycle too. This is one
of those problems that has been talked about for at least half a
decade, finally there's a solution and code to go with it.
Also see last weeks writeup on LWN:
http://lwn.net/Articles/648292/"
* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
writeback, blkio: add documentation for cgroup writeback support
vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
writeback: do foreign inode detection iff cgroup writeback is enabled
v9fs: fix error handling in v9fs_session_init()
bdi: fix wrong error return value in cgwb_create()
buffer: remove unusued 'ret' variable
writeback: disassociate inodes from dying bdi_writebacks
writeback: implement foreign cgroup inode bdi_writeback switching
writeback: add lockdep annotation to inode_to_wb()
writeback: use unlocked_inode_to_wb transaction in inode_congested()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
writeback: implement [locked_]inode_to_wb_and_lock_list()
writeback: implement foreign cgroup inode detection
writeback: make writeback_control track the inode being written back
writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
writeback: implement memcg writeback domain based throttling
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
writeback: implement memcg wb_domain
writeback: update wb_over_bg_thresh() to use wb_domain aware operations
...
While cgroup writeback support now connects memcg and blkcg so that
writeback IOs are properly attributed and controlled, the IO back
pressure propagation mechanism implemented in balance_dirty_pages()
and its subroutines wasn't aware of cgroup writeback.
Processes belonging to a memcg may have access to only subset of total
memory available in the system and not factoring this into dirty
throttling rendered it completely ineffective for processes under
memcg limits and memcg ended up building a separate ad-hoc degenerate
mechanism directly into vmscan code to limit page dirtying.
The previous patches updated balance_dirty_pages() and its subroutines
so that they can deal with multiple wb_domain's (writeback domains)
and defined per-memcg wb_domain. Processes belonging to a non-root
memcg are bound to two wb_domains, global wb_domain and memcg
wb_domain, and should be throttled according to IO pressures from both
domains. This patch updates dirty throttling code so that it repeats
similar calculations for the two domains - the differences between the
two are few and minor - and applies the lower of the two sets of
resulting constraints.
wb_over_bg_thresh(), which controls when background writeback
terminates, is also updated to consider both global and memcg
wb_domains. It returns true if dirty is over bg_thresh for either
domain.
This makes the dirty throttling mechanism operational for memcg
domains including writeback-bandwidth-proportional dirty page
distribution inside them but the ad-hoc memcg throttling mechanism in
vmscan is still in place. The next patch will rip it out.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Dirtyable memory is distributed to a wb (bdi_writeback) according to
the relative bandwidth the wb is writing out in the whole system.
This distribution is global - each wb is measured against all other
wb's and gets the proportinately sized portion of the memory in the
whole system.
For cgroup writeback, the amount of dirtyable memory is scoped by
memcg and thus each wb would need to be measured and controlled in its
memcg. IOW, a wb will belong to two writeback domains - the global
and memcg domains.
The previous patches laid the groundwork to support the two wb_domains
and this patch implements memcg wb_domain. memcg->cgwb_domain is
initialized on css online and destroyed on css release,
wb->memcg_completions is added, and __wb_writeout_inc() is updated to
increment completions against both global and memcg wb_domains.
The following patches will update balance_dirty_pages() and its
subroutines to actually consider memcg wb_domain for throttling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
For the planned cgroup writeback support, on each bdi
(backing_dev_info), each memcg will be served by a separate wb
(bdi_writeback). This patch updates bdi so that a bdi can host
multiple wbs (bdi_writebacks).
On the default hierarchy, blkcg implicitly enables memcg. This allows
using memcg's page ownership for attributing writeback IOs, and every
memcg - blkcg combination can be served by its own wb by assigning a
dedicated wb to each memcg. This means that there may be multiple
wb's of a bdi mapped to the same blkcg. As congested state is per
blkcg - bdi combination, those wb's should share the same congested
state. This is achieved by tracking congested state via
bdi_writeback_congested structs which are keyed by blkcg.
bdi->wb remains unchanged and will keep serving the root cgroup.
cgwb's (cgroup wb's) for non-root cgroups are created on-demand or
looked up while dirtying an inode according to the memcg of the page
being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree
by its memcg id. Once an inode is associated with its wb, it can be
retrieved using inode_to_wb().
Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all
pages will keep being associated with bdi->wb.
v3: inode_attach_wb() in account_page_dirtied() moved inside
mapping_cap_account_dirty() block where it's known to be !NULL.
Also, an unnecessary NULL check before kfree() removed. Both
detected by the kbuild bot.
v2: Updated so that wb association is per inode and wb is per memcg
rather than blkcg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Implement mem_cgroup_css_from_page() which returns the
cgroup_subsys_state of the memcg associated with a given page on the
default hierarchy. This will be used by cgroup writeback support.
This function assumes that page->mem_cgroup association doesn't change
until the page is released, which is true on the default hierarchy as
long as replace_page_cache_page() is not used. As the only user of
replace_page_cache_page() is FUSE which won't support cgroup writeback
for the time being, this works for now, and replace_page_cache_page()
will soon be updated so that the invariant actually holds.
Note that the RCU protected page->mem_cgroup access is consistent with
other usages across memcg but ultimately incorrect. These unlocked
accesses are missing required barriers. page->mem_cgroup should be
made an RCU pointer and updated and accessed using RCU operations.
v4: Instead of triggering WARN, return the root css on the traditional
hierarchies. This makes the function a lot easier to deal with
especially as there's no light way to synchronize against
hierarchy rebinding.
v3: s/mem_cgroup_migrate()/mem_cgroup_css_from_page()/
v2: Trigger WARN if the function is used on the traditional
hierarchies and add comment about the assumed invariant.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Add global mem_cgroup_root_css which points to the root memcg css.
This will be used by cgroup writeback support. If memcg is disabled,
it's defined as ERR_PTR(-EINVAL).
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
aCc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
When modifying PG_Dirty on cached file pages, update the new
MEM_CGROUP_STAT_DIRTY counter. This is done in the same places where
global NR_FILE_DIRTY is managed. The new memcg stat is visible in the
per memcg memory.stat cgroupfs file. The most recent past attempt at
this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632
The new accounting supports future efforts to add per cgroup dirty
page throttling and writeback. It also helps an administrator break
down a container's memory usage and provides evidence to understand
memcg oom kills (the new dirty count is included in memcg oom kill
messages).
The ability to move page accounting between memcg
(memory.move_charge_at_immigrate) makes this accounting more
complicated than the global counter. The existing
mem_cgroup_{begin,end}_page_stat() lock is used to serialize move
accounting with stat updates.
Typical update operation:
memcg = mem_cgroup_begin_page_stat(page)
if (TestSetPageDirty()) {
[...]
mem_cgroup_update_page_stat(memcg)
}
mem_cgroup_end_page_stat(memcg)
Summary of mem_cgroup_end_page_stat() overhead:
- Without CONFIG_MEMCG it's a no-op
- With CONFIG_MEMCG and no inter memcg task movement, it's just
rcu_read_lock()
- With CONFIG_MEMCG and inter memcg task movement, it's
rcu_read_lock() + spin_lock_irqsave()
A memcg parameter is added to several routines because their callers
now grab mem_cgroup_begin_page_stat() which returns the memcg later
needed by for mem_cgroup_update_page_stat().
Because mem_cgroup_begin_page_stat() may disable interrupts, some
adjustments are needed:
- move __mark_inode_dirty() from __set_page_dirty() to its caller.
__mark_inode_dirty() locking does not want interrupts disabled.
- use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in
__delete_from_page_cache(), replace_page_cache_page(),
invalidate_complete_page2(), and __remove_mapping().
text data bss dec hex filename
8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before
8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after
+192 text bytes
8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before
8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after
+773 text bytes
Performance tests run on v4.0-rc1-36-g4f671fe2f952. Lower is better for
all metrics, they're all wall clock or cycle counts. The read and write
fault benchmarks just measure fault time, they do not include I/O time.
* CONFIG_MEMCG not set:
baseline patched
kbuild 1m25.030000(+-0.088% 3 samples) 1m25.426667(+-0.120% 3 samples)
dd write 100 MiB 0.859211561 +-15.10% 0.874162885 +-15.03%
dd write 200 MiB 1.670653105 +-17.87% 1.669384764 +-11.99%
dd write 1000 MiB 8.434691190 +-14.15% 8.474733215 +-14.77%
read fault cycles 254.0(+-0.000% 10 samples) 253.0(+-0.000% 10 samples)
write fault cycles 2021.2(+-3.070% 10 samples) 1984.5(+-1.036% 10 samples)
* CONFIG_MEMCG=y root_memcg:
baseline patched
kbuild 1m25.716667(+-0.105% 3 samples) 1m25.686667(+-0.153% 3 samples)
dd write 100 MiB 0.855650830 +-14.90% 0.887557919 +-14.90%
dd write 200 MiB 1.688322953 +-12.72% 1.667682724 +-13.33%
dd write 1000 MiB 8.418601605 +-14.30% 8.673532299 +-15.00%
read fault cycles 266.0(+-0.000% 10 samples) 266.0(+-0.000% 10 samples)
write fault cycles 2051.7(+-1.349% 10 samples) 2049.6(+-1.686% 10 samples)
* CONFIG_MEMCG=y non-root_memcg:
baseline patched
kbuild 1m26.120000(+-0.273% 3 samples) 1m25.763333(+-0.127% 3 samples)
dd write 100 MiB 0.861723964 +-15.25% 0.818129350 +-14.82%
dd write 200 MiB 1.669887569 +-13.30% 1.698645885 +-13.27%
dd write 1000 MiB 8.383191730 +-14.65% 8.351742280 +-14.52%
read fault cycles 265.7(+-0.172% 10 samples) 267.0(+-0.000% 10 samples)
write fault cycles 2070.6(+-1.512% 10 samples) 2084.4(+-2.148% 10 samples)
As expected anon page faults are not affected by this patch.
tj: Updated to apply on top of the recent cancel_dirty_page() changes.
Signed-off-by: Sha Zhengju <handai.szj@gmail.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
Not all kmem allocations should be accounted to memcg. The following
patch gives an example when accounting of a certain type of allocations to
memcg can effectively result in a memory leak. This patch adds the
__GFP_NOACCOUNT flag which if passed to kmalloc and friends will force the
allocation to go through the root cgroup. It will be used by the next
patch.
Note, since in case of kmemleak enabled each kmalloc implies yet another
allocation from the kmemleak_object cache, we add __GFP_NOACCOUNT to
gfp_kmemleak_mask.
Alternatively, we could introduce a per kmem cache flag disabling
accounting for all allocations of a particular kind, but (a) we would not
be able to bypass accounting for kmalloc then and (b) a kmem cache with
this flag set could not be merged with a kmem cache without this flag,
which would increase the number of global caches and therefore
fragmentation even if the memory cgroup controller is not used.
Despite its generic name, currently __GFP_NOACCOUNT disables accounting
only for kmem allocations while user page allocations are always charged.
To catch abusing of this flag, a warning is issued on an attempt of
passing it to mem_cgroup_try_charge.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org> [4.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several FS shrinkers, including super_block::s_shrink, that
keep reclaimable objects in the list_lru structure. Hence to turn them
to memcg-aware shrinkers, it is enough to make list_lru per-memcg.
This patch does the trick. It adds an array of lru lists to the
list_lru_node structure (per-node part of the list_lru), one for each
kmem-active memcg, and dispatches every item addition or removal to the
list corresponding to the memcg which the item is accounted to. So now
the list_lru structure is not just per node, but per node and per memcg.
Not all list_lrus need this feature, so this patch also adds a new
method, list_lru_init_memcg, which initializes a list_lru as memcg
aware. Otherwise (i.e. if initialized with old list_lru_init), the
list_lru won't have per memcg lists.
Just like per memcg caches arrays, the arrays of per-memcg lists are
indexed by memcg_cache_id, so we must grow them whenever
memcg_nr_cache_ids is increased. So we introduce a callback,
memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id
space is full.
The locking is implemented in a manner similar to lruvecs, i.e. we have
one lock per node that protects all lists (both global and per cgroup) on
the node.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need a stable value of memcg_nr_cache_ids in kmem_cache_create()
(memcg_alloc_cache_params() wants it for root caches), where we only
hold the slab_mutex and no memcg-related locks. As a result, we have to
update memcg_nr_cache_ids under the slab_mutex, which we can only take
on the slab's side (see memcg_update_array_size). This looks awkward
and will become even worse when per-memcg list_lru is introduced, which
also wants stable access to memcg_nr_cache_ids.
To get rid of this dependency between the memcg_nr_cache_ids and the
slab_mutex, this patch introduces a special rwsem. The rwsem is held
for writing during memcg_caches arrays relocation and memcg_nr_cache_ids
updates. Therefore one can take it for reading to get a stable access
to memcg_caches arrays and/or memcg_nr_cache_ids.
Currently the semaphore is taken for reading only from
kmem_cache_create, right before taking the slab_mutex, so right now
there's no much point in using rwsem instead of mutex. However, once
list_lru is made per-memcg it will allow list_lru initializations to
proceed concurrently.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_limited_groups_array_size, which defines the size of memcg_caches
arrays, sounds rather cumbersome. Also it doesn't point anyhow that
it's related to kmem/caches stuff. So let's rename it to
memcg_nr_cache_ids. It's concise and points us directly to
memcg_cache_id.
Also, rename kmem_limited_groups to memcg_cache_ida.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds SHRINKER_MEMCG_AWARE flag. If a shrinker has this flag
set, it will be called per memory cgroup. The memory cgroup to scan
objects from is passed in shrink_control->memcg. If the memory cgroup
is NULL, a memcg aware shrinker is supposed to scan objects from the
global list. Unaware shrinkers are only called on global pressure with
memcg=NULL.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce the basic control files to account, partition, and limit
memory using cgroups in default hierarchy mode.
This interface versioning allows us to address fundamental design
issues in the existing memory cgroup interface, further explained
below. The old interface will be maintained indefinitely, but a
clearer model and improved workload performance should encourage
existing users to switch over to the new one eventually.
The control files are thus:
- memory.current shows the current consumption of the cgroup and its
descendants, in bytes.
- memory.low configures the lower end of the cgroup's expected
memory consumption range. The kernel considers memory below that
boundary to be a reserve - the minimum that the workload needs in
order to make forward progress - and generally avoids reclaiming
it, unless there is an imminent risk of entering an OOM situation.
- memory.high configures the upper end of the cgroup's expected
memory consumption range. A cgroup whose consumption grows beyond
this threshold is forced into direct reclaim, to work off the
excess and to throttle new allocations heavily, but is generally
allowed to continue and the OOM killer is not invoked.
- memory.max configures the hard maximum amount of memory that the
cgroup is allowed to consume before the OOM killer is invoked.
- memory.events shows event counters that indicate how often the
cgroup was reclaimed while below memory.low, how often it was
forced to reclaim excess beyond memory.high, how often it hit
memory.max, and how often it entered OOM due to memory.max. This
allows users to identify configuration problems when observing a
degradation in workload performance. An overcommitted system will
have an increased rate of low boundary breaches, whereas increased
rates of high limit breaches, maximum hits, or even OOM situations
will indicate internally overcommitted cgroups.
For existing users of memory cgroups, the following deviations from
the current interface are worth pointing out and explaining:
- The original lower boundary, the soft limit, is defined as a limit
that is per default unset. As a result, the set of cgroups that
global reclaim prefers is opt-in, rather than opt-out. The costs
for optimizing these mostly negative lookups are so high that the
implementation, despite its enormous size, does not even provide
the basic desirable behavior. First off, the soft limit has no
hierarchical meaning. All configured groups are organized in a
global rbtree and treated like equal peers, regardless where they
are located in the hierarchy. This makes subtree delegation
impossible. Second, the soft limit reclaim pass is so aggressive
that it not just introduces high allocation latencies into the
system, but also impacts system performance due to overreclaim, to
the point where the feature becomes self-defeating.
The memory.low boundary on the other hand is a top-down allocated
reserve. A cgroup enjoys reclaim protection when it and all its
ancestors are below their low boundaries, which makes delegation
of subtrees possible. Secondly, new cgroups have no reserve per
default and in the common case most cgroups are eligible for the
preferred reclaim pass. This allows the new low boundary to be
efficiently implemented with just a minor addition to the generic
reclaim code, without the need for out-of-band data structures and
reclaim passes. Because the generic reclaim code considers all
cgroups except for the ones running low in the preferred first
reclaim pass, overreclaim of individual groups is eliminated as
well, resulting in much better overall workload performance.
- The original high boundary, the hard limit, is defined as a strict
limit that can not budge, even if the OOM killer has to be called.
But this generally goes against the goal of making the most out of
the available memory. The memory consumption of workloads varies
during runtime, and that requires users to overcommit. But doing
that with a strict upper limit requires either a fairly accurate
prediction of the working set size or adding slack to the limit.
Since working set size estimation is hard and error prone, and
getting it wrong results in OOM kills, most users tend to err on
the side of a looser limit and end up wasting precious resources.
The memory.high boundary on the other hand can be set much more
conservatively. When hit, it throttles allocations by forcing
them into direct reclaim to work off the excess, but it never
invokes the OOM killer. As a result, a high boundary that is
chosen too aggressively will not terminate the processes, but
instead it will lead to gradual performance degradation. The user
can monitor this and make corrections until the minimal memory
footprint that still gives acceptable performance is found.
In extreme cases, with many concurrent allocations and a complete
breakdown of reclaim progress within the group, the high boundary
can be exceeded. But even then it's mostly better to satisfy the
allocation from the slack available in other groups or the rest of
the system than killing the group. Otherwise, memory.max is there
to limit this type of spillover and ultimately contain buggy or
even malicious applications.
- The original control file names are unwieldy and inconsistent in
many different ways. For example, the upper boundary hit count is
exported in the memory.failcnt file, but an OOM event count has to
be manually counted by listening to memory.oom_control events, and
lower boundary / soft limit events have to be counted by first
setting a threshold for that value and then counting those events.
Also, usage and limit files encode their units in the filename.
That makes the filenames very long, even though this is not
information that a user needs to be reminded of every time they
type out those names.
To address these naming issues, as well as to signal clearly that
the new interface carries a new configuration model, the naming
conventions in it necessarily differ from the old interface.
- The original limit files indicate the state of an unset limit with
a very high number, and a configured limit can be unset by echoing
-1 into those files. But that very high number is implementation
and architecture dependent and not very descriptive. And while -1
can be understood as an underflow into the highest possible value,
-2 or -10M etc. do not work, so it's not inconsistent.
memory.low, memory.high, and memory.max will use the string
"infinity" to indicate and set the highest possible value.
[akpm@linux-foundation.org: use seq_puts() for basic strings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit b2052564e6 ("mm: memcontrol: continue cache reclaim from
offlined groups") pages charged to a memory cgroup are not reparented when
the cgroup is removed. Instead, they are supposed to be reclaimed in a
regular way, along with pages accounted to online memory cgroups.
However, an lruvec of an offline memory cgroup will sooner or later get so
small that it will be scanned only at low scan priorities (see
get_scan_count()). Therefore, if there are enough reclaimable pages in
big lruvecs, pages accounted to offline memory cgroups will never be
scanned at all, wasting memory.
Fix this by unconditionally forcing scanning dead lruvecs from kswapd.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The complexity of memcg page stat synchronization is currently leaking
into the callsites, forcing them to keep track of the move_lock state and
the IRQ flags. Simplify the API by tracking it in the memcg.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to
the given cgroup. Currently, it is only used on css free in order to
destroy all caches corresponding to the memory cgroup being freed. The
list is protected by memcg_slab_mutex. The mutex is also used to protect
kmem_cache->memcg_params->memcg_caches arrays and synchronizes
kmem_cache_destroy vs memcg_unregister_all_caches.
However, we can perfectly get on without these two. To destroy all caches
corresponding to a memory cgroup, we can walk over the global list of kmem
caches, slab_caches, and we can do all the synchronization stuff using the
slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid
of the memcg_slab_caches and memcg_slab_mutex.
Apart from this nice cleanup, it also:
- assures that rcu_barrier() is called once at max when a root cache is
destroyed or a memory cgroup is freed, no matter how many caches have
SLAB_DESTROY_BY_RCU flag set;
- fixes the race between kmem_cache_destroy and kmem_cache_create that
exists, because memcg_cleanup_cache_params, which is called from
kmem_cache_destroy after checking that kmem_cache->refcount=0,
releases the slab_mutex, which gives kmem_cache_create a chance to
make an alias to a cache doomed to be destroyed.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's
zap them and call these functions directly.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Suppose task @t that belongs to a memory cgroup @memcg is going to
allocate an object from a kmem cache @c. The copy of @c corresponding to
@memcg, @mc, is empty. Then if kmem_cache_alloc races with the memory
cgroup destruction we can access the memory cgroup's copy of the cache
after it was destroyed:
CPU0 CPU1
---- ----
[ current=@t
@mc->memcg_params->nr_pages=0 ]
kmem_cache_alloc(@c):
call memcg_kmem_get_cache(@c);
proceed to allocation from @mc:
alloc a page for @mc:
...
move @t from @memcg
destroy @memcg:
mem_cgroup_css_offline(@memcg):
memcg_unregister_all_caches(@memcg):
kmem_cache_destroy(@mc)
add page to @mc
We could fix this issue by taking a reference to a per-memcg cache, but
that would require adding a per-cpu reference counter to per-memcg caches,
which would look cumbersome.
Instead, let's take a reference to a memory cgroup, which already has a
per-cpu reference counter, in the beginning of kmem_cache_alloc to be
dropped in the end, and move per memcg caches destruction from css offline
to css free. As a side effect, per-memcg caches will be destroyed not one
by one, but all at once when the last page accounted to the memory cgroup
is freed. This doesn't sound as a high price for code readability though.
Note, this patch does add some overhead to the kmem_cache_alloc hot path,
but it is pretty negligible - it's just a function call plus a per cpu
counter decrement, which is comparable to what we already have in
memcg_kmem_get_cache. Besides, it's only relevant if there are memory
cgroups with kmem accounting enabled. I don't think we can find a way to
handle this race w/o it, because alloc_page called from kmem_cache_alloc
may sleep so we can't flush all pending kmallocs w/o reference counting.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The gfp was passed in but never used in this function.
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the external page_cgroup data structure and its lookup is
gone, let the generic bad_page() check for page->mem_cgroup sanity.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroups used to have 5 per-page pointers. To allow users to
disable that amount of overhead during runtime, those pointers were
allocated in a separate array, with a translation layer between them and
struct page.
There is now only one page pointer remaining: the memcg pointer, that
indicates which cgroup the page is associated with when charged. The
complexity of runtime allocation and the runtime translation overhead is
no longer justified to save that *potential* 0.19% of memory. With
CONFIG_SLUB, page->mem_cgroup actually sits in the doubleword padding
after the page->private member and doesn't even increase struct page,
and then this patch actually saves space. Remaining users that care can
still compile their kernels without CONFIG_MEMCG.
text data bss dec hex filename
8828345 1725264 983040 11536649 b00909 vmlinux.old
8827425 1725264 966656 11519345 afc571 vmlinux.new
[mhocko@suse.cz: update Documentation/cgroups/memory.txt]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit d7365e783e ("mm: memcontrol: fix missed end-writeback
page accounting") mem_cgroup_end_page_stat consumes locked and flags
variables directly rather than via pointers which might trigger C
undefined behavior as those variables are initialized only in the slow
path of mem_cgroup_begin_page_stat.
Although mem_cgroup_end_page_stat handles parameters correctly and
touches them only when they hold a sensible value it is caller which
loads a potentially uninitialized value which then might allow compiler
to do crazy things.
I haven't seen any warning from gcc and it seems that the current
version (4.9) doesn't exploit this type undefined behavior but Sasha has
reported the following:
UBSan: Undefined behaviour in mm/rmap.c:1084:2
load of value 255 is not a valid value for type '_Bool'
CPU: 4 PID: 8304 Comm: rngd Not tainted 3.18.0-rc2-next-20141029-sasha-00039-g77ed13d-dirty #1427
Call Trace:
dump_stack (lib/dump_stack.c:52)
ubsan_epilogue (lib/ubsan.c:159)
__ubsan_handle_load_invalid_value (lib/ubsan.c:482)
page_remove_rmap (mm/rmap.c:1084 mm/rmap.c:1096)
unmap_page_range (./arch/x86/include/asm/atomic.h:27 include/linux/mm.h:463 mm/memory.c:1146 mm/memory.c:1258 mm/memory.c:1279 mm/memory.c:1303)
unmap_single_vma (mm/memory.c:1348)
unmap_vmas (mm/memory.c:1377 (discriminator 3))
exit_mmap (mm/mmap.c:2837)
mmput (kernel/fork.c:659)
do_exit (./arch/x86/include/asm/thread_info.h:168 kernel/exit.c:462 kernel/exit.c:747)
do_group_exit (include/linux/sched.h:775 kernel/exit.c:873)
SyS_exit_group (kernel/exit.c:901)
tracesys_phase2 (arch/x86/kernel/entry_64.S:529)
Fix this by using pointer parameters for both locked and flags and be
more robust for future compiler changes even though the current code is
implemented correctly.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the mem_cgroup_same_or_subtree() callers actually require it to
take the RCU lock, either because they hold it themselves or they have css
references. Remove it.
To make the API change clear, rename the leftover helper to
mem_cgroup_is_descendant() to match cgroup_is_descendant().
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The NULL in mm_match_cgroup() comes from a possibly exiting mm->owner. It
makes a lot more sense to check where it's looked up, rather than check
for it in __mem_cgroup_same_or_subtree() where it's unexpected.
No other callsite passes NULL to __mem_cgroup_same_or_subtree().
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") changed
page migration to uncharge the old page right away. The page is locked,
unmapped, truncated, and off the LRU, but it could race with writeback
ending, which then doesn't unaccount the page properly:
test_clear_page_writeback() migration
wait_on_page_writeback()
TestClearPageWriteback()
mem_cgroup_migrate()
clear PCG_USED
mem_cgroup_update_page_stat()
if (PageCgroupUsed(pc))
decrease memcg pages under writeback
release pc->mem_cgroup->move_lock
The per-page statistics interface is heavily optimized to avoid a
function call and a lookup_page_cgroup() in the file unmap fast path,
which means it doesn't verify whether a page is still charged before
clearing PageWriteback() and it has to do it in the stat update later.
Rework it so that it looks up the page's memcg once at the beginning of
the transaction and then uses it throughout. The charge will be
verified before clearing PageWriteback() and migration can't uncharge
the page as long as that is still set. The RCU lock will protect the
memcg past uncharge.
As far as losing the optimization goes, the following test results are
from a microbenchmark that maps, faults, and unmaps a 4GB sparse file
three times in a nested fashion, so that there are two negative passes
that don't account but still go through the new transaction overhead.
There is no actual difference:
old: 33.195102545 seconds time elapsed ( +- 0.01% )
new: 33.199231369 seconds time elapsed ( +- 0.03% )
The time spent in page_remove_rmap()'s callees still adds up to the
same, but the time spent in the function itself seems reduced:
# Children Self Command Shared Object Symbol
old: 0.12% 0.11% filemapstress [kernel.kallsyms] [k] page_remove_rmap
new: 0.12% 0.08% filemapstress [kernel.kallsyms] [k] page_remove_rmap
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: <stable@vger.kernel.org> [3.17.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
`While growing per memcg caches arrays, we jump between memcontrol.c and
slab_common.c in a weird way:
memcg_alloc_cache_id - memcontrol.c
memcg_update_all_caches - slab_common.c
memcg_update_cache_size - memcontrol.c
There's absolutely no reason why memcg_update_cache_size can't live on the
slab's side though. So let's move it there and settle it comfortably amid
per-memcg cache allocation functions.
Besides, this patch cleans this function up a bit, removing all the
useless comments from it, and renames it to memcg_update_cache_params to
conform to memcg_alloc/free_cache_params, which we already have in
slab_common.c.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only reason why they live in memcontrol.c is that we get/put css
reference to the owner memory cgroup in them. However, we can do that in
memcg_{un,}register_cache. OTOH, there are several reasons to move them
to slab_common.c.
First, I think that the less public interface functions we have in
memcontrol.h the better. Since the functions I move don't depend on
memcontrol, I think it's worth making them private to slab, especially
taking into account that the arrays are defined on the slab's side too.
Second, the way how per-memcg arrays are updated looks rather awkward: it
proceeds from memcontrol.c (__memcg_activate_kmem) to slab_common.c
(memcg_update_all_caches) and back to memcontrol.c again
(memcg_update_array_size). In the following patches I move the function
relocating the arrays (memcg_update_array_size) to slab_common.c and
therefore get rid this circular call path. I think we should have the
cache allocation stuff in the same place where we have relocation, because
it's easier to follow the code then. So I move arrays alloc/free
functions to slab_common.c too.
The third point isn't obvious. I'm going to make the list_lru structure
per-memcg to allow targeted kmem reclaim. That means we will have
per-memcg arrays in list_lrus too. It turns out that it's much easier to
update these arrays in list_lru.c rather than in memcontrol.c, because all
the stuff we need is defined there. This patch makes memcg caches arrays
allocation path conform that of the upcoming list_lru.
So let's move these functions to slab_common.c and make them static.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages are now uncharged at release time, and all sources of batched
uncharges operate on lists of pages. Directly use those lists, and
get rid of the per-task batching state.
This also batches statistics accounting, in addition to the res
counter charges, to reduce IRQ-disabling and re-enabling.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.
Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages. However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:
- Charging, uncharging, page migration, and charge migration all need
to take a per-page bit spinlock as they could race with uncharging.
- Swap cache truncation happens during both swap-in and swap-out, and
possibly repeatedly before the page is actually freed. This means
that the memcg swapout code is called from many contexts that make
no sense and it has to figure out the direction from page state to
make sure memory and memory+swap are always correctly charged.
- On page migration, the old page might be unmapped but then reused,
so memcg code has to prevent untimely uncharging in that case.
Because this code - which should be a simple charge transfer - is so
special-cased, it is not reusable for replace_page_cache().
But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.
For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped. Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge. The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.
mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache(). However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration. Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.
Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.
Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration. Remove the very costly page_cgroup
lock and set pc->flags non-atomically.
[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages. This drastically simplifies the code and
reduces charging and uncharging overhead. The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.
Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
executing in the root memcg). Before:
15.36% cat [kernel.kallsyms] [k] copy_user_generic_string
13.31% cat [kernel.kallsyms] [k] memset
11.48% cat [kernel.kallsyms] [k] do_mpage_readpage
4.23% cat [kernel.kallsyms] [k] get_page_from_freelist
2.38% cat [kernel.kallsyms] [k] put_page
2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge
2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common
1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
After:
15.67% cat [kernel.kallsyms] [k] copy_user_generic_string
13.48% cat [kernel.kallsyms] [k] memset
11.42% cat [kernel.kallsyms] [k] do_mpage_readpage
3.98% cat [kernel.kallsyms] [k] get_page_from_freelist
2.46% cat [kernel.kallsyms] [k] put_page
2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk
1.30% cat [kernel.kallsyms] [k] kfree
As you can see, the memcg footprint has shrunk quite a bit.
text data bss dec hex filename
37970 9892 400 48262 bc86 mm/memcontrol.o.old
35239 9892 400 45531 b1db mm/memcontrol.o
This patch (of 4):
The memcg charge API charges pages before they are rmapped - i.e. have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on. Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.
Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:
mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
pages from the memcg if necessary.
mem_cgroup_commit_charge() commits the page to the charge once it
has a valid page->mapping and PageAnon() reliably tells the type.
mem_cgroup_cancel_charge() aborts the transaction.
This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.
As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again. Revive lru_cache_add_active_or_unevictable().
[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current names are rather inconsistent. Let's try to improve them.
Brief change log:
** old name ** ** new name **
kmem_cache_create_memcg memcg_create_kmem_cache
memcg_kmem_create_cache memcg_regsiter_cache
memcg_kmem_destroy_cache memcg_unregister_cache
kmem_cache_destroy_memcg_children memcg_cleanup_cache_params
mem_cgroup_destroy_all_caches memcg_unregister_all_caches
create_work memcg_register_cache_work
memcg_create_cache_work_func memcg_register_cache_func
memcg_create_cache_enqueue memcg_schedule_register_cache
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of calling back to memcontrol.c from kmem_cache_create_memcg in
order to just create the name of a per memcg cache, let's allocate it in
place. We only need to pass the memcg name to kmem_cache_create_memcg for
that - everything else can be done in slab_common.c.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present, we have the following mutexes protecting data related to per
memcg kmem caches:
- slab_mutex. This one is held during the whole kmem cache creation
and destruction paths. We also take it when updating per root cache
memcg_caches arrays (see memcg_update_all_caches). As a result, taking
it guarantees there will be no changes to any kmem cache (including per
memcg). Why do we need something else then? The point is it is
private to slab implementation and has some internal dependencies with
other mutexes (get_online_cpus). So we just don't want to rely upon it
and prefer to introduce additional mutexes instead.
- activate_kmem_mutex. Initially it was added to synchronize
initializing kmem limit (memcg_activate_kmem). However, since we can
grow per root cache memcg_caches arrays only on kmem limit
initialization (see memcg_update_all_caches), we also employ it to
protect against memcg_caches arrays relocation (e.g. see
__kmem_cache_destroy_memcg_children).
- We have a convention not to take slab_mutex in memcontrol.c, but we
want to walk over per memcg memcg_slab_caches lists there (e.g. for
destroying all memcg caches on offline). So we have per memcg
slab_caches_mutex's protecting those lists.
The mutexes are taken in the following order:
activate_kmem_mutex -> slab_mutex -> memcg::slab_caches_mutex
Such a syncrhonization scheme has a number of flaws, for instance:
- We can't call kmem_cache_{destroy,shrink} while walking over a
memcg::memcg_slab_caches list due to locking order. As a result, in
mem_cgroup_destroy_all_caches we schedule the
memcg_cache_params::destroy work shrinking and destroying the cache.
- We don't have a mutex to synchronize per memcg caches destruction
between memcg offline (mem_cgroup_destroy_all_caches) and root cache
destruction (__kmem_cache_destroy_memcg_children). Currently we just
don't bother about it.
This patch simplifies it by substituting per memcg slab_caches_mutex's
with the global memcg_slab_mutex. It will be held whenever a new per
memcg cache is created or destroyed, so it protects per root cache
memcg_caches arrays and per memcg memcg_slab_caches lists. The locking
order is following:
activate_kmem_mutex -> memcg_slab_mutex -> slab_mutex
This allows us to call kmem_cache_{create,shrink,destroy} under the
memcg_slab_mutex. As a result, we don't need memcg_cache_params::destroy
work any more - we can simply destroy caches while iterating over a per
memcg slab caches list.
Also using the global mutex simplifies synchronization between concurrent
per memcg caches creation/destruction, e.g. mem_cgroup_destroy_all_caches
vs __kmem_cache_destroy_memcg_children.
The downside of this is that we substitute per-memcg slab_caches_mutex's
with a hummer-like global mutex, but since we already take either the
slab_mutex or the cgroup_mutex along with a memcg::slab_caches_mutex, it
shouldn't hurt concurrency a lot.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two pairs of kmemcg-related functions that are called on
slab alloc/free. The first is memcg_{bind,release}_pages that count the
total number of pages allocated on a kmem cache. The second is
memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource
counter. Let's just merge them to keep the code clean.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is a part of preparations for kmemcg re-parenting. It
targets at simplifying kmemcg work-flows and synchronization.
First, it removes async per memcg cache destruction (see patches 1, 2).
Now caches are only destroyed on memcg offline. That means the caches
that are not empty on memcg offline will be leaked. However, they are
already leaked, because memcg_cache_params::nr_pages normally never drops
to 0 so the destruction work is never scheduled except kmem_cache_shrink
is called explicitly. In the future I'm planning reaping such dead caches
on vmpressure or periodically.
Second, it substitutes per memcg slab_caches_mutex's with the global
memcg_slab_mutex, which should be taken during the whole per memcg cache
creation/destruction path before the slab_mutex (see patch 3). This
greatly simplifies synchronization among various per memcg cache
creation/destruction paths.
I'm still not quite sure about the end picture, in particular I don't know
whether we should reap dead memcgs' kmem caches periodically or try to
merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for
more details), but whichever way we choose, this set looks like a
reasonable change to me, because it greatly simplifies kmemcg work-flows
and eases further development.
This patch (of 3):
After a memcg is offlined, we mark its kmem caches that cannot be deleted
right now due to pending objects as dead by setting the
memcg_cache_params::dead flag, so that memcg_release_pages will schedule
cache destruction (memcg_cache_params::destroy) as soon as the last slab
of the cache is freed (memcg_cache_params::nr_pages drops to zero).
I guess the idea was to destroy the caches as soon as possible, i.e.
immediately after freeing the last object. However, it just doesn't work
that way, because kmem caches always preserve some pages for the sake of
performance, so that nr_pages never gets to zero unless the cache is
shrunk explicitly using kmem_cache_shrink. Of course, we could account
the total number of objects on the cache or check if all the slabs
allocated for the cache are empty on kmem_cache_free and schedule
destruction if so, but that would be too costly.
Thus we have a piece of code that works only when we explicitly call
kmem_cache_shrink, but complicates the whole picture a lot. Moreover,
it's racy in fact. For instance, kmem_cache_shrink may free the last slab
and thus schedule cache destruction before it finishes checking that the
cache is empty, which can lead to use-after-free.
So I propose to remove this async cache destruction from
memcg_release_pages, and check if the cache is empty explicitly after
calling kmem_cache_shrink instead. This will simplify things a lot w/o
introducing any functional changes.
And regarding dead memcg caches (i.e. those that are left hanging around
after memcg offline for they have objects), I suppose we should reap them
either periodically or on vmpressure as Glauber suggested initially. I'm
going to implement this later.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently to allocate a page that should be charged to kmemcg (e.g.
threadinfo), we pass __GFP_KMEMCG flag to the page allocator. The page
allocated is then to be freed by free_memcg_kmem_pages. Apart from
looking asymmetrical, this also requires intrusion to the general
allocation path. So let's introduce separate functions that will
alloc/free pages charged to kmemcg.
The new functions are called alloc_kmem_pages and free_kmem_pages. They
should be used when the caller actually would like to use kmalloc, but
has to fall back to the page allocator for the allocation is large.
They only differ from alloc_pages and free_pages in that besides
allocating or freeing pages they also charge them to the kmem resource
counter of the current memory cgroup.
[sfr@canb.auug.org.au: export kmalloc_order() to modules]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have only a few places where we actually want to charge kmem so
instead of intruding into the general page allocation path with
__GFP_KMEMCG it's better to explictly charge kmem there. All kmem
charges will be easier to follow that way.
This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG
from memcg caches' allocflags. Instead it makes slab allocation path
call memcg_charge_kmem directly getting memcg to charge from the cache's
memcg params.
This also eliminates any possibility of misaccounting an allocation
going from one memcg's cache to another memcg, because now we always
charge slabs against the memcg the cache belongs to. That's why this
patch removes the big comment to memcg_kmem_get_cache.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we destroy children caches at the very beginning of
kmem_cache_destroy(). This is wrong, because the root cache will not
necessarily be destroyed in the end - if it has aliases (refcount > 0),
kmem_cache_destroy() will simply decrement its refcount and return. In
this case, at best we will get a bunch of warnings in dmesg, like this
one:
kmem_cache_destroy kmalloc-32:0: Slab cache still has objects
CPU: 1 PID: 7139 Comm: modprobe Tainted: G B W 3.13.0+ #117
Call Trace:
dump_stack+0x49/0x5b
kmem_cache_destroy+0xdf/0xf0
kmem_cache_destroy_memcg_children+0x97/0xc0
kmem_cache_destroy+0xf/0xf0
xfs_mru_cache_uninit+0x21/0x30 [xfs]
exit_xfs_fs+0x2e/0xc44 [xfs]
SyS_delete_module+0x198/0x1f0
system_call_fastpath+0x16/0x1b
At worst - if kmem_cache_destroy() will race with an allocation from a
memcg cache - the kernel will panic.
This patch fixes this by moving children caches destruction after the
check if the cache has aliases. Plus, it forbids destroying a root
cache if it still has children caches, because each children cache keeps
a reference to its parent.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg-awareness turned kmem_cache_create() into a dirty interweaving of
memcg-only and except-for-memcg calls. To clean this up, let's move the
code responsible for memcg cache creation to a separate function.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch cleans up the memcg cache creation path as follows:
- Move memcg cache name creation to a separate function to be called
from kmem_cache_create_memcg(). This allows us to get rid of the mutex
protecting the temporary buffer used for the name formatting, because
the whole cache creation path is protected by the slab_mutex.
- Get rid of memcg_create_kmem_cache(). This function serves as a proxy
to kmem_cache_create_memcg(). After separating the cache name creation
path, it would be reduced to a function call, so let's inline it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_newpage_charge is used only for charging anonymous memory so
it is better to rename it to mem_cgroup_charge_anon.
mem_cgroup_cache_charge is used for file backed memory so rename it to
mem_cgroup_charge_file.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of returning NULL from try_get_mem_cgroup_from_mm() when the mm
owner is exiting, just return root_mem_cgroup. This makes sense for all
callsites and gets rid of some of them having to fallback manually.
[fengguang.wu@intel.com: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup_subsys is a bit messier than it needs to be.
* The name of a subsys can be different from its internal identifier
defined in cgroup_subsys.h. Most subsystems use the matching name
but three - cpu, memory and perf_event - use different ones.
* cgroup_subsys_id enums are postfixed with _subsys_id and each
cgroup_subsys is postfixed with _subsys. cgroup.h is widely
included throughout various subsystems, it doesn't and shouldn't
have claim on such generic names which don't have any qualifier
indicating that they belong to cgroup.
* cgroup_subsys->subsys_id should always equal the matching
cgroup_subsys_id enum; however, we require each controller to
initialize it and then BUG if they don't match, which is a bit
silly.
This patch cleans up cgroup_subsys names and initialization by doing
the followings.
* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
cgroup_subsys with _cgrp_subsys.
* With the above, renaming subsys identifiers to match the userland
visible names doesn't cause any naming conflicts. All non-matching
identifiers are renamed to match the official names.
cpu_cgroup -> cpu
mem_cgroup -> memory
perf -> perf_event
* controllers no longer need to initialize ->subsys_id and ->name.
They're generated in cgroup core and set automatically during boot.
* Redundant cgroup_subsys declarations removed.
* While updating BUG_ON()s in cgroup_init_early(), convert them to
WARN()s. BUGging that early during boot is stupid - the kernel
can't print anything, even through serial console and the trap
handler doesn't even link stack frame properly for back-tracing.
This patch doesn't introduce any behavior changes.
v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
classid handling into core").
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
Currently, we have rather a messy function set relating to per-memcg
kmem cache initialization/destruction.
Per-memcg caches are created in memcg_create_kmem_cache(). This
function calls kmem_cache_create_memcg() to allocate and initialize a
kmem cache and then "registers" the new cache in the
memcg_params::memcg_caches array of the parent cache.
During its work-flow, kmem_cache_create_memcg() executes the following
memcg-related functions:
- memcg_alloc_cache_params(), to initialize memcg_params of the newly
created cache;
- memcg_cache_list_add(), to add the new cache to the memcg_slab_caches
list.
On the other hand, kmem_cache_destroy() called on a cache destruction
only calls memcg_release_cache(), which does all the work: it cleans the
reference to the cache in its parent's memcg_params::memcg_caches,
removes the cache from the memcg_slab_caches list, and frees
memcg_params.
Such an inconsistency between destruction and initialization paths make
the code difficult to read, so let's clean this up a bit.
This patch moves all the code relating to registration of per-memcg
caches (adding to memcg list, setting the pointer to a cache from its
parent) to the newly created memcg_register_cache() and
memcg_unregister_cache() functions making the initialization and
destruction paths look symmetrical.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We do not free the cache's memcg_params if __kmem_cache_create fails.
Fix this.
Plus, rename memcg_register_cache() to memcg_alloc_cache_params(),
because it actually does not register the cache anywhere, but simply
initialize kmem_cache::memcg_params.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") assumed that only a few places that can trigger a
memcg OOM situation do not return VM_FAULT_OOM, like optional page cache
readahead. But there are many more and it's impractical to annotate
them all.
First of all, we don't want to invoke the OOM killer when the failed
allocation is gracefully handled, so defer the actual kill to the end of
the fault handling as well. This simplifies the code quite a bit for
added bonus.
Second, since a failed allocation might not be the abrupt end of the
fault, the memcg OOM handler needs to be re-entrant until the fault
finishes for subsequent allocation attempts. If an allocation is
attempted after the task already OOMed, allow it to bypass the limit so
that it can quickly finish the fault and invoke the OOM killer.
Reported-by: azurIt <azurit@pobox.sk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 3b38722efd ("memcg, vmscan: integrate soft reclaim
tighter with zone shrinking code")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit a5b7c87f92 ("vmscan, memcg: do softlimit reclaim also
for targeted reclaim")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit de57780dc6 ("memcg: enhance memcg iterator to support
predicates")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memcg routines to count writeback pages, later dirty pages will also
be accounted.
After Kame's commit 89c06bd52f ("memcg: use new logic for page stat
accounting"), we can use 'struct page' flag to test page state instead
of per page_cgroup flag. But memcg has a feature to move a page from a
cgroup to another one and may have race between "move" and "page stat
accounting". So in order to avoid the race we have designed a new lock:
mem_cgroup_begin_update_page_stat()
modify page information -->(a)
mem_cgroup_update_page_stat() -->(b)
mem_cgroup_end_update_page_stat()
It requires both (a) and (b)(writeback pages accounting) to be pretected
in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for
!CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu
read lock in the most cases (no task is moving), and spin_lock_irqsave
on top in the slow path.
There're two writeback interfaces to modify: test_{clear/set}_page_writeback().
And the lock order is:
--> memcg->move_lock
--> mapping->tree_lock
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While accounting memcg page stat, it's not worth to use
MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the
complexity and presumed performance overhead. We can use
MEM_CGROUP_STAT_FILE_MAPPED directly.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg OOM handling is incredibly fragile and can deadlock. When a
task fails to charge memory, it invokes the OOM killer and loops right
there in the charge code until it succeeds. Comparably, any other task
that enters the charge path at this point will go to a waitqueue right
then and there and sleep until the OOM situation is resolved. The problem
is that these tasks may hold filesystem locks and the mmap_sem; locks that
the selected OOM victim may need to exit.
For example, in one reported case, the task invoking the OOM killer was
about to charge a page cache page during a write(), which holds the
i_mutex. The OOM killer selected a task that was just entering truncate()
and trying to acquire the i_mutex:
OOM invoking task:
mem_cgroup_handle_oom+0x241/0x3b0
mem_cgroup_cache_charge+0xbe/0xe0
add_to_page_cache_locked+0x4c/0x140
add_to_page_cache_lru+0x22/0x50
grab_cache_page_write_begin+0x8b/0xe0
ext3_write_begin+0x88/0x270
generic_file_buffered_write+0x116/0x290
__generic_file_aio_write+0x27c/0x480
generic_file_aio_write+0x76/0xf0 # takes ->i_mutex
do_sync_write+0xea/0x130
vfs_write+0xf3/0x1f0
sys_write+0x51/0x90
system_call_fastpath+0x18/0x1d
OOM kill victim:
do_truncate+0x58/0xa0 # takes i_mutex
do_last+0x250/0xa30
path_openat+0xd7/0x440
do_filp_open+0x49/0xa0
do_sys_open+0x106/0x240
sys_open+0x20/0x30
system_call_fastpath+0x18/0x1d
The OOM handling task will retry the charge indefinitely while the OOM
killed task is not releasing any resources.
A similar scenario can happen when the kernel OOM killer for a memcg is
disabled and a userspace task is in charge of resolving OOM situations.
In this case, ALL tasks that enter the OOM path will be made to sleep on
the OOM waitqueue and wait for userspace to free resources or increase
the group's limit. But a userspace OOM handler is prone to deadlock
itself on the locks held by the waiting tasks. For example one of the
sleeping tasks may be stuck in a brk() call with the mmap_sem held for
writing but the userspace handler, in order to pick an optimal victim,
may need to read files from /proc/<pid>, which tries to acquire the same
mmap_sem for reading and deadlocks.
This patch changes the way tasks behave after detecting a memcg OOM and
makes sure nobody loops or sleeps with locks held:
1. When OOMing in a user fault, invoke the OOM killer and restart the
fault instead of looping on the charge attempt. This way, the OOM
victim can not get stuck on locks the looping task may hold.
2. When OOMing in a user fault but somebody else is handling it
(either the kernel OOM killer or a userspace handler), don't go to
sleep in the charge context. Instead, remember the OOMing memcg in
the task struct and then fully unwind the page fault stack with
-ENOMEM. pagefault_out_of_memory() will then call back into the
memcg code to check if the -ENOMEM came from the memcg, and then
either put the task to sleep on the memcg's OOM waitqueue or just
restart the fault. The OOM victim can no longer get stuck on any
lock a sleeping task may hold.
Debugged by Michal Hocko.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: azurIt <azurit@pobox.sk>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
System calls and kernel faults (uaccess, gup) can handle an out of memory
situation gracefully and just return -ENOMEM.
Enable the memcg OOM killer only for user faults, where it's really the
only option available.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The caller of the iterator might know that some nodes or even subtrees
should be skipped but there is no way to tell iterators about that so the
only choice left is to let iterators to visit each node and do the
selection outside of the iterating code. This, however, doesn't scale
well with hierarchies with many groups where only few groups are
interesting.
This patch adds mem_cgroup_iter_cond variant of the iterator with a
callback which gets called for every visited node. There are three
possible ways how the callback can influence the walk. Either the node is
visited, it is skipped but the tree walk continues down the tree or the
whole subtree of the current group is skipped.
[hughd@google.com: fix memcg-less page reclaim]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Soft reclaim has been done only for the global reclaim (both background
and direct). Since "memcg: integrate soft reclaim tighter with zone
shrinking code" there is no reason for this limitation anymore as the soft
limit reclaim doesn't use any special code paths and it is a part of the
zone shrinking code which is used by both global and targeted reclaims.
From the semantic point of view it is natural to consider soft limit
before touching all groups in the hierarchy tree which is touching the
hard limit because soft limit tells us where to push back when there is a
memory pressure. It is not important whether the pressure comes from the
limit or imbalanced zones.
This patch simply enables soft reclaim unconditionally in
mem_cgroup_should_soft_reclaim so it is enabled for both global and
targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn
about the root of the reclaim to know where to stop checking soft limit
state of parents up the hierarchy. Say we have
A (over soft limit)
\
B (below s.l., hit the hard limit)
/ \
C D (below s.l.)
B is the source of the outside memory pressure now for D but we shouldn't
soft reclaim it because it is behaving well under B subtree and we can
still reclaim from C (pressumably it is over the limit).
mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the
hierarchy at B (root of the memory pressure).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is sitting out of tree for quite some time without any
objections. I would be really happy if it made it into 3.12. I do not
want to push it too hard but I think this work is basically ready and
waiting more doesn't help.
The basic idea is quite simple. Pull soft reclaim into shrink_zone in the
first step and get rid of the previous soft reclaim infrastructure.
shrink_zone is done in two passes now. First it tries to do the soft
limit reclaim and it falls back to reclaim-all mode if no group is over
the limit or no pages have been scanned. The second pass happens at the
same priority so the only time we waste is the memcg tree walk which has
been updated in the third step to have only negligible overhead.
As a bonus we will get rid of a _lot_ of code by this and soft reclaim
will not stand out like before when it wasn't integrated into the zone
shrinking code and it reclaimed at priority 0 (the testing results show
that some workloads suffers from such an aggressive reclaim). The clean
up is in a separate patch because I felt it would be easier to review that
way.
The second step is soft limit reclaim integration into targeted reclaim.
It should be rather straight forward. Soft limit has been used only for
the global reclaim so far but it makes sense for any kind of pressure
coming from up-the-hierarchy, including targeted reclaim.
The third step (patches 4-8) addresses the tree walk overhead by enhancing
memcg iterators to enable skipping whole subtrees and tracking number of
over soft limit children at each level of the hierarchy. This information
is updated same way the old soft limit tree was updated (from
memcg_check_events) so we shouldn't see an additional overhead. In fact
mem_cgroup_update_soft_limit is much simpler than tree manipulation done
previously.
__shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for
mem_cgroup_iter so the decision whether a particular group should be
visited is done at the iterator level which allows us to decide to skip
the whole subtree as well (if there is no child in excess). This reduces
the tree walk overhead considerably.
* TEST 1
========
My primary test case was a parallel kernel build with 2 groups (make is
running with -j8 with a distribution .config in a separate cgroup without
any hard limit) on a 32 CPU machine booted with 1GB memory and both builds
run taskset to Node 0 cpus.
I was mostly interested in 2 setups. Default - no soft limit set and -
and 0 soft limit set to both groups. The first one should tell us whether
the rework regresses the default behavior while the second one should show
us improvements in an extreme case where both workloads are always over
the soft limit.
/usr/bin/time -v has been used to collect the statistics and each
configuration had 3 runs after fresh boot without any other load on the
system.
base is mmotm-2013-07-18-16-40
rework all 8 patches applied on top of base
* No-limit
User
no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6
no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6
System
no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6
no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6
Elapsed
no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6
no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6
The results are within noise. Elapsed time has a bigger variance but the
average looks good.
* 0-limit
User
0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6
0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6
System
0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6
0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6
Elapsed
0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6
0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6
The improvement is really huge here (even bigger than with my previous
testing and I suspect that this highly depends on the storage). Page
fault statistics tell us at least part of the story:
Minor
0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6
0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6
Major
0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6
0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6
Same as with my previous testing Minor faults are more or less within
noise but Major fault count is way bellow the base kernel.
While this looks as a nice win it is fair to say that 0-limit
configuration is quite artificial. So I was playing with 0-no-limit
loads as well.
* TEST 2
========
The following results are from 2 groups configuration on a 16GB machine
(single NUMA node).
- A running stream IO (dd if=/dev/zero of=local.file bs=1024) with
2*TotalMem with 0 soft limit.
- B running a mem_eater which consumes TotalMem-1G without any limit. The
mem_eater consumes the memory in 100 chunks with 1s nap after each
mmap+poppulate so that both loads have chance to fight for the memory.
The expected result is that B shouldn't be reclaimed and A shouldn't see
a big dropdown in elapsed time.
User
base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3
rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3
System
base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3
rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3
Elapsed
base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3
rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3
System time improved slightly as well as Elapsed. My previous testing
has shown worse numbers but this again seem to depend on the storage
speed.
My theory is that the writeback doesn't catch up and prio-0 soft reclaim
falls into wait on writeback page too often in the base kernel. The
patched kernel doesn't do that because the soft reclaim is done from the
kswapd/direct reclaim context. This can be seen on the following graph
nicely. The A's group usage_in_bytes regurarly drops really low very often.
All 3 runs
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png
resp. a detail of the single run
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png
mem_eater seems to be doing better as well. It gets to the full
allocation size faster as can be seen on the following graph:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png
/proc/meminfo collected during the test also shows that rework kernel
hasn't swapped that much (well almost not at all):
base: max: 123900 K avg: 56388.29 K
rework: max: 300 K avg: 128.68 K
kswapd and direct reclaim statistics are of no use unfortunatelly because
soft reclaim is not accounted properly as the counters are hidden by
global_reclaim() checks in the base kernel.
* TEST 3
========
Another test was the same configuration as TEST2 except the stream IO was
replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as
in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB
left.
Kbuild did better with the rework kernel here as well:
User
base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3
rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3
System
base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3
rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3
Elapsed
base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3
rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3
Minor
base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3
rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3
Major
base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3
rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3
Again we can see a significant improvement in Elapsed (it also seems to
be more stable), there is a huge dropdown for the Major page faults and
much more swapping:
base: max: 583736 K avg: 112547.43 K
rework: max: 4012 K avg: 124.36 K
Graphs from all three runs show the variability of the kbuild quite
nicely. It even seems that it took longer after every run with the base
kernel which would be quite surprising as the source tree for the build is
removed and caches are dropped after each run so the build operates on a
freshly extracted sources everytime.
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png
My other testing shows that this is just a matter of timing and other runs
behave differently the std for Elapsed time is similar ~50. Example of
other three runs:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png
So to wrap this up. The series is still doing good and improves the soft
limit.
The testing results for bunch of cgroups with both stream IO and kbuild
loads can be found in "memcg: track children in soft limit excess to
improve soft limit".
This patch:
Memcg soft reclaim has been traditionally triggered from the global
reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim
then picked up a group which exceeds the soft limit the most and reclaimed
it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages.
The infrastructure requires per-node-zone trees which hold over-limit
groups and keep them up-to-date (via memcg_check_events) which is not cost
free. Although this overhead hasn't turned out to be a bottle neck the
implementation is suboptimal because mem_cgroup_update_tree has no idea
which zones consumed memory over the limit so we could easily end up
having a group on a node-zone tree having only few pages from that
node-zone.
This patch doesn't try to fix node-zone trees management because it seems
that integrating soft reclaim into zone shrinking sounds much easier and
more appropriate for several reasons. First of all 0 priority reclaim was
a crude hack which might lead to big stalls if the group's LRUs are big
and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim
should be applicable also to the targeted reclaim which is awkward right
now without additional hacks. Last but not least the whole infrastructure
eats quite some code.
After this patch shrink_zone is done in 2 passes. First it tries to do
the soft reclaim if appropriate (only for global reclaim for now to keep
compatible with the original state) and fall back to ignoring soft limit
if no group is eligible to soft reclaim or nothing has been scanned during
the first pass. Only groups which are over their soft limit or any of
their parents up the hierarchy is over the limit are considered eligible
during the first pass.
Soft limit tree which is not necessary anymore will be removed in the
follow up patch to make this patch smaller and easier to review.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup.
Please see the previous commit which converts the subsystem methods
for rationale.
This patch converts all cftype file operations to take @css instead of
@cgroup. cftypes for the cgroup core files don't have their subsytem
pointer set. These will automatically use the dummy_css added by the
previous patch and can be converted the same way.
Most subsystem conversions are straight forwards but there are some
interesting ones.
* freezer: update_if_frozen() is also converted to take @css instead
of @cgroup for consistency. This will make the code look simpler
too once iterators are converted to use css.
* memory/vmpressure: mem_cgroup_from_css() needs to be exported to
vmpressure while mem_cgroup_from_cont() can be made static.
Updated accordingly.
* cpu: cgroup_tg() doesn't have any user left. Removed.
* cpuacct: cgroup_ca() doesn't have any user left. Removed.
* hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left.
Removed.
* net_cls: cgrp_cls_state() doesn't have any user left. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
For processes that have detached their mm's, task_in_mem_cgroup()
unnecessarily takes task_lock() when rcu_read_lock() is all that is
necessary to call mem_cgroup_from_task().
While we're here, switch task_in_mem_cgroup() to return bool.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An inactive file list is considered low when its active counterpart is
bigger, regardless of whether it is a global zone LRU list or a memcg
zone LRU list. The only difference is in how the LRU size is assessed.
get_lru_size() does the right thing for both global and memcg reclaim
situations.
Get rid of inactive_file_is_low_global() and
mem_cgroup_inactive_file_is_low() by using get_lru_size() and compare
the numbers in common code.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The macro for_each_memcg_cache_index contains a silly yet potentially
deadly mistake. Although the macro parameter is _idx, the loop tests
are done over i, not _idx.
This hasn't generated any problems so far, because all users use i as a
loop index. However, while playing with an extension of the code I
ended using another loop index and the compiler was quick to complain.
Unfortunately, this is not the kind of thing that testing reveals =(
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch clarifies two aspects of cache attribute propagation.
First, the expected context for the for_each_memcg_cache macro in
memcontrol.h. The usages already in the codebase are safe. In mm/slub.c,
it is trivially safe because the lock is acquired right before the loop.
In mm/slab.c, it is less so: the lock is acquired by an outer function a
few steps back in the stack, so a VM_BUG_ON() is added to make sure it is
indeed safe.
A comment is also added to detail why we are returning the value of the
parent cache and ignoring the children's when we propagate the attributes.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB allows us to tune a particular cache behavior with tunables. When
creating a new memcg cache copy, we'd like to preserve any tunables the
parent cache already had.
This could be done by an explicit call to do_tune_cpucache() after the
cache is created. But this is not very convenient now that the caches are
created from common code, since this function is SLAB-specific.
Another method of doing that is taking advantage of the fact that
do_tune_cpucache() is always called from enable_cpucache(), which is
called at cache initialization. We can just preset the values, and then
things work as expected.
It can also happen that a root cache has its tunables updated during
normal system operation. In this case, we will propagate the change to
all caches that are already active.
This change will require us to move the assignment of root_cache in
memcg_params a bit earlier. We need this to be already set - which
memcg_kmem_register_cache will do - when we reach __kmem_cache_create()
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we create caches in memcgs, we need to display their usage
information somewhere. We'll adopt a scheme similar to /proc/meminfo,
with aggregate totals shown in the global file, and per-group information
stored in the group itself.
For the time being, only reads are allowed in the per-group cache.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This enables us to remove all the children of a kmem_cache being
destroyed, if for example the kernel module it's being used in gets
unloaded. Otherwise, the children will still point to the destroyed
parent.
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement destruction of memcg caches. Right now, only caches where our
reference counter is the last remaining are deleted. If there are any
other reference counters around, we just leave the caches lying around
until they go away.
When that happens, a destruction function is called from the cache code.
Caches are only destroyed in process context, so we queue them up for
later processing in the general case.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct page already has this information. If we start chaining caches,
this information will always be more trustworthy than whatever is passed
into the function.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator is able to bind a page to a memcg when it is
allocated. But for the caches, we'd like to have as many objects as
possible in a page belonging to the same cache.
This is done in this patch by calling memcg_kmem_get_cache in the
beginning of every allocation function. This function is patched out by
static branches when kernel memory controller is not being used.
It assumes that the task allocating, which determines the memcg in the
page allocator, belongs to the same cgroup throughout the whole process.
Misaccounting can happen if the task calls memcg_kmem_get_cache() while
belonging to a cgroup, and later on changes. This is considered
acceptable, and should only happen upon task migration.
Before the cache is created by the memcg core, there is also a possible
imbalance: the task belongs to a memcg, but the cache being allocated from
is the global cache, since the child cache is not yet guaranteed to be
ready. This case is also fine, since in this case the GFP_KMEMCG will not
be passed and the page allocator will not attempt any cgroup accounting.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every cache that is considered a root cache (basically the "original"
caches, tied to the root memcg/no-memcg) will have an array that should be
large enough to store a cache pointer per each memcg in the system.
Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently
in the 64k pointers range. Most of the time, we won't be using that much.
What goes in this patch, is a simple scheme to dynamically allocate such
an array, in order to minimize memory usage for memcg caches. Because we
would also like to avoid allocations all the time, at least for now, the
array will only grow. It will tend to be big enough to hold the maximum
number of kmem-limited memcgs ever achieved.
We'll allocate it to be a minimum of 64 kmem-limited memcgs. When we have
more than that, we'll start doubling the size of this array every time the
limit is reached.
Because we are only considering kmem limited memcgs, a natural point for
this to happen is when we write to the limit. At that point, we already
have set_limit_mutex held, so that will become our natural synchronization
mechanism.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow a memcg parameter to be passed during cache creation. When the slub
allocator is being used, it will only merge caches that belong to the same
memcg. We'll do this by scanning the global list, and then translating
the cache to a memcg-specific cache
Default function is created as a wrapper, passing NULL to the memcg
version. We only merge caches that belong to the same memcg.
A helper is provided, memcg_css_id: because slub needs a unique cache name
for sysfs. Since this is visible, but not the canonical location for slab
data, the cache name is not used, the css_id should suffice.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use static branches to patch the code in or out when not used.
Because the _ACTIVE bit on kmem_accounted is only set after the increment
is done, we guarantee that the root memcg will always be selected for kmem
charges until all call sites are patched (see memcg_kmem_enabled). This
guarantees that no mischarges are applied.
Static branch decrement happens when the last reference count from the
kmem accounting in memcg dies. This will only happen when the charges
drop down to 0.
When that happens, we need to disable the static branch only on those
memcgs that enabled it. To achieve this, we would be forced to complicate
the code by keeping track of which memcgs were the ones that actually
enabled limits, and which ones got it from its parents.
It is a lot simpler just to do static_key_slow_inc() on every child
that is accounted.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce infrastructure for tracking kernel memory pages to a given
memcg. This will happen whenever the caller includes the flag
__GFP_KMEMCG flag, and the task belong to a memcg other than the root.
In memcontrol.h those functions are wrapped in inline acessors. The idea
is to later on, patch those with static branches, so we don't incur any
overhead when no mem cgroups with limited kmem are being used.
Users of this functionality shall interact with the memcg core code
through the following functions:
memcg_kmem_newpage_charge: will return true if the group can handle the
allocation. At this point, struct page is not
yet allocated.
memcg_kmem_commit_charge: will either revert the charge, if struct page
allocation failed, or embed memcg information
into page_cgroup.
memcg_kmem_uncharge_page: called at free time, will revert the charge.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While profiling numa/core v16 with cgroup_disable=memory on the command
line, I noticed mem_cgroup_count_vm_event() still showed up as high as
0.60% in perftop.
This occurs because the function is called extremely often even when memcg
is disabled.
To fix this, inline the check for mem_cgroup_disabled() so we avoid the
unnecessary function call if memcg is disabled.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e1aab161e0 ("socket: initial cgroup code.") causes a build
error when CONFIG_INET is disabled in Linus' tree:
net/built-in.o: In function `sk_update_clone':
net/core/sock.c:1336: undefined reference to `sock_update_memcg'
sock_update_memcg() is only defined when CONFIG_INET is enabled, so fix
it by defining the dummy function without this option.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It really should return a boolean for match/no match. And since it takes
a memcg, not a cgroup, fix that parameter name as well.
[akpm@linux-foundation.org: mm_match_cgroup() is not a macro]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>