2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-11-30 13:34:44 +08:00
Commit Graph

8 Commits

Author SHA1 Message Date
Christoph Lameter
170d800af8 block: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x).  This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.

Other use cases are for storing and retrieving data from the current
processors percpu area.  __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.

__get_cpu_var() is defined as :

#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))

__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.

this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.

This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset.  Thereby address calculations are avoided and less registers
are used when code is generated.

At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.

The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e.  using a global
register that may be set to the per cpu base.

Transformations done to __get_cpu_var()

1. Determine the address of the percpu instance of the current processor.

	DEFINE_PER_CPU(int, y);
	int *x = &__get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(&y);

2. Same as #1 but this time an array structure is involved.

	DEFINE_PER_CPU(int, y[20]);
	int *x = __get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(y);

3. Retrieve the content of the current processors instance of a per cpu
variable.

	DEFINE_PER_CPU(int, y);
	int x = __get_cpu_var(y)

   Converts to

	int x = __this_cpu_read(y);

4. Retrieve the content of a percpu struct

	DEFINE_PER_CPU(struct mystruct, y);
	struct mystruct x = __get_cpu_var(y);

   Converts to

	memcpy(&x, this_cpu_ptr(&y), sizeof(x));

5. Assignment to a per cpu variable

	DEFINE_PER_CPU(int, y)
	__get_cpu_var(y) = x;

   Converts to

	this_cpu_write(y, x);

6. Increment/Decrement etc of a per cpu variable

	DEFINE_PER_CPU(int, y);
	__get_cpu_var(y)++

   Converts to

	this_cpu_inc(y)

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-11-08 08:59:58 -07:00
Paul Gortmaker
0b776b0628 block: delete __cpuinit usage from all block files
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications.  For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.

After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out.  Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.

This removes all the drivers/block uses of the __cpuinit macros
from all C files.

[1] https://lkml.org/lkml/2013/5/20/589

Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-07-14 19:36:59 -04:00
André Goddard Rosa
af901ca181 tree-wide: fix assorted typos all over the place
That is "success", "unknown", "through", "performance", "[re|un]mapping"
, "access", "default", "reasonable", "[con]currently", "temperature"
, "channel", "[un]used", "application", "example","hierarchy", "therefore"
, "[over|under]flow", "contiguous", "threshold", "enough" and others.

Signed-off-by: André Goddard Rosa <andre.goddard@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2009-12-04 15:39:55 +01:00
Jens Axboe
a33dac26d4 block: use interrupts disabled version of raise_softirq_irqoff()
We already have interrupts disabled at that point, so use the
__raise_softirq_irqoff() variant.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 14:33:32 +02:00
Jens Axboe
fca51d64c5 block: fix comment in blk-iopoll.c
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 14:33:32 +02:00
Jens Axboe
37867ae7c5 block: adjust default budget for blk-iopoll
It's not exported, I doubt we'll have a reason to change this...

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 14:33:31 +02:00
Jens Axboe
1badcfbd7f block: fix long lines in block/blk-iopoll.c
Note sure why they happened in the first place, probably some bad
terminal setting.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 14:33:31 +02:00
Jens Axboe
5e605b64a1 block: add blk-iopoll, a NAPI like approach for block devices
This borrows some code from NAPI and implements a polled completion
mode for block devices. The idea is the same as NAPI - instead of
doing the command completion when the irq occurs, schedule a dedicated
softirq in the hopes that we will complete more IO when the iopoll
handler is invoked. Devices have a budget of commands assigned, and will
stay in polled mode as long as they continue to consume their budget
from the iopoll softirq handler. If they do not, the device is set back
to interrupt completion mode.

This patch holds the core bits for blk-iopoll, device driver support
sold separately.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-11 14:33:31 +02:00