2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
Commit Graph

17 Commits

Author SHA1 Message Date
Michal Nazarewicz
8120a8aadb fs/timerfd.c: make use of wait_event_interruptible_locked_irq()
This patch modifies the fs/timerfd.c to use the newly created
wait_event_interruptible_locked_irq() macro.  This replaces an open
code implementation with a single macro call.

Signed-off-by: Michal Nazarewicz <m.nazarewicz@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Roland Dreier <rolandd@cisco.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-05-20 13:21:42 -07:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Roland Dreier
628ff7c1d8 anonfd: Allow making anon files read-only
It seems a couple places such as arch/ia64/kernel/perfmon.c and
drivers/infiniband/core/uverbs_main.c could use anon_inode_getfile()
instead of a private pseudo-fs + alloc_file(), if only there were a way
to get a read-only file.  So provide this by having anon_inode_getfile()
create a read-only file if we pass O_RDONLY in flags.

Signed-off-by: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-12-22 12:27:34 -05:00
Davide Libenzi
610d18f412 timerfd: add flags check
As requested by Michael, add a missing check for valid flags in
timerfd_settime(), and make it return EINVAL in case some extra bits are
set.

Michael said:
If this is to be any use to userland apps that want to check flag
support (perhaps it is too late already), then the sooner we get it
into the kernel the better: 2.6.29 would be good; earlier stables as
well would be even better.

[akpm@linux-foundation.org: remove unused TFD_FLAGS_SET]
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: <stable@kernel.org>		[2.6.27.x, 2.6.28.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-18 15:37:53 -08:00
Heiko Carstens
d4e82042c4 [CVE-2009-0029] System call wrappers part 32
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2009-01-14 14:15:31 +01:00
Heiko Carstens
836f92adf1 [CVE-2009-0029] System call wrappers part 31
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2009-01-14 14:15:31 +01:00
Arjan van de Ven
76369470b7 hrtimer: convert timerfd to the new hrtimer apis
In order to be able to do range hrtimers we need to use accessor functions
to the "expire" member of the hrtimer struct.
This patch converts timerfd to these accessors.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
2008-09-05 21:35:09 -07:00
Ulrich Drepper
e38b36f325 flag parameters: check magic constants
This patch adds test that ensure the boundary conditions for the various
constants introduced in the previous patches is met.  No code is generated.

[akpm@linux-foundation.org: fix alpha]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:29 -07:00
Ulrich Drepper
6b1ef0e60d flag parameters: NONBLOCK in timerfd_create
This patch adds support for the TFD_NONBLOCK flag to timerfd_create.  The
additional changes needed are minimal.

The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <sys/syscall.h>

#ifndef __NR_timerfd_create
# ifdef __x86_64__
#  define __NR_timerfd_create 283
# elif defined __i386__
#  define __NR_timerfd_create 322
# else
#  error "need __NR_timerfd_create"
# endif
#endif

#define TFD_NONBLOCK O_NONBLOCK

int
main (void)
{
  int fd = syscall (__NR_timerfd_create, CLOCK_REALTIME, 0);
  if (fd == -1)
    {
      puts ("timerfd_create(0) failed");
      return 1;
    }
  int fl = fcntl (fd, F_GETFL);
  if (fl == -1)
    {
      puts ("fcntl failed");
      return 1;
    }
  if (fl & O_NONBLOCK)
    {
      puts ("timerfd_create(0) set non-blocking mode");
      return 1;
    }
  close (fd);

  fd = syscall (__NR_timerfd_create, CLOCK_REALTIME, TFD_NONBLOCK);
  if (fd == -1)
    {
      puts ("timerfd_create(TFD_NONBLOCK) failed");
      return 1;
    }
  fl = fcntl (fd, F_GETFL);
  if (fl == -1)
    {
      puts ("fcntl failed");
      return 1;
    }
  if ((fl & O_NONBLOCK) == 0)
    {
      puts ("timerfd_create(TFD_NONBLOCK) set non-blocking mode");
      return 1;
    }
  close (fd);

  puts ("OK");

  return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:29 -07:00
Ulrich Drepper
11fcb6c146 flag parameters: timerfd_create
The timerfd_create syscall already has a flags parameter.  It just is
unused so far.  This patch changes this by introducing the TFD_CLOEXEC
flag to set the close-on-exec flag for the returned file descriptor.

A new name TFD_CLOEXEC is introduced which in this implementation must
have the same value as O_CLOEXEC.

The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <sys/syscall.h>

#ifndef __NR_timerfd_create
# ifdef __x86_64__
#  define __NR_timerfd_create 283
# elif defined __i386__
#  define __NR_timerfd_create 322
# else
#  error "need __NR_timerfd_create"
# endif
#endif

#define TFD_CLOEXEC O_CLOEXEC

int
main (void)
{
  int fd = syscall (__NR_timerfd_create, CLOCK_REALTIME, 0);
  if (fd == -1)
    {
      puts ("timerfd_create(0) failed");
      return 1;
    }
  int coe = fcntl (fd, F_GETFD);
  if (coe == -1)
    {
      puts ("fcntl failed");
      return 1;
    }
  if (coe & FD_CLOEXEC)
    {
      puts ("timerfd_create(0) set close-on-exec flag");
      return 1;
    }
  close (fd);

  fd = syscall (__NR_timerfd_create, CLOCK_REALTIME, TFD_CLOEXEC);
  if (fd == -1)
    {
      puts ("timerfd_create(TFD_CLOEXEC) failed");
      return 1;
    }
  coe = fcntl (fd, F_GETFD);
  if (coe == -1)
    {
      puts ("fcntl failed");
      return 1;
    }
  if ((coe & FD_CLOEXEC) == 0)
    {
      puts ("timerfd_create(TFD_CLOEXEC) set close-on-exec flag");
      return 1;
    }
  close (fd);

  puts ("OK");

  return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:27 -07:00
Ulrich Drepper
7d9dbca342 flag parameters: anon_inode_getfd extension
This patch just extends the anon_inode_getfd interface to take an additional
parameter with a flag value.  The flag value is passed on to
get_unused_fd_flags in anticipation for a use with the O_CLOEXEC flag.

No actual semantic changes here, the changed callers all pass 0 for now.

[akpm@linux-foundation.org: KVM fix]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:27 -07:00
Al Viro
2030a42cec [PATCH] sanitize anon_inode_getfd()
a) none of the callers even looks at inode or file returned by anon_inode_getfd()
b) any caller that would try to look at those would be racy, since by the time
it returns we might have raced with close() from another thread and that
file would be pining for fjords.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-05-01 13:08:50 -04:00
Adrian Bunk
45cc2b96f2 fs/timerfd.c should #include <linux/syscalls.h>
Every file should include the headers containing the prototypes for its global
functions (in this case for sys_timerfd_*()).

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 08:06:01 -07:00
Davide Libenzi
4d672e7ac7 timerfd: new timerfd API
This is the new timerfd API as it is implemented by the following patch:

int timerfd_create(int clockid, int flags);
int timerfd_settime(int ufd, int flags,
		    const struct itimerspec *utmr,
		    struct itimerspec *otmr);
int timerfd_gettime(int ufd, struct itimerspec *otmr);

The timerfd_create() API creates an un-programmed timerfd fd.  The "clockid"
parameter can be either CLOCK_MONOTONIC or CLOCK_REALTIME.

The timerfd_settime() API give new settings by the timerfd fd, by optionally
retrieving the previous expiration time (in case the "otmr" parameter is not
NULL).

The time value specified in "utmr" is absolute, if the TFD_TIMER_ABSTIME bit
is set in the "flags" parameter.  Otherwise it's a relative time.

The timerfd_gettime() API returns the next expiration time of the timer, or
{0, 0} if the timerfd has not been set yet.

Like the previous timerfd API implementation, read(2) and poll(2) are
supported (with the same interface).  Here's a simple test program I used to
exercise the new timerfd APIs:

http://www.xmailserver.org/timerfd-test2.c

[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: fix ia64 build]
[akpm@linux-foundation.org: fix m68k build]
[akpm@linux-foundation.org: fix mips build]
[akpm@linux-foundation.org: fix alpha, arm, blackfin, cris, m68k, s390, sparc and sparc64 builds]
[heiko.carstens@de.ibm.com: fix s390]
[akpm@linux-foundation.org: fix powerpc build]
[akpm@linux-foundation.org: fix sparc64 more]
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 09:44:07 -08:00
Davide Libenzi
098284020c make timerfd return a u64 and fix the __put_user
Davi fixed a missing cast in the __put_user(), that was making timerfd
return a single byte instead of the full value.

Talking with Michael about the timerfd man page, we think it'd be better to
use a u64 for the returned value, to align it with the eventfd
implementation.

This is an ABI change.  The timerfd code is new in 2.6.22 and if we merge this
into 2.6.23 then we should also merge it into 2.6.22.x.  That will leave a few
early 2.6.22 kernels out in the wild which might misbehave when a future
timerfd-enabled glibc is run on them.

mtk says: The difference would be that read() will only return 4 bytes, while
the application will expect 8.  If the application is checking the size of
returned value, as it should, then it will be able to detect the problem (it
could even be sophisticated enough to know that if this is a 4-byte return,
then it is running on an old 2.6.22 kernel).  If the application is not
checking the return from read(), then its 8-byte buffer will not be filled --
the contents of the last 4 bytes will be undefined, so the u64 value as a
whole will be junk.

Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Davi Arnaut <davi@haxent.com.br>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-26 11:35:17 -07:00
Davide Libenzi
18963c01b8 timerfd use waitqueue lock ...
The timerfd was using the unlocked waitqueue operations, but it was
using a different lock, so poll_wait() would race with it.

This makes timerfd directly use the waitqueue lock.

Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-18 13:09:34 -07:00
Davide Libenzi
b215e28399 signal/timer/event: timerfd core
This patch introduces a new system call for timers events delivered though
file descriptors.  This allows timer event to be used with standard POSIX
poll(2), select(2) and read(2).  As a consequence of supporting the Linux
f_op->poll subsystem, they can be used with epoll(2) too.

The system call is defined as:

int timerfd(int ufd, int clockid, int flags, const struct itimerspec *utmr);

The "ufd" parameter allows for re-use (re-programming) of an existing timerfd
w/out going through the close/open cycle (same as signalfd).  If "ufd" is -1,
s new file descriptor will be created, otherwise the existing "ufd" will be
re-programmed.

The "clockid" parameter is either CLOCK_MONOTONIC or CLOCK_REALTIME.  The time
specified in the "utmr->it_value" parameter is the expiry time for the timer.

If the TFD_TIMER_ABSTIME flag is set in "flags", this is an absolute time,
otherwise it's a relative time.

If the time specified in the "utmr->it_interval" is not zero (.tv_sec == 0,
tv_nsec == 0), this is the period at which the following ticks should be
generated.

The "utmr->it_interval" should be set to zero if only one tick is requested.
Setting the "utmr->it_value" to zero will disable the timer, or will create a
timerfd without the timer enabled.

The function returns the new (or same, in case "ufd" is a valid timerfd
descriptor) file, or -1 in case of error.

As stated before, the timerfd file descriptor supports poll(2), select(2) and
epoll(2).  When a timer event happened on the timerfd, a POLLIN mask will be
returned.

The read(2) call can be used, and it will return a u32 variable holding the
number of "ticks" that happened on the interface since the last call to
read(2).  The read(2) call supportes the O_NONBLOCK flag too, and EAGAIN will
be returned if no ticks happened.

A quick test program, shows timerfd working correctly on my amd64 box:

http://www.xmailserver.org/timerfd-test.c

[akpm@linux-foundation.org: add sys_timerfd to sys_ni.c]
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 08:29:36 -07:00