All implementations of the callback are trivial and do the same and
there's only one user. Merge everything together.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The end_io callbacks passed to btrfs_wq_submit_bio
(btrfs_submit_bio_done and btree_submit_bio_done) are effectively the
same code, there's no point to do the indirection. Export
btrfs_submit_bio_done and call it directly.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After splitting the start and end hooks in a758781d4b ("btrfs:
separate types for submit_bio_start and submit_bio_done"), some of
the function arguments were dropped but not removed from the structure.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduced by c6100a4b4e ("Btrfs: replace tree->mapping with
tree->private_data") to be used in run_one_async_done where it got
unused after 736cd52e0c ("Btrfs: remove nr_async_submits and
async_submit_draining").
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reported in https://bugzilla.kernel.org/show_bug.cgi?id=199839, with an
image that has an invalid chunk type but does not return an error.
Add chunk type check in btrfs_check_chunk_valid, to detect the wrong
type combinations.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199839
Reported-by: Xu Wen <wen.xu@gatech.edu>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
EXTENT_BUFFER_DUMMY is an awful name for this flag. Buffers which have
this flag set are not in any way dummy. Rather, they are private in the
sense that are not mapped and linked to the global buffer tree. This
flag has subtle implications to the way free_extent_buffer works for
example, as well as controls whether page->mapping->private_lock is held
during extent_buffer release. Pages for an unmapped buffer cannot be
under io, nor can they be written by a 3rd party so taking the lock is
unnecessary.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ EXTENT_BUFFER_UNMAPPED, update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Remove stale comment since there is no longer an eb->eb_lock and
document the locking expectation with a lockdep_assert_held statement.
No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function used to release one page (and always the first one), but
not anymore since a50924e3a4 ("btrfs: drop constant param
from btrfs_release_extent_buffer_page"). Update the name and comment.
Signed-off-by: David Sterba <dsterba@suse.com>
The purpose of the function is to free all the pages comprising an
extent buffer. This can be achieved with a simple for loop rather than
the slightly more involved 'do {} while' construct. So rewrite the
loop using a 'for' construct. Additionally we can never have an
extent_buffer that has 0 pages so remove the check for index == 0. No
functional changes.
The reversed order used to have a meaning in the past where the first
page served as a blocking point for several callers. See eg
4f2de97ace ("Btrfs: set page->private to the eb").
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit eb14ab8ed2 ("Btrfs: fix page->private races") fixed a genuine
race between extent buffer initialisation and btree_releasepage.
Unfortunately as the code has evolved the comments weren't changed which
made them slightly wrong and they weren't very clear in the fist place.
Fix this by (hopefully) rewording them in a more approachable manner.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current version of the page unlocking code was added in
727011e07c ("Btrfs: allow metadata blocks larger than the page size")
but even in this commit that particular flag was never used per-se. In
fact, btrfs only uses PageChecked for data pages to identify pages
which have been dirtied but don't have ORDERED bit set. For more
information see 247e743cbe ("Btrfs: Use async helpers to deal with
pages that have been improperly dirtied").
However, this doesn't apply to extent buffer pages. The important bit
here is that the pages are unlocked AFTER the extent buffer has been
properly recorded in the radix tree to avoid races with
btree_releasepage. Let's exploit this fact and simplify the page
unlocking sequence by unlocking the pages in-order and removing the
redundant PageChecked flag setting/clearing.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the remaining code that misused the page cache pages during
device replace and could cause data corruption for compressed nodatasum
extents. Such files do not normally exist but there's a bug that allows
this combination and the corruption was exposed by device replace fixup
code.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many places that open code the duplicity factor of the block
group profiles, create a common helper. This can be easily extended for
more copies.
Signed-off-by: David Sterba <dsterba@suse.com>
We have assigned the %fs_info->fs_devices in %fs_devices as its not
modified just use it for the mutex_lock().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info can be fetched from the transaction handle directly.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It can be fetched from the transaction handle. In addition, remove the
WARN_ON(trans == NULL) because it's not possible to hit this condition.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename btrfs_parse_early_options() to btrfs_parse_device_options(). As
btrfs_parse_early_options() parses the -o device options and scan the
device provided. So this rename specifies its action. Also the function
name is in line with btrfs_parse_subvol_options().
No functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 0b246afa62 ("btrfs: root->fs_info cleanup, add fs_info
convenience variables"), the srcroot is no longer used to get
fs_info::nodesize. In fact, it can be dropped after commit 707e8a0715
("btrfs: use nodesize everywhere, kill leafsize").
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a small helper, btrfs_mark_bg_unused(), to acquire locks and
add a block group to unused_bgs list.
No functional modification, and only 3 callers are involved.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
do_chunk_alloc implements logic to detect whether there is currently
pending chunk allocation (by means of space_info->chunk_alloc being
set) and if so it loops around to the 'again' label. Additionally,
based on the state of the space_info (e.g. whether it's full or not)
and the return value of should_alloc_chunk() it decides whether this
is a "hard" error (ENOSPC) or we can just return 0.
This patch refactors all of this:
1. Put order to the scattered ifs handling the various cases in an
easy-to-read if {} else if{} branches. This makes clear the various
cases we are interested in handling.
2. Call should_alloc_chunk only once and use the result in the
if/else if constructs. All of this is done under space_info->lock, so
even before multiple calls of should_alloc_chunk were unnecessary.
3. Rewrite the "do {} while()" loop currently implemented via label
into an explicit loop construct.
4. Move the mutex locking for the case where the caller is the one doing
the allocation. For the case where the caller needs to wait a concurrent
allocation, introduce a pair of mutex_lock/mutex_unlock to act as a
barrier and reword the comment.
5. Switch local vars to bool type where pertinent.
All in all this shouldn't introduce any functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In commit b150a4f10d ("Btrfs: use a percpu to keep track of possibly
pinned bytes") we use total_bytes_pinned to track how many bytes we are
going to free in this transaction. When we are close to ENOSPC, we check it
and know if we can make the allocation by commit the current transaction.
For every data/metadata extent we are going to free, we add
total_bytes_pinned in btrfs_free_extent() and btrfs_free_tree_block(), and
release it in unpin_extent_range() when we finish the transaction. So this
is a variable we frequently update but rarely read - just the suitable
use of percpu_counter. But in previous commit we update total_bytes_pinned
by default 32 batch size, making every update essentially a spin lock
protected update. Since every spin lock/unlock operation involves syncing
a globally used variable and some kind of barrier in a SMP system, this is
more expensive than using total_bytes_pinned as a simple atomic64_t.
So fix this by using a customized batch size. Since we only read
total_bytes_pinned when we are close to ENOSPC and fail to allocate new
chunk, we can use a really large batch size and have nearly no penalty
in most cases.
[Test]
We tested the patch on a 4-cores x86 machine:
1. fallocate a 16GiB size test file
2. take snapshot (so all following writes will be COW)
3. run a 180 sec, 4 jobs, 4K random write fio on test file
We also added a temporary lockdep class on percpu_counter's spin lock
used by total_bytes_pinned to track it by lock_stat.
[Results]
unpatched:
lock_stat version 0.4
-----------------------------------------------------------------------
class name con-bounces contentions
waittime-min waittime-max waittime-total waittime-avg acq-bounces
acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
total_bytes_pinned_percpu: 82 82
0.21 0.61 29.46 0.36 298340
635973 0.09 11.01 173476.25 0.27
patched:
lock_stat version 0.4
-----------------------------------------------------------------------
class name con-bounces contentions
waittime-min waittime-max waittime-total waittime-avg acq-bounces
acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
total_bytes_pinned_percpu: 1 1
0.62 0.62 0.62 0.62 13601
31542 0.14 9.61 11016.90 0.35
[Analysis]
Since the spin lock only protects a single in-memory variable, the
contentions (number of lock acquisitions that had to wait) in both
unpatched and patched version are low. But when we see acquisitions and
acq-bounces, we get much lower counts in patched version. Here the most
important metric is acq-bounces. It means how many times the lock gets
transferred between different cpus, so the patch can really reduce
cacheline bouncing of spin lock (also the global counter of percpu_counter)
in a SMP system.
Fixes: b150a4f10d ("Btrfs: use a percpu to keep track of possibly pinned bytes")
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use customized, nodesize batch value to update dirty_metadata_bytes.
We should also use batch version of compare function or we will easily
goto fast path and get false result from percpu_counter_compare().
Fixes: e2d845211e ("Btrfs: use percpu counter for dirty metadata count")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Return device pointer (with the IS_ERR semantics) from
btrfs_scan_one_device so we don't have to return in through pointer.
And since btrfs_fs_devices can be obtained from btrfs_device, return that.
Signed-off-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ fixed conflics after recent changes to btrfs_scan_one_device ]
Signed-off-by: David Sterba <dsterba@suse.com>
fs_devices is always passed to btrfs_scan_one_device which overrides it.
In the call stack below fs_devices is passed to btrfs_scan_one_device
from btrfs_mount_root. In btrfs_mount_root the output fs_devices of
this call stack is not used.
btrfs_mount_root
btrfs_parse_early_options
btrfs_scan_one_device
So, it is not necessary to pass fs_devices from btrfs_mount_root, using
a local variable in btrfs_parse_early_options is enough.
Signed-off-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: Anand Jain <Anand.Jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Technically this extends the critical section covered by uuid_mutex to:
- parse early mount options -- here we can call device scan on paths
that can be passed as 'device=/dev/...'
- scan the device passed to mount
- open the devices related to the fs_devices -- this increases
fs_devices::opened
The race can happen when mount calls one of the scans and there's
another one called eg. by mkfs or 'btrfs dev scan':
Mount Scan
----- ----
scan_one_device (dev1, fsid1)
scan_one_device (dev2, fsid1)
add the device
free stale devices
fsid1 fs_devices::opened == 0
find fsid1:dev1
free fsid1:dev1
if it's the last one,
free fs_devices of fsid1
too
open_devices (dev1, fsid1)
dev1 not found
When fixed, the uuid mutex will make sure that mount will increase
fs_devices::opened and this will not be touched by the racing scan
ioctl.
Reported-and-tested-by: syzbot+909a5177749d7990ffa4@syzkaller.appspotmail.com
Reported-and-tested-by: syzbot+ceb2606025ec1cc3479c@syzkaller.appspotmail.com
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In preparation to take a big lock, move resource initialization before
the critical section. It's not obvious from the diff, the desired order
is:
- initialize mount security options
- allocate temporary fs_info
- allocate superblock buffers
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepartory work to fix race between mount and device scan.
btrfs_parse_early_options calls the device scan from mount and we'll
need to let mount completely manage the critical section.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepartory work to fix race between mount and device scan.
The callers will have to manage the critical section, eg. mount wants to
scan and then call btrfs_open_devices without the ioctl scan walking in
and modifying the fs devices in the meantime.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Prepartory work to fix race between mount and device scan.
The callers will have to manage the critical section, eg. mount wants to
scan and then call btrfs_open_devices without the ioctl scan walking in
and modifying the fs devices in the meantime.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_stale_devices() finds a stale (not opened) device matching
path in the fs_uuid list. We are already under uuid_mutex so when we
check for each fs_devices, hold the device_list_mutex too.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Over the years we named %fs_devices and %devices to represent the
struct btrfs_fs_devices and the struct btrfs_device. So follow the same
scheme here too. No functional changes.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make sure the device_list_lock is held the whole time:
* when the device is being looked up
* new device is initialized and put to the list
* the list counters are updated (fs_devices::opened, fs_devices::total_devices)
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_free_stale_devices() looks for device path reused for another
filesystem, and deletes the older fs_devices::device entry.
In preparation to handle locking in device_list_add, move
btrfs_free_stale_devices outside as these two functions serve a
different purpose.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>