mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-20 19:43:58 +08:00
055e547478
6 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Andrea Righi
|
940389b8af |
task IO accounting: move all IO statistics in struct task_io_accounting
Simplify the code of include/linux/task_io_accounting.h. It is also more reasonable to have all the task i/o-related statistics in a single struct (task_io_accounting). Signed-off-by: Andrea Righi <righi.andrea@gmail.com> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Righi
|
5995477ab7 |
task IO accounting: improve code readability
Put all i/o statistics in struct proc_io_accounting and use inline functions to initialize and increment statistics, removing a lot of single variable assignments. This also reduces the kernel size as following (with CONFIG_TASK_XACCT=y and CONFIG_TASK_IO_ACCOUNTING=y). text data bss dec hex filename 11651 0 0 11651 2d83 kernel/exit.o.before 11619 0 0 11619 2d63 kernel/exit.o.after 10886 132 136 11154 2b92 kernel/fork.o.before 10758 132 136 11026 2b12 kernel/fork.o.after 3082029 807968 4818600 8708597 84e1f5 vmlinux.o.before 3081869 807968 4818600 8708437 84e155 vmlinux.o.after Signed-off-by: Andrea Righi <righi.andrea@gmail.com> Acked-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
e8edc6e03a |
Detach sched.h from mm.h
First thing mm.h does is including sched.h solely for can_do_mlock() inline function which has "current" dereference inside. By dealing with can_do_mlock() mm.h can be detached from sched.h which is good. See below, why. This patch a) removes unconditional inclusion of sched.h from mm.h b) makes can_do_mlock() normal function in mm/mlock.c c) exports can_do_mlock() to not break compilation d) adds sched.h inclusions back to files that were getting it indirectly. e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were getting them indirectly Net result is: a) mm.h users would get less code to open, read, preprocess, parse, ... if they don't need sched.h b) sched.h stops being dependency for significant number of files: on x86_64 allmodconfig touching sched.h results in recompile of 4083 files, after patch it's only 3744 (-8.3%). Cross-compile tested on all arm defconfigs, all mips defconfigs, all powerpc defconfigs, alpha alpha-up arm i386 i386-up i386-defconfig i386-allnoconfig ia64 ia64-up m68k mips parisc parisc-up powerpc powerpc-up s390 s390-up sparc sparc-up sparc64 sparc64-up um-x86_64 x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig as well as my two usual configs. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Eric Dumazet
|
6eaeeaba39 |
getrusage(): fill ru_inblock and ru_oublock fields if possible
If CONFIG_TASK_IO_ACCOUNTING is defined, we update io accounting counters for each task. This patch permits reporting of values using the well known getrusage() syscall, filling ru_inblock and ru_oublock instead of null values. As TASK_IO_ACCOUNTING currently counts bytes counts, we approximate blocks count doing : nr_blocks = nr_bytes / 512 Example of use : ---------------------- After patch is applied, /usr/bin/time command can now give a good approximation of IO that the process had to do. $ /usr/bin/time grep tototo /usr/include/* Command exited with non-zero status 1 0.00user 0.02system 0:02.11elapsed 1%CPU (0avgtext+0avgdata 0maxresident)k 24288inputs+0outputs (0major+259minor)pagefaults 0swaps $ /usr/bin/time dd if=/dev/zero of=/tmp/testfile count=1000 1000+0 enregistrements lus 1000+0 enregistrements écrits 512000 octets (512 kB) copiés, 0,00326601 seconde, 157 MB/s 0.00user 0.00system 0:00.00elapsed 80%CPU (0avgtext+0avgdata 0maxresident)k 0inputs+3000outputs (0major+299minor)pagefaults 0swaps Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
7c3ab7381e |
[PATCH] io-accounting: core statistics
The present per-task IO accounting isn't very useful. It simply counts the number of bytes passed into read() and write(). So if a process reads 1MB from an already-cached file, it is accused of having performed 1MB of I/O, which is wrong. (David Wright had some comments on the applicability of the present logical IO accounting: For billing purposes it is useless but for workload analysis it is very useful read_bytes/read_calls average read request size write_bytes/write_calls average write request size read_bytes/read_blocks ie logical/physical can indicate hit rate or thrashing write_bytes/write_blocks ie logical/physical guess since pdflush writes can be missed I often look for logical larger than physical to see filesystem cache problems. And the bytes/cpusec can help find applications that are dominating the cache and causing slow interactive response from page cache contention. I want to find the IO intensive applications and make sure they are doing efficient IO. Thus the acctcms(sysV) or csacms command would give the high IO commands). This patchset adds new accounting which tries to be more accurate. We account for three things: reads: attempt to count the number of bytes which this process really did cause to be fetched from the storage layer. Done at the submit_bio() level, so it is accurate for block-backed filesystems. I also attempt to wire up NFS and CIFS. writes: attempt to count the number of bytes which this process caused to be sent to the storage layer. This is done at page-dirtying time. The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes the file, it will in fact perform no writeout. But it will have been accounted as having caused 1MB of write. So... cancelled_writes: account the number of bytes which this process caused to not happen, by truncating pagecache. We _could_ just subtract this from the process's `write' accounting. But that means that some processes would be reported to have done negative amounts of write IO, which is silly. So we just report the raw number and punt this decision up to userspace. Now, we _could_ account for writes at the physical I/O level. But - This would require that we track memory-dirtying tasks at the per-page level (would require a new pointer in struct page). - It would mean that IO statistics for a process are usually only available long after that process has exitted. Which means that we probably cannot communicate this info via taskstats. This patch: Wire up the kernel-private data structures and the accessor functions to manipulate them. Cc: Jay Lan <jlan@sgi.com> Cc: Shailabh Nagar <nagar@watson.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Chris Sturtivant <csturtiv@sgi.com> Cc: Tony Ernst <tee@sgi.com> Cc: Guillaume Thouvenin <guillaume.thouvenin@bull.net> Cc: David Wright <daw@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org> |