2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-27 16:15:54 +08:00
Commit Graph

8 Commits

Author SHA1 Message Date
Chen Yu
7a9c2dd08e x86/pm: Introduce quirk framework to save/restore extra MSR registers around suspend/resume
A bug was reported that on certain Broadwell platforms, after
resuming from S3, the CPU is running at an anomalously low
speed.

It turns out that the BIOS has modified the value of the
THERM_CONTROL register during S3, and changed it from 0 to 0x10,
thus enabled clock modulation(bit4), but with undefined CPU Duty
Cycle(bit1:3) - which causes the problem.

Here is a simple scenario to reproduce the issue:

 1. Boot up the system
 2. Get MSR 0x19a, it should be 0
 3. Put the system into sleep, then wake it up
 4. Get MSR 0x19a, it shows 0x10, while it should be 0

Although some BIOSen want to change the CPU Duty Cycle during
S3, in our case we don't want the BIOS to do any modification.

Fix this issue by introducing a more generic x86 framework to
save/restore specified MSR registers(THERM_CONTROL in this case)
for suspend/resume. This allows us to fix similar bugs in a much
simpler way in the future.

When the kernel wants to protect certain MSRs during suspending,
we simply add a quirk entry in msr_save_dmi_table, and customize
the MSR registers inside the quirk callback, for example:

  u32 msr_id_need_to_save[] = {MSR_ID0, MSR_ID1, MSR_ID2...};

and the quirk mechanism ensures that, once resumed from suspend,
the MSRs indicated by these IDs will be restored to their
original, pre-suspend values.

Since both 64-bit and 32-bit kernels are affected, this patch
covers the common 64/32-bit suspend/resume code path. And
because the MSRs specified by the user might not be available or
readable in any situation, we use rdmsrl_safe() to safely save
these MSRs.

Reported-and-tested-by: Marcin Kaszewski <marcin.kaszewski@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: len.brown@intel.com
Cc: linux@horizon.com
Cc: luto@kernel.org
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/c9abdcbc173dd2f57e8990e304376f19287e92ba.1448382971.git.yu.c.chen@intel.com
[ More edits to the naming of data structures. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-26 10:04:53 +01:00
Ingo Molnar
df6b35f409 x86/fpu: Rename i387.h to fpu/api.h
We already have fpu/types.h, move i387.h to fpu/api.h.

The file name has become a misnomer anyway: it offers generic FPU APIs,
but is not limited to i387 functionality.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:30 +02:00
Konrad Rzeszutek Wilk
cc456c4e7c x86, gdt, hibernate: Store/load GDT for hibernate path.
The git commite7a5cd063c7b4c58417f674821d63f5eb6747e37
("x86-64, gdt: Store/load GDT for ACPI S3 or hibernate/resume path
is not needed.") assumes that for the hibernate path the booting
kernel and the resuming kernel MUST be the same. That is certainly
the case for a 32-bit kernel (see check_image_kernel and
CONFIG_ARCH_HIBERNATION_HEADER config option).

However for 64-bit kernels it is OK to have a different kernel
version (and size of the image) of the booting and resuming kernels.
Hence the above mentioned git commit introduces an regression.

This patch fixes it by introducing a 'struct desc_ptr gdt_desc'
back in the 'struct saved_context'. However instead of having in the
'save_processor_state' and 'restore_processor_state' the
store/load_gdt calls, we are only saving the GDT in the
save_processor_state.

For the restore path the lgdt operation is done in
hibernate_asm_[32|64].S in the 'restore_registers' path.

The apt reader of this description will recognize that only 64-bit
kernels need this treatment, not 32-bit. This patch adds the logic
in the 32-bit path to be more similar to 64-bit so that in the future
the unification process can take advantage of this.

[ hpa: this also reverts an inadvertent on-disk format change ]

Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1367459610-9656-2-git-send-email-konrad.wilk@oracle.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-05-02 11:27:35 -07:00
Konrad Rzeszutek Wilk
e7a5cd063c x86-64, gdt: Store/load GDT for ACPI S3 or hibernate/resume path is not needed.
During the ACPI S3 resume path the trampoline code handles it already.

During the ACPI S3 suspend phase (acpi_suspend_lowlevel) we set:
early_gdt_descr.address = (..)get_cpu_gdt_table(smp_processor_id());

which is then used during the resume path and has the same exact
value as what the store/load_gdt do with the saved_context
(which is saved/restored via save/restore_processor_state()).

The flow during resume is complex and for 64-bit kernels we use three GDTs
- one early bootstrap GDT (wakeup_igdt) that we load to workaround
broken BIOSes, an early Protected Mode to Long Mode transition one
(tr_gdt), and the final one - early_gdt_descr (which points to the real GDT).

The early ('wakeup_gdt') is loaded in 'trampoline_start' for working
around broken BIOSes, and then when we end up in Protected Mode in the
startup_32 (in trampoline_64.s, not head_32.s) we use the 'tr_gdt'
(still in trampoline_64.s). This 'tr_gdt' has a a 32-bit code segment,
64-bit code segment with L=1, and a 32-bit data segment.

Once we have transitioned from Protected Mode to Long Mode we then
set the GDT to 'early_gdt_desc' and then via an iretq emerge in
wakeup_long64 (set via 'initial_code' variable in acpi_suspend_lowlevel).

In the wakeup_long64 we end up restoring the %rip (which is set to
'resume_point') and jump there.

In 'resume_point' we call 'restore_processor_state' which does
the load_gdt on the saved context. This load_gdt is redundant as the
GDT loaded via early_gdt_desc is the same.

Here is the call-chain:
 wakeup_start
   |- lgdtl wakeup_gdt [the work-around broken BIOSes]
   |
   \-- trampoline_start (trampoline_64.S)
         |- lgdtl tr_gdt
         |
         \-- startup_32 (trampoline_64.S)
               |
               \-- startup_64 (trampoline_64.S)
                      |
                      \-- secondary_startup_64
                               |- lgdtl early_gdt_desc
                               | ...
                               |- movq initial_code(%rip), %eax
                               |-.. lretq
                               \-- wakeup_64
                                     |-- other registers are reloaded
                                     |-- call restore_processor_state

The hibernate path is much simpler. During the saving of the hibernation
image we call save_processor_state() and save the contents of that along
with the rest of the kernel in the hibernation image destination.
We save the EIP of 'restore_registers' (restore_jump_address) and cr3
(restore_cr3).

During hibernate resume, the 'restore_registers' (via the
'restore_jump_address) in hibernate_asm_64.S is invoked which restores
the contents of most registers. Naturally the resume path benefits from
already being in 64-bit mode, so it does not have to load the GDT.

It only reloads the cr3 (from restore_cr3) and continues on. Note that
the restoration of the restore image page-tables is done prior to this.

After the 'restore_registers' it returns and we end up called
restore_processor_state() - where we reload the GDT. The reload of
the GDT is not needed as bootup kernel has already loaded the GDT which
is at the same physical location as the the restored kernel.

Note that the hibernation path assumes the GDT is correct during its
'restore_registers'. The assumption in the code is that the restored
image is the same as saved - meaning we are not trying to restore
an different kernel in the virtual address space of a new kernel.

Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-2-git-send-email-konrad.wilk@oracle.com
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-04-11 15:39:38 -07:00
Rafael J. Wysocki
354258011e PM / Hibernate: Remove arch_prepare_suspend()
All architectures supporting hibernation define
arch_prepare_suspend() as an empty function, so remove it.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-05-24 23:35:55 +02:00
Ondrej Zary
85a0e75397 PM / x86: Save/restore MISC_ENABLE register
Save/restore MISC_ENABLE register on suspend/resume.
This fixes OOPS (invalid opcode) on resume from STR on Asus P4P800-VM,
which wakes up with MWAIT disabled.

Fixes https://bugzilla.kernel.org/show_bug.cgi?id=15385

Signed-off-by: Ondrej Zary <linux@rainbow-software.org>
Tested-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2010-06-08 00:32:49 +02:00
H. Peter Anvin
1965aae3c9 x86: Fix ASM_X86__ header guards
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:

a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22 22:55:23 -07:00
Al Viro
bb8985586b x86, um: ... and asm-x86 move
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22 22:55:20 -07:00