2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 10:34:24 +08:00

mutex: Fix annotations to include it in kernel-locking docbook

Fix kernel-doc notation in linux/mutex.h and kernel/mutex.c,
then add these 2 files to the kernel-locking docbook as the
Mutex API reference chapter.

Add one API function to mutex-design.txt and correct a typo in
that file.

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
LKML-Reference: <20100902154816.6cc2f9ad.randy.dunlap@oracle.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Randy Dunlap 2010-09-02 15:48:16 -07:00 committed by Ingo Molnar
parent 950eaaca68
commit ef5dc121d5
4 changed files with 23 additions and 17 deletions

View File

@ -1961,6 +1961,12 @@ machines due to caching.
</sect1>
</chapter>
<chapter id="apiref">
<title>Mutex API reference</title>
!Iinclude/linux/mutex.h
!Ekernel/mutex.c
</chapter>
<chapter id="references">
<title>Further reading</title>

View File

@ -9,7 +9,7 @@ firstly, there's nothing wrong with semaphores. But if the simpler
mutex semantics are sufficient for your code, then there are a couple
of advantages of mutexes:
- 'struct mutex' is smaller on most architectures: .e.g on x86,
- 'struct mutex' is smaller on most architectures: E.g. on x86,
'struct semaphore' is 20 bytes, 'struct mutex' is 16 bytes.
A smaller structure size means less RAM footprint, and better
CPU-cache utilization.
@ -136,3 +136,4 @@ the APIs of 'struct mutex' have been streamlined:
void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
int mutex_lock_interruptible_nested(struct mutex *lock,
unsigned int subclass);
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);

View File

@ -78,6 +78,14 @@ struct mutex_waiter {
# include <linux/mutex-debug.h>
#else
# define __DEBUG_MUTEX_INITIALIZER(lockname)
/**
* mutex_init - initialize the mutex
* @mutex: the mutex to be initialized
*
* Initialize the mutex to unlocked state.
*
* It is not allowed to initialize an already locked mutex.
*/
# define mutex_init(mutex) \
do { \
static struct lock_class_key __key; \

View File

@ -36,15 +36,6 @@
# include <asm/mutex.h>
#endif
/***
* mutex_init - initialize the mutex
* @lock: the mutex to be initialized
* @key: the lock_class_key for the class; used by mutex lock debugging
*
* Initialize the mutex to unlocked state.
*
* It is not allowed to initialize an already locked mutex.
*/
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
@ -68,7 +59,7 @@ EXPORT_SYMBOL(__mutex_init);
static __used noinline void __sched
__mutex_lock_slowpath(atomic_t *lock_count);
/***
/**
* mutex_lock - acquire the mutex
* @lock: the mutex to be acquired
*
@ -105,7 +96,7 @@ EXPORT_SYMBOL(mutex_lock);
static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
/***
/**
* mutex_unlock - release the mutex
* @lock: the mutex to be released
*
@ -364,8 +355,8 @@ __mutex_lock_killable_slowpath(atomic_t *lock_count);
static noinline int __sched
__mutex_lock_interruptible_slowpath(atomic_t *lock_count);
/***
* mutex_lock_interruptible - acquire the mutex, interruptable
/**
* mutex_lock_interruptible - acquire the mutex, interruptible
* @lock: the mutex to be acquired
*
* Lock the mutex like mutex_lock(), and return 0 if the mutex has
@ -456,15 +447,15 @@ static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
return prev == 1;
}
/***
* mutex_trylock - try acquire the mutex, without waiting
/**
* mutex_trylock - try to acquire the mutex, without waiting
* @lock: the mutex to be acquired
*
* Try to acquire the mutex atomically. Returns 1 if the mutex
* has been acquired successfully, and 0 on contention.
*
* NOTE: this function follows the spin_trylock() convention, so
* it is negated to the down_trylock() return values! Be careful
* it is negated from the down_trylock() return values! Be careful
* about this when converting semaphore users to mutexes.
*
* This function must not be used in interrupt context. The