2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 03:33:59 +08:00

Merge remote-tracking branches 'asoc/topic/fsl', 'asoc/topic/fsl-asrc', 'asoc/topic/fsl-spdif' and 'asoc/topic/imx-audmux' into asoc-next

This commit is contained in:
Mark Brown 2014-08-04 16:31:40 +01:00
13 changed files with 1990 additions and 48 deletions

View File

@ -0,0 +1,60 @@
Freescale Asynchronous Sample Rate Converter (ASRC) Controller
The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a
signal associated with an input clock into a signal associated with a different
output clock. The driver currently works as a Front End of DPCM with other Back
Ends Audio controller such as ESAI, SSI and SAI. It has three pairs to support
three substreams within totally 10 channels.
Required properties:
- compatible : Contains "fsl,imx35-asrc" or "fsl,imx53-asrc".
- reg : Offset and length of the register set for the device.
- interrupts : Contains the spdif interrupt.
- dmas : Generic dma devicetree binding as described in
Documentation/devicetree/bindings/dma/dma.txt.
- dma-names : Contains "rxa", "rxb", "rxc", "txa", "txb" and "txc".
- clocks : Contains an entry for each entry in clock-names.
- clock-names : Contains the following entries
"mem" Peripheral access clock to access registers.
"ipg" Peripheral clock to driver module.
"asrck_<0-f>" Clock sources for input and output clock.
- big-endian : If this property is absent, the little endian mode
will be in use as default. Otherwise, the big endian
mode will be in use for all the device registers.
- fsl,asrc-rate : Defines a mutual sample rate used by DPCM Back Ends.
- fsl,asrc-width : Defines a mutual sample width used by DPCM Back Ends.
Example:
asrc: asrc@02034000 {
compatible = "fsl,imx53-asrc";
reg = <0x02034000 0x4000>;
interrupts = <0 50 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks 107>, <&clks 107>, <&clks 0>,
<&clks 0>, <&clks 0>, <&clks 0>, <&clks 0>,
<&clks 0>, <&clks 0>, <&clks 0>, <&clks 0>,
<&clks 0>, <&clks 0>, <&clks 0>, <&clks 0>,
<&clks 107>, <&clks 0>, <&clks 0>;
clock-names = "mem", "ipg", "asrck0",
"asrck_1", "asrck_2", "asrck_3", "asrck_4",
"asrck_5", "asrck_6", "asrck_7", "asrck_8",
"asrck_9", "asrck_a", "asrck_b", "asrck_c",
"asrck_d", "asrck_e", "asrck_f";
dmas = <&sdma 17 23 1>, <&sdma 18 23 1>, <&sdma 19 23 1>,
<&sdma 20 23 1>, <&sdma 21 23 1>, <&sdma 22 23 1>;
dma-names = "rxa", "rxb", "rxc",
"txa", "txb", "txc";
fsl,asrc-rate = <48000>;
fsl,asrc-width = <16>;
status = "okay";
};

View File

@ -50,6 +50,7 @@ enum imx_dma_prio {
struct imx_dma_data {
int dma_request; /* DMA request line */
int dma_request2; /* secondary DMA request line */
enum sdma_peripheral_type peripheral_type;
int priority;
};

View File

@ -2,9 +2,20 @@ menu "SoC Audio for Freescale CPUs"
comment "Common SoC Audio options for Freescale CPUs:"
config SND_SOC_FSL_ASRC
tristate "Asynchronous Sample Rate Converter (ASRC) module support"
select REGMAP_MMIO
select SND_SOC_GENERIC_DMAENGINE_PCM
help
Say Y if you want to add Asynchronous Sample Rate Converter (ASRC)
support for the Freescale CPUs.
This option is only useful for out-of-tree drivers since
in-tree drivers select it automatically.
config SND_SOC_FSL_SAI
tristate "Synchronous Audio Interface (SAI) module support"
select REGMAP_MMIO
select SND_SOC_IMX_PCM_DMA if SND_IMX_SOC != n
select SND_SOC_GENERIC_DMAENGINE_PCM
help
Say Y if you want to add Synchronous Audio Interface (SAI)
@ -15,7 +26,7 @@ config SND_SOC_FSL_SAI
config SND_SOC_FSL_SSI
tristate "Synchronous Serial Interface module support"
select SND_SOC_IMX_PCM_DMA if SND_IMX_SOC != n
select SND_SOC_IMX_PCM_FIQ if SND_IMX_SOC != n && ARCH_MXC
select SND_SOC_IMX_PCM_FIQ if SND_IMX_SOC != n && (MXC_TZIC || MXC_AVIC)
select REGMAP_MMIO
help
Say Y if you want to add Synchronous Serial Interface (SSI)
@ -27,7 +38,7 @@ config SND_SOC_FSL_SPDIF
tristate "Sony/Philips Digital Interface module support"
select REGMAP_MMIO
select SND_SOC_IMX_PCM_DMA if SND_IMX_SOC != n
select SND_SOC_IMX_PCM_FIQ if SND_IMX_SOC != n && ARCH_MXC
select SND_SOC_IMX_PCM_FIQ if SND_IMX_SOC != n && (MXC_TZIC || MXC_AVIC)
help
Say Y if you want to add Sony/Philips Digital Interface (SPDIF)
support for the Freescale CPUs.
@ -37,6 +48,7 @@ config SND_SOC_FSL_SPDIF
config SND_SOC_FSL_ESAI
tristate "Enhanced Serial Audio Interface (ESAI) module support"
select REGMAP_MMIO
select SND_SOC_IMX_PCM_DMA if SND_IMX_SOC != n
select SND_SOC_FSL_UTILS
help
Say Y if you want to add Enhanced Synchronous Audio Interface

View File

@ -11,6 +11,7 @@ snd-soc-p1022-rdk-objs := p1022_rdk.o
obj-$(CONFIG_SND_SOC_P1022_RDK) += snd-soc-p1022-rdk.o
# Freescale SSI/DMA/SAI/SPDIF Support
snd-soc-fsl-asrc-objs := fsl_asrc.o fsl_asrc_dma.o
snd-soc-fsl-sai-objs := fsl_sai.o
snd-soc-fsl-ssi-y := fsl_ssi.o
snd-soc-fsl-ssi-$(CONFIG_DEBUG_FS) += fsl_ssi_dbg.o
@ -18,6 +19,7 @@ snd-soc-fsl-spdif-objs := fsl_spdif.o
snd-soc-fsl-esai-objs := fsl_esai.o
snd-soc-fsl-utils-objs := fsl_utils.o
snd-soc-fsl-dma-objs := fsl_dma.o
obj-$(CONFIG_SND_SOC_FSL_ASRC) += snd-soc-fsl-asrc.o
obj-$(CONFIG_SND_SOC_FSL_SAI) += snd-soc-fsl-sai.o
obj-$(CONFIG_SND_SOC_FSL_SSI) += snd-soc-fsl-ssi.o
obj-$(CONFIG_SND_SOC_FSL_SPDIF) += snd-soc-fsl-spdif.o

995
sound/soc/fsl/fsl_asrc.c Normal file
View File

@ -0,0 +1,995 @@
/*
* Freescale ASRC ALSA SoC Digital Audio Interface (DAI) driver
*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* Author: Nicolin Chen <nicoleotsuka@gmail.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/pm_runtime.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "fsl_asrc.h"
#define IDEAL_RATIO_DECIMAL_DEPTH 26
#define pair_err(fmt, ...) \
dev_err(&asrc_priv->pdev->dev, "Pair %c: " fmt, 'A' + index, ##__VA_ARGS__)
#define pair_dbg(fmt, ...) \
dev_dbg(&asrc_priv->pdev->dev, "Pair %c: " fmt, 'A' + index, ##__VA_ARGS__)
/* Sample rates are aligned with that defined in pcm.h file */
static const u8 process_option[][8][2] = {
/* 32kHz 44.1kHz 48kHz 64kHz 88.2kHz 96kHz 176kHz 192kHz */
{{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},}, /* 5512Hz */
{{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},}, /* 8kHz */
{{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},}, /* 11025Hz */
{{0, 1}, {0, 1}, {0, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},}, /* 16kHz */
{{0, 1}, {0, 1}, {0, 1}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},}, /* 22050Hz */
{{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 0}, {0, 0}, {0, 0},}, /* 32kHz */
{{0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 0}, {0, 0},}, /* 44.1kHz */
{{0, 2}, {0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 0}, {0, 0},}, /* 48kHz */
{{1, 2}, {0, 2}, {0, 2}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 0},}, /* 64kHz */
{{1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},}, /* 88.2kHz */
{{1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},}, /* 96kHz */
{{2, 2}, {2, 2}, {2, 2}, {2, 1}, {2, 1}, {2, 1}, {2, 1}, {2, 1},}, /* 176kHz */
{{2, 2}, {2, 2}, {2, 2}, {2, 1}, {2, 1}, {2, 1}, {2, 1}, {2, 1},}, /* 192kHz */
};
/* Corresponding to process_option */
static int supported_input_rate[] = {
5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000, 88200,
96000, 176400, 192000,
};
static int supported_asrc_rate[] = {
32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000,
};
/**
* The following tables map the relationship between asrc_inclk/asrc_outclk in
* fsl_asrc.h and the registers of ASRCSR
*/
static unsigned char input_clk_map_imx35[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
};
static unsigned char output_clk_map_imx35[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
};
/* i.MX53 uses the same map for input and output */
static unsigned char input_clk_map_imx53[] = {
/* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf */
0x0, 0x1, 0x2, 0x7, 0x4, 0x5, 0x6, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xf, 0xe, 0xd,
};
static unsigned char output_clk_map_imx53[] = {
/* 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf */
0x8, 0x9, 0xa, 0x7, 0xc, 0x5, 0x6, 0xb, 0x0, 0x1, 0x2, 0x3, 0x4, 0xf, 0xe, 0xd,
};
static unsigned char *clk_map[2];
/**
* Request ASRC pair
*
* It assigns pair by the order of A->C->B because allocation of pair B,
* within range [ANCA, ANCA+ANCB-1], depends on the channels of pair A
* while pair A and pair C are comparatively independent.
*/
static int fsl_asrc_request_pair(int channels, struct fsl_asrc_pair *pair)
{
enum asrc_pair_index index = ASRC_INVALID_PAIR;
struct fsl_asrc *asrc_priv = pair->asrc_priv;
struct device *dev = &asrc_priv->pdev->dev;
unsigned long lock_flags;
int i, ret = 0;
spin_lock_irqsave(&asrc_priv->lock, lock_flags);
for (i = ASRC_PAIR_A; i < ASRC_PAIR_MAX_NUM; i++) {
if (asrc_priv->pair[i] != NULL)
continue;
index = i;
if (i != ASRC_PAIR_B)
break;
}
if (index == ASRC_INVALID_PAIR) {
dev_err(dev, "all pairs are busy now\n");
ret = -EBUSY;
} else if (asrc_priv->channel_avail < channels) {
dev_err(dev, "can't afford required channels: %d\n", channels);
ret = -EINVAL;
} else {
asrc_priv->channel_avail -= channels;
asrc_priv->pair[index] = pair;
pair->channels = channels;
pair->index = index;
}
spin_unlock_irqrestore(&asrc_priv->lock, lock_flags);
return ret;
}
/**
* Release ASRC pair
*
* It clears the resource from asrc_priv and releases the occupied channels.
*/
static void fsl_asrc_release_pair(struct fsl_asrc_pair *pair)
{
struct fsl_asrc *asrc_priv = pair->asrc_priv;
enum asrc_pair_index index = pair->index;
unsigned long lock_flags;
/* Make sure the pair is disabled */
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_MASK(index), 0);
spin_lock_irqsave(&asrc_priv->lock, lock_flags);
asrc_priv->channel_avail += pair->channels;
asrc_priv->pair[index] = NULL;
pair->error = 0;
spin_unlock_irqrestore(&asrc_priv->lock, lock_flags);
}
/**
* Configure input and output thresholds
*/
static void fsl_asrc_set_watermarks(struct fsl_asrc_pair *pair, u32 in, u32 out)
{
struct fsl_asrc *asrc_priv = pair->asrc_priv;
enum asrc_pair_index index = pair->index;
regmap_update_bits(asrc_priv->regmap, REG_ASRMCR(index),
ASRMCRi_EXTTHRSHi_MASK |
ASRMCRi_INFIFO_THRESHOLD_MASK |
ASRMCRi_OUTFIFO_THRESHOLD_MASK,
ASRMCRi_EXTTHRSHi |
ASRMCRi_INFIFO_THRESHOLD(in) |
ASRMCRi_OUTFIFO_THRESHOLD(out));
}
/**
* Calculate the total divisor between asrck clock rate and sample rate
*
* It follows the formula clk_rate = samplerate * (2 ^ prescaler) * divider
*/
static u32 fsl_asrc_cal_asrck_divisor(struct fsl_asrc_pair *pair, u32 div)
{
u32 ps;
/* Calculate the divisors: prescaler [2^0, 2^7], divder [1, 8] */
for (ps = 0; div > 8; ps++)
div >>= 1;
return ((div - 1) << ASRCDRi_AxCPi_WIDTH) | ps;
}
/**
* Calculate and set the ratio for Ideal Ratio mode only
*
* The ratio is a 32-bit fixed point value with 26 fractional bits.
*/
static int fsl_asrc_set_ideal_ratio(struct fsl_asrc_pair *pair,
int inrate, int outrate)
{
struct fsl_asrc *asrc_priv = pair->asrc_priv;
enum asrc_pair_index index = pair->index;
unsigned long ratio;
int i;
if (!outrate) {
pair_err("output rate should not be zero\n");
return -EINVAL;
}
/* Calculate the intergal part of the ratio */
ratio = (inrate / outrate) << IDEAL_RATIO_DECIMAL_DEPTH;
/* ... and then the 26 depth decimal part */
inrate %= outrate;
for (i = 1; i <= IDEAL_RATIO_DECIMAL_DEPTH; i++) {
inrate <<= 1;
if (inrate < outrate)
continue;
ratio |= 1 << (IDEAL_RATIO_DECIMAL_DEPTH - i);
inrate -= outrate;
if (!inrate)
break;
}
regmap_write(asrc_priv->regmap, REG_ASRIDRL(index), ratio);
regmap_write(asrc_priv->regmap, REG_ASRIDRH(index), ratio >> 24);
return 0;
}
/**
* Configure the assigned ASRC pair
*
* It configures those ASRC registers according to a configuration instance
* of struct asrc_config which includes in/output sample rate, width, channel
* and clock settings.
*/
static int fsl_asrc_config_pair(struct fsl_asrc_pair *pair)
{
struct asrc_config *config = pair->config;
struct fsl_asrc *asrc_priv = pair->asrc_priv;
enum asrc_pair_index index = pair->index;
u32 inrate, outrate, indiv, outdiv;
u32 clk_index[2], div[2];
int in, out, channels;
struct clk *clk;
bool ideal;
if (!config) {
pair_err("invalid pair config\n");
return -EINVAL;
}
/* Validate channels */
if (config->channel_num < 1 || config->channel_num > 10) {
pair_err("does not support %d channels\n", config->channel_num);
return -EINVAL;
}
/* Validate output width */
if (config->output_word_width == ASRC_WIDTH_8_BIT) {
pair_err("does not support 8bit width output\n");
return -EINVAL;
}
inrate = config->input_sample_rate;
outrate = config->output_sample_rate;
ideal = config->inclk == INCLK_NONE;
/* Validate input and output sample rates */
for (in = 0; in < ARRAY_SIZE(supported_input_rate); in++)
if (inrate == supported_input_rate[in])
break;
if (in == ARRAY_SIZE(supported_input_rate)) {
pair_err("unsupported input sample rate: %dHz\n", inrate);
return -EINVAL;
}
for (out = 0; out < ARRAY_SIZE(supported_asrc_rate); out++)
if (outrate == supported_asrc_rate[out])
break;
if (out == ARRAY_SIZE(supported_asrc_rate)) {
pair_err("unsupported output sample rate: %dHz\n", outrate);
return -EINVAL;
}
/* Validate input and output clock sources */
clk_index[IN] = clk_map[IN][config->inclk];
clk_index[OUT] = clk_map[OUT][config->outclk];
/* We only have output clock for ideal ratio mode */
clk = asrc_priv->asrck_clk[clk_index[ideal ? OUT : IN]];
div[IN] = clk_get_rate(clk) / inrate;
if (div[IN] == 0) {
pair_err("failed to support input sample rate %dHz by asrck_%x\n",
inrate, clk_index[ideal ? OUT : IN]);
return -EINVAL;
}
clk = asrc_priv->asrck_clk[clk_index[OUT]];
/* Use fixed output rate for Ideal Ratio mode (INCLK_NONE) */
if (ideal)
div[OUT] = clk_get_rate(clk) / IDEAL_RATIO_RATE;
else
div[OUT] = clk_get_rate(clk) / outrate;
if (div[OUT] == 0) {
pair_err("failed to support output sample rate %dHz by asrck_%x\n",
outrate, clk_index[OUT]);
return -EINVAL;
}
/* Set the channel number */
channels = config->channel_num;
if (asrc_priv->channel_bits < 4)
channels /= 2;
/* Update channels for current pair */
regmap_update_bits(asrc_priv->regmap, REG_ASRCNCR,
ASRCNCR_ANCi_MASK(index, asrc_priv->channel_bits),
ASRCNCR_ANCi(index, channels, asrc_priv->channel_bits));
/* Default setting: Automatic selection for processing mode */
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_ATSi_MASK(index), ASRCTR_ATS(index));
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_USRi_MASK(index), 0);
/* Set the input and output clock sources */
regmap_update_bits(asrc_priv->regmap, REG_ASRCSR,
ASRCSR_AICSi_MASK(index) | ASRCSR_AOCSi_MASK(index),
ASRCSR_AICS(index, clk_index[IN]) |
ASRCSR_AOCS(index, clk_index[OUT]));
/* Calculate the input clock divisors */
indiv = fsl_asrc_cal_asrck_divisor(pair, div[IN]);
outdiv = fsl_asrc_cal_asrck_divisor(pair, div[OUT]);
/* Suppose indiv and outdiv includes prescaler, so add its MASK too */
regmap_update_bits(asrc_priv->regmap, REG_ASRCDR(index),
ASRCDRi_AOCPi_MASK(index) | ASRCDRi_AICPi_MASK(index) |
ASRCDRi_AOCDi_MASK(index) | ASRCDRi_AICDi_MASK(index),
ASRCDRi_AOCP(index, outdiv) | ASRCDRi_AICP(index, indiv));
/* Implement word_width configurations */
regmap_update_bits(asrc_priv->regmap, REG_ASRMCR1(index),
ASRMCR1i_OW16_MASK | ASRMCR1i_IWD_MASK,
ASRMCR1i_OW16(config->output_word_width) |
ASRMCR1i_IWD(config->input_word_width));
/* Enable BUFFER STALL */
regmap_update_bits(asrc_priv->regmap, REG_ASRMCR(index),
ASRMCRi_BUFSTALLi_MASK, ASRMCRi_BUFSTALLi);
/* Set default thresholds for input and output FIFO */
fsl_asrc_set_watermarks(pair, ASRC_INPUTFIFO_THRESHOLD,
ASRC_INPUTFIFO_THRESHOLD);
/* Configure the followings only for Ideal Ratio mode */
if (!ideal)
return 0;
/* Clear ASTSx bit to use Ideal Ratio mode */
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_ATSi_MASK(index), 0);
/* Enable Ideal Ratio mode */
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_IDRi_MASK(index) | ASRCTR_USRi_MASK(index),
ASRCTR_IDR(index) | ASRCTR_USR(index));
/* Apply configurations for pre- and post-processing */
regmap_update_bits(asrc_priv->regmap, REG_ASRCFG,
ASRCFG_PREMODi_MASK(index) | ASRCFG_POSTMODi_MASK(index),
ASRCFG_PREMOD(index, process_option[in][out][0]) |
ASRCFG_POSTMOD(index, process_option[in][out][1]));
return fsl_asrc_set_ideal_ratio(pair, inrate, outrate);
}
/**
* Start the assigned ASRC pair
*
* It enables the assigned pair and makes it stopped at the stall level.
*/
static void fsl_asrc_start_pair(struct fsl_asrc_pair *pair)
{
struct fsl_asrc *asrc_priv = pair->asrc_priv;
enum asrc_pair_index index = pair->index;
int reg, retry = 10, i;
/* Enable the current pair */
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_MASK(index), ASRCTR_ASRCE(index));
/* Wait for status of initialization */
do {
udelay(5);
regmap_read(asrc_priv->regmap, REG_ASRCFG, &reg);
reg &= ASRCFG_INIRQi_MASK(index);
} while (!reg && --retry);
/* Make the input fifo to ASRC STALL level */
regmap_read(asrc_priv->regmap, REG_ASRCNCR, &reg);
for (i = 0; i < pair->channels * 4; i++)
regmap_write(asrc_priv->regmap, REG_ASRDI(index), 0);
/* Enable overload interrupt */
regmap_write(asrc_priv->regmap, REG_ASRIER, ASRIER_AOLIE);
}
/**
* Stop the assigned ASRC pair
*/
static void fsl_asrc_stop_pair(struct fsl_asrc_pair *pair)
{
struct fsl_asrc *asrc_priv = pair->asrc_priv;
enum asrc_pair_index index = pair->index;
/* Stop the current pair */
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_MASK(index), 0);
}
/**
* Get DMA channel according to the pair and direction.
*/
struct dma_chan *fsl_asrc_get_dma_channel(struct fsl_asrc_pair *pair, bool dir)
{
struct fsl_asrc *asrc_priv = pair->asrc_priv;
enum asrc_pair_index index = pair->index;
char name[4];
sprintf(name, "%cx%c", dir == IN ? 'r' : 't', index + 'a');
return dma_request_slave_channel(&asrc_priv->pdev->dev, name);
}
EXPORT_SYMBOL_GPL(fsl_asrc_get_dma_channel);
static int fsl_asrc_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsl_asrc *asrc_priv = snd_soc_dai_get_drvdata(dai);
int width = snd_pcm_format_width(params_format(params));
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
unsigned int channels = params_channels(params);
unsigned int rate = params_rate(params);
struct asrc_config config;
int word_width, ret;
ret = fsl_asrc_request_pair(channels, pair);
if (ret) {
dev_err(dai->dev, "fail to request asrc pair\n");
return ret;
}
pair->config = &config;
if (width == 16)
width = ASRC_WIDTH_16_BIT;
else
width = ASRC_WIDTH_24_BIT;
if (asrc_priv->asrc_width == 16)
word_width = ASRC_WIDTH_16_BIT;
else
word_width = ASRC_WIDTH_24_BIT;
config.pair = pair->index;
config.channel_num = channels;
config.inclk = INCLK_NONE;
config.outclk = OUTCLK_ASRCK1_CLK;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
config.input_word_width = width;
config.output_word_width = word_width;
config.input_sample_rate = rate;
config.output_sample_rate = asrc_priv->asrc_rate;
} else {
config.input_word_width = word_width;
config.output_word_width = width;
config.input_sample_rate = asrc_priv->asrc_rate;
config.output_sample_rate = rate;
}
ret = fsl_asrc_config_pair(pair);
if (ret) {
dev_err(dai->dev, "fail to config asrc pair\n");
return ret;
}
return 0;
}
static int fsl_asrc_dai_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
if (pair)
fsl_asrc_release_pair(pair);
return 0;
}
static int fsl_asrc_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
fsl_asrc_start_pair(pair);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
fsl_asrc_stop_pair(pair);
break;
default:
return -EINVAL;
}
return 0;
}
static struct snd_soc_dai_ops fsl_asrc_dai_ops = {
.hw_params = fsl_asrc_dai_hw_params,
.hw_free = fsl_asrc_dai_hw_free,
.trigger = fsl_asrc_dai_trigger,
};
static int fsl_asrc_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_asrc *asrc_priv = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &asrc_priv->dma_params_tx,
&asrc_priv->dma_params_rx);
return 0;
}
#define FSL_ASRC_RATES SNDRV_PCM_RATE_8000_192000
#define FSL_ASRC_FORMATS (SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S20_3LE)
static struct snd_soc_dai_driver fsl_asrc_dai = {
.probe = fsl_asrc_dai_probe,
.playback = {
.stream_name = "ASRC-Playback",
.channels_min = 1,
.channels_max = 10,
.rates = FSL_ASRC_RATES,
.formats = FSL_ASRC_FORMATS,
},
.capture = {
.stream_name = "ASRC-Capture",
.channels_min = 1,
.channels_max = 10,
.rates = FSL_ASRC_RATES,
.formats = FSL_ASRC_FORMATS,
},
.ops = &fsl_asrc_dai_ops,
};
static const struct snd_soc_component_driver fsl_asrc_component = {
.name = "fsl-asrc-dai",
};
static bool fsl_asrc_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ASRCTR:
case REG_ASRIER:
case REG_ASRCNCR:
case REG_ASRCFG:
case REG_ASRCSR:
case REG_ASRCDR1:
case REG_ASRCDR2:
case REG_ASRSTR:
case REG_ASRPM1:
case REG_ASRPM2:
case REG_ASRPM3:
case REG_ASRPM4:
case REG_ASRPM5:
case REG_ASRTFR1:
case REG_ASRCCR:
case REG_ASRDOA:
case REG_ASRDOB:
case REG_ASRDOC:
case REG_ASRIDRHA:
case REG_ASRIDRLA:
case REG_ASRIDRHB:
case REG_ASRIDRLB:
case REG_ASRIDRHC:
case REG_ASRIDRLC:
case REG_ASR76K:
case REG_ASR56K:
case REG_ASRMCRA:
case REG_ASRFSTA:
case REG_ASRMCRB:
case REG_ASRFSTB:
case REG_ASRMCRC:
case REG_ASRFSTC:
case REG_ASRMCR1A:
case REG_ASRMCR1B:
case REG_ASRMCR1C:
return true;
default:
return false;
}
}
static bool fsl_asrc_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ASRSTR:
case REG_ASRDIA:
case REG_ASRDIB:
case REG_ASRDIC:
case REG_ASRDOA:
case REG_ASRDOB:
case REG_ASRDOC:
case REG_ASRFSTA:
case REG_ASRFSTB:
case REG_ASRFSTC:
case REG_ASRCFG:
return true;
default:
return false;
}
}
static bool fsl_asrc_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ASRCTR:
case REG_ASRIER:
case REG_ASRCNCR:
case REG_ASRCFG:
case REG_ASRCSR:
case REG_ASRCDR1:
case REG_ASRCDR2:
case REG_ASRSTR:
case REG_ASRPM1:
case REG_ASRPM2:
case REG_ASRPM3:
case REG_ASRPM4:
case REG_ASRPM5:
case REG_ASRTFR1:
case REG_ASRCCR:
case REG_ASRDIA:
case REG_ASRDIB:
case REG_ASRDIC:
case REG_ASRIDRHA:
case REG_ASRIDRLA:
case REG_ASRIDRHB:
case REG_ASRIDRLB:
case REG_ASRIDRHC:
case REG_ASRIDRLC:
case REG_ASR76K:
case REG_ASR56K:
case REG_ASRMCRA:
case REG_ASRMCRB:
case REG_ASRMCRC:
case REG_ASRMCR1A:
case REG_ASRMCR1B:
case REG_ASRMCR1C:
return true;
default:
return false;
}
}
static struct regmap_config fsl_asrc_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_ASRMCR1C,
.readable_reg = fsl_asrc_readable_reg,
.volatile_reg = fsl_asrc_volatile_reg,
.writeable_reg = fsl_asrc_writeable_reg,
.cache_type = REGCACHE_RBTREE,
};
/**
* Initialize ASRC registers with a default configurations
*/
static int fsl_asrc_init(struct fsl_asrc *asrc_priv)
{
/* Halt ASRC internal FP when input FIFO needs data for pair A, B, C */
regmap_write(asrc_priv->regmap, REG_ASRCTR, ASRCTR_ASRCEN);
/* Disable interrupt by default */
regmap_write(asrc_priv->regmap, REG_ASRIER, 0x0);
/* Apply recommended settings for parameters from Reference Manual */
regmap_write(asrc_priv->regmap, REG_ASRPM1, 0x7fffff);
regmap_write(asrc_priv->regmap, REG_ASRPM2, 0x255555);
regmap_write(asrc_priv->regmap, REG_ASRPM3, 0xff7280);
regmap_write(asrc_priv->regmap, REG_ASRPM4, 0xff7280);
regmap_write(asrc_priv->regmap, REG_ASRPM5, 0xff7280);
/* Base address for task queue FIFO. Set to 0x7C */
regmap_update_bits(asrc_priv->regmap, REG_ASRTFR1,
ASRTFR1_TF_BASE_MASK, ASRTFR1_TF_BASE(0xfc));
/* Set the processing clock for 76KHz to 133M */
regmap_write(asrc_priv->regmap, REG_ASR76K, 0x06D6);
/* Set the processing clock for 56KHz to 133M */
return regmap_write(asrc_priv->regmap, REG_ASR56K, 0x0947);
}
/**
* Interrupt handler for ASRC
*/
static irqreturn_t fsl_asrc_isr(int irq, void *dev_id)
{
struct fsl_asrc *asrc_priv = (struct fsl_asrc *)dev_id;
struct device *dev = &asrc_priv->pdev->dev;
enum asrc_pair_index index;
u32 status;
regmap_read(asrc_priv->regmap, REG_ASRSTR, &status);
/* Clean overload error */
regmap_write(asrc_priv->regmap, REG_ASRSTR, ASRSTR_AOLE);
/*
* We here use dev_dbg() for all exceptions because ASRC itself does
* not care if FIFO overflowed or underrun while a warning in the
* interrupt would result a ridged conversion.
*/
for (index = ASRC_PAIR_A; index < ASRC_PAIR_MAX_NUM; index++) {
if (!asrc_priv->pair[index])
continue;
if (status & ASRSTR_ATQOL) {
asrc_priv->pair[index]->error |= ASRC_TASK_Q_OVERLOAD;
dev_dbg(dev, "ASRC Task Queue FIFO overload\n");
}
if (status & ASRSTR_AOOL(index)) {
asrc_priv->pair[index]->error |= ASRC_OUTPUT_TASK_OVERLOAD;
pair_dbg("Output Task Overload\n");
}
if (status & ASRSTR_AIOL(index)) {
asrc_priv->pair[index]->error |= ASRC_INPUT_TASK_OVERLOAD;
pair_dbg("Input Task Overload\n");
}
if (status & ASRSTR_AODO(index)) {
asrc_priv->pair[index]->error |= ASRC_OUTPUT_BUFFER_OVERFLOW;
pair_dbg("Output Data Buffer has overflowed\n");
}
if (status & ASRSTR_AIDU(index)) {
asrc_priv->pair[index]->error |= ASRC_INPUT_BUFFER_UNDERRUN;
pair_dbg("Input Data Buffer has underflowed\n");
}
}
return IRQ_HANDLED;
}
static int fsl_asrc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_asrc *asrc_priv;
struct resource *res;
void __iomem *regs;
int irq, ret, i;
char tmp[16];
asrc_priv = devm_kzalloc(&pdev->dev, sizeof(*asrc_priv), GFP_KERNEL);
if (!asrc_priv)
return -ENOMEM;
asrc_priv->pdev = pdev;
strcpy(asrc_priv->name, np->name);
/* Get the addresses and IRQ */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
asrc_priv->paddr = res->start;
/* Register regmap and let it prepare core clock */
if (of_property_read_bool(np, "big-endian"))
fsl_asrc_regmap_config.val_format_endian = REGMAP_ENDIAN_BIG;
asrc_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "mem", regs,
&fsl_asrc_regmap_config);
if (IS_ERR(asrc_priv->regmap)) {
dev_err(&pdev->dev, "failed to init regmap\n");
return PTR_ERR(asrc_priv->regmap);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, fsl_asrc_isr, 0,
asrc_priv->name, asrc_priv);
if (ret) {
dev_err(&pdev->dev, "failed to claim irq %u: %d\n", irq, ret);
return ret;
}
asrc_priv->mem_clk = devm_clk_get(&pdev->dev, "mem");
if (IS_ERR(asrc_priv->mem_clk)) {
dev_err(&pdev->dev, "failed to get mem clock\n");
return PTR_ERR(asrc_priv->mem_clk);
}
asrc_priv->ipg_clk = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(asrc_priv->ipg_clk)) {
dev_err(&pdev->dev, "failed to get ipg clock\n");
return PTR_ERR(asrc_priv->ipg_clk);
}
for (i = 0; i < ASRC_CLK_MAX_NUM; i++) {
sprintf(tmp, "asrck_%x", i);
asrc_priv->asrck_clk[i] = devm_clk_get(&pdev->dev, tmp);
if (IS_ERR(asrc_priv->asrck_clk[i])) {
dev_err(&pdev->dev, "failed to get %s clock\n", tmp);
return PTR_ERR(asrc_priv->asrck_clk[i]);
}
}
if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx35-asrc")) {
asrc_priv->channel_bits = 3;
clk_map[IN] = input_clk_map_imx35;
clk_map[OUT] = output_clk_map_imx35;
} else {
asrc_priv->channel_bits = 4;
clk_map[IN] = input_clk_map_imx53;
clk_map[OUT] = output_clk_map_imx53;
}
ret = fsl_asrc_init(asrc_priv);
if (ret) {
dev_err(&pdev->dev, "failed to init asrc %d\n", ret);
return -EINVAL;
}
asrc_priv->channel_avail = 10;
ret = of_property_read_u32(np, "fsl,asrc-rate",
&asrc_priv->asrc_rate);
if (ret) {
dev_err(&pdev->dev, "failed to get output rate\n");
return -EINVAL;
}
ret = of_property_read_u32(np, "fsl,asrc-width",
&asrc_priv->asrc_width);
if (ret) {
dev_err(&pdev->dev, "failed to get output width\n");
return -EINVAL;
}
if (asrc_priv->asrc_width != 16 && asrc_priv->asrc_width != 24) {
dev_warn(&pdev->dev, "unsupported width, switching to 24bit\n");
asrc_priv->asrc_width = 24;
}
platform_set_drvdata(pdev, asrc_priv);
pm_runtime_enable(&pdev->dev);
spin_lock_init(&asrc_priv->lock);
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_asrc_component,
&fsl_asrc_dai, 1);
if (ret) {
dev_err(&pdev->dev, "failed to register ASoC DAI\n");
return ret;
}
ret = devm_snd_soc_register_platform(&pdev->dev, &fsl_asrc_platform);
if (ret) {
dev_err(&pdev->dev, "failed to register ASoC platform\n");
return ret;
}
dev_info(&pdev->dev, "driver registered\n");
return 0;
}
#ifdef CONFIG_PM_RUNTIME
static int fsl_asrc_runtime_resume(struct device *dev)
{
struct fsl_asrc *asrc_priv = dev_get_drvdata(dev);
int i;
clk_prepare_enable(asrc_priv->mem_clk);
clk_prepare_enable(asrc_priv->ipg_clk);
for (i = 0; i < ASRC_CLK_MAX_NUM; i++)
clk_prepare_enable(asrc_priv->asrck_clk[i]);
return 0;
}
static int fsl_asrc_runtime_suspend(struct device *dev)
{
struct fsl_asrc *asrc_priv = dev_get_drvdata(dev);
int i;
for (i = 0; i < ASRC_CLK_MAX_NUM; i++)
clk_disable_unprepare(asrc_priv->asrck_clk[i]);
clk_disable_unprepare(asrc_priv->ipg_clk);
clk_disable_unprepare(asrc_priv->mem_clk);
return 0;
}
#endif /* CONFIG_PM_RUNTIME */
#ifdef CONFIG_PM_SLEEP
static int fsl_asrc_suspend(struct device *dev)
{
struct fsl_asrc *asrc_priv = dev_get_drvdata(dev);
regcache_cache_only(asrc_priv->regmap, true);
regcache_mark_dirty(asrc_priv->regmap);
return 0;
}
static int fsl_asrc_resume(struct device *dev)
{
struct fsl_asrc *asrc_priv = dev_get_drvdata(dev);
u32 asrctr;
/* Stop all pairs provisionally */
regmap_read(asrc_priv->regmap, REG_ASRCTR, &asrctr);
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_ALL_MASK, 0);
/* Restore all registers */
regcache_cache_only(asrc_priv->regmap, false);
regcache_sync(asrc_priv->regmap);
/* Restart enabled pairs */
regmap_update_bits(asrc_priv->regmap, REG_ASRCTR,
ASRCTR_ASRCEi_ALL_MASK, asrctr);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops fsl_asrc_pm = {
SET_RUNTIME_PM_OPS(fsl_asrc_runtime_suspend, fsl_asrc_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(fsl_asrc_suspend, fsl_asrc_resume)
};
static const struct of_device_id fsl_asrc_ids[] = {
{ .compatible = "fsl,imx35-asrc", },
{ .compatible = "fsl,imx53-asrc", },
{}
};
MODULE_DEVICE_TABLE(of, fsl_asrc_ids);
static struct platform_driver fsl_asrc_driver = {
.probe = fsl_asrc_probe,
.driver = {
.name = "fsl-asrc",
.of_match_table = fsl_asrc_ids,
.pm = &fsl_asrc_pm,
},
};
module_platform_driver(fsl_asrc_driver);
MODULE_DESCRIPTION("Freescale ASRC ASoC driver");
MODULE_AUTHOR("Nicolin Chen <nicoleotsuka@gmail.com>");
MODULE_ALIAS("platform:fsl-asrc");
MODULE_LICENSE("GPL v2");

461
sound/soc/fsl/fsl_asrc.h Normal file
View File

@ -0,0 +1,461 @@
/*
* fsl_asrc.h - Freescale ASRC ALSA SoC header file
*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* Author: Nicolin Chen <nicoleotsuka@gmail.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#ifndef _FSL_ASRC_H
#define _FSL_ASRC_H
#define IN 0
#define OUT 1
#define ASRC_DMA_BUFFER_NUM 2
#define ASRC_INPUTFIFO_THRESHOLD 32
#define ASRC_OUTPUTFIFO_THRESHOLD 32
#define ASRC_FIFO_THRESHOLD_MIN 0
#define ASRC_FIFO_THRESHOLD_MAX 63
#define ASRC_DMA_BUFFER_SIZE (1024 * 48 * 4)
#define ASRC_MAX_BUFFER_SIZE (1024 * 48)
#define ASRC_OUTPUT_LAST_SAMPLE 8
#define IDEAL_RATIO_RATE 1000000
#define REG_ASRCTR 0x00
#define REG_ASRIER 0x04
#define REG_ASRCNCR 0x0C
#define REG_ASRCFG 0x10
#define REG_ASRCSR 0x14
#define REG_ASRCDR1 0x18
#define REG_ASRCDR2 0x1C
#define REG_ASRCDR(i) ((i < 2) ? REG_ASRCDR1 : REG_ASRCDR2)
#define REG_ASRSTR 0x20
#define REG_ASRRA 0x24
#define REG_ASRRB 0x28
#define REG_ASRRC 0x2C
#define REG_ASRPM1 0x40
#define REG_ASRPM2 0x44
#define REG_ASRPM3 0x48
#define REG_ASRPM4 0x4C
#define REG_ASRPM5 0x50
#define REG_ASRTFR1 0x54
#define REG_ASRCCR 0x5C
#define REG_ASRDIA 0x60
#define REG_ASRDOA 0x64
#define REG_ASRDIB 0x68
#define REG_ASRDOB 0x6C
#define REG_ASRDIC 0x70
#define REG_ASRDOC 0x74
#define REG_ASRDI(i) (REG_ASRDIA + (i << 3))
#define REG_ASRDO(i) (REG_ASRDOA + (i << 3))
#define REG_ASRDx(x, i) (x == IN ? REG_ASRDI(i) : REG_ASRDO(i))
#define REG_ASRIDRHA 0x80
#define REG_ASRIDRLA 0x84
#define REG_ASRIDRHB 0x88
#define REG_ASRIDRLB 0x8C
#define REG_ASRIDRHC 0x90
#define REG_ASRIDRLC 0x94
#define REG_ASRIDRH(i) (REG_ASRIDRHA + (i << 3))
#define REG_ASRIDRL(i) (REG_ASRIDRLA + (i << 3))
#define REG_ASR76K 0x98
#define REG_ASR56K 0x9C
#define REG_ASRMCRA 0xA0
#define REG_ASRFSTA 0xA4
#define REG_ASRMCRB 0xA8
#define REG_ASRFSTB 0xAC
#define REG_ASRMCRC 0xB0
#define REG_ASRFSTC 0xB4
#define REG_ASRMCR(i) (REG_ASRMCRA + (i << 3))
#define REG_ASRFST(i) (REG_ASRFSTA + (i << 3))
#define REG_ASRMCR1A 0xC0
#define REG_ASRMCR1B 0xC4
#define REG_ASRMCR1C 0xC8
#define REG_ASRMCR1(i) (REG_ASRMCR1A + (i << 2))
/* REG0 0x00 REG_ASRCTR */
#define ASRCTR_ATSi_SHIFT(i) (20 + i)
#define ASRCTR_ATSi_MASK(i) (1 << ASRCTR_ATSi_SHIFT(i))
#define ASRCTR_ATS(i) (1 << ASRCTR_ATSi_SHIFT(i))
#define ASRCTR_USRi_SHIFT(i) (14 + (i << 1))
#define ASRCTR_USRi_MASK(i) (1 << ASRCTR_USRi_SHIFT(i))
#define ASRCTR_USR(i) (1 << ASRCTR_USRi_SHIFT(i))
#define ASRCTR_IDRi_SHIFT(i) (13 + (i << 1))
#define ASRCTR_IDRi_MASK(i) (1 << ASRCTR_IDRi_SHIFT(i))
#define ASRCTR_IDR(i) (1 << ASRCTR_IDRi_SHIFT(i))
#define ASRCTR_SRST_SHIFT 4
#define ASRCTR_SRST_MASK (1 << ASRCTR_SRST_SHIFT)
#define ASRCTR_SRST (1 << ASRCTR_SRST_SHIFT)
#define ASRCTR_ASRCEi_SHIFT(i) (1 + i)
#define ASRCTR_ASRCEi_MASK(i) (1 << ASRCTR_ASRCEi_SHIFT(i))
#define ASRCTR_ASRCE(i) (1 << ASRCTR_ASRCEi_SHIFT(i))
#define ASRCTR_ASRCEi_ALL_MASK (0x7 << ASRCTR_ASRCEi_SHIFT(0))
#define ASRCTR_ASRCEN_SHIFT 0
#define ASRCTR_ASRCEN_MASK (1 << ASRCTR_ASRCEN_SHIFT)
#define ASRCTR_ASRCEN (1 << ASRCTR_ASRCEN_SHIFT)
/* REG1 0x04 REG_ASRIER */
#define ASRIER_AFPWE_SHIFT 7
#define ASRIER_AFPWE_MASK (1 << ASRIER_AFPWE_SHIFT)
#define ASRIER_AFPWE (1 << ASRIER_AFPWE_SHIFT)
#define ASRIER_AOLIE_SHIFT 6
#define ASRIER_AOLIE_MASK (1 << ASRIER_AOLIE_SHIFT)
#define ASRIER_AOLIE (1 << ASRIER_AOLIE_SHIFT)
#define ASRIER_ADOEi_SHIFT(i) (3 + i)
#define ASRIER_ADOEi_MASK(i) (1 << ASRIER_ADOEi_SHIFT(i))
#define ASRIER_ADOE(i) (1 << ASRIER_ADOEi_SHIFT(i))
#define ASRIER_ADIEi_SHIFT(i) (0 + i)
#define ASRIER_ADIEi_MASK(i) (1 << ASRIER_ADIEi_SHIFT(i))
#define ASRIER_ADIE(i) (1 << ASRIER_ADIEi_SHIFT(i))
/* REG2 0x0C REG_ASRCNCR */
#define ASRCNCR_ANCi_SHIFT(i, b) (b * i)
#define ASRCNCR_ANCi_MASK(i, b) (((1 << b) - 1) << ASRCNCR_ANCi_SHIFT(i, b))
#define ASRCNCR_ANCi(i, v, b) ((v << ASRCNCR_ANCi_SHIFT(i, b)) & ASRCNCR_ANCi_MASK(i, b))
/* REG3 0x10 REG_ASRCFG */
#define ASRCFG_INIRQi_SHIFT(i) (21 + i)
#define ASRCFG_INIRQi_MASK(i) (1 << ASRCFG_INIRQi_SHIFT(i))
#define ASRCFG_INIRQi (1 << ASRCFG_INIRQi_SHIFT(i))
#define ASRCFG_NDPRi_SHIFT(i) (18 + i)
#define ASRCFG_NDPRi_MASK(i) (1 << ASRCFG_NDPRi_SHIFT(i))
#define ASRCFG_NDPRi (1 << ASRCFG_NDPRi_SHIFT(i))
#define ASRCFG_POSTMODi_SHIFT(i) (8 + (i << 2))
#define ASRCFG_POSTMODi_WIDTH 2
#define ASRCFG_POSTMODi_MASK(i) (((1 << ASRCFG_POSTMODi_WIDTH) - 1) << ASRCFG_POSTMODi_SHIFT(i))
#define ASRCFG_POSTMOD(i, v) ((v) << ASRCFG_POSTMODi_SHIFT(i))
#define ASRCFG_POSTMODi_UP(i) (0 << ASRCFG_POSTMODi_SHIFT(i))
#define ASRCFG_POSTMODi_DCON(i) (1 << ASRCFG_POSTMODi_SHIFT(i))
#define ASRCFG_POSTMODi_DOWN(i) (2 << ASRCFG_POSTMODi_SHIFT(i))
#define ASRCFG_PREMODi_SHIFT(i) (6 + (i << 2))
#define ASRCFG_PREMODi_WIDTH 2
#define ASRCFG_PREMODi_MASK(i) (((1 << ASRCFG_PREMODi_WIDTH) - 1) << ASRCFG_PREMODi_SHIFT(i))
#define ASRCFG_PREMOD(i, v) ((v) << ASRCFG_PREMODi_SHIFT(i))
#define ASRCFG_PREMODi_UP(i) (0 << ASRCFG_PREMODi_SHIFT(i))
#define ASRCFG_PREMODi_DCON(i) (1 << ASRCFG_PREMODi_SHIFT(i))
#define ASRCFG_PREMODi_DOWN(i) (2 << ASRCFG_PREMODi_SHIFT(i))
#define ASRCFG_PREMODi_BYPASS(i) (3 << ASRCFG_PREMODi_SHIFT(i))
/* REG4 0x14 REG_ASRCSR */
#define ASRCSR_AxCSi_WIDTH 4
#define ASRCSR_AxCSi_MASK ((1 << ASRCSR_AxCSi_WIDTH) - 1)
#define ASRCSR_AOCSi_SHIFT(i) (12 + (i << 2))
#define ASRCSR_AOCSi_MASK(i) (((1 << ASRCSR_AxCSi_WIDTH) - 1) << ASRCSR_AOCSi_SHIFT(i))
#define ASRCSR_AOCS(i, v) ((v) << ASRCSR_AOCSi_SHIFT(i))
#define ASRCSR_AICSi_SHIFT(i) (i << 2)
#define ASRCSR_AICSi_MASK(i) (((1 << ASRCSR_AxCSi_WIDTH) - 1) << ASRCSR_AICSi_SHIFT(i))
#define ASRCSR_AICS(i, v) ((v) << ASRCSR_AICSi_SHIFT(i))
/* REG5&6 0x18 & 0x1C REG_ASRCDR1 & ASRCDR2 */
#define ASRCDRi_AxCPi_WIDTH 3
#define ASRCDRi_AICPi_SHIFT(i) (0 + (i % 2) * 6)
#define ASRCDRi_AICPi_MASK(i) (((1 << ASRCDRi_AxCPi_WIDTH) - 1) << ASRCDRi_AICPi_SHIFT(i))
#define ASRCDRi_AICP(i, v) ((v) << ASRCDRi_AICPi_SHIFT(i))
#define ASRCDRi_AICDi_SHIFT(i) (3 + (i % 2) * 6)
#define ASRCDRi_AICDi_MASK(i) (((1 << ASRCDRi_AxCPi_WIDTH) - 1) << ASRCDRi_AICDi_SHIFT(i))
#define ASRCDRi_AICD(i, v) ((v) << ASRCDRi_AICDi_SHIFT(i))
#define ASRCDRi_AOCPi_SHIFT(i) ((i < 2) ? 12 + i * 6 : 6)
#define ASRCDRi_AOCPi_MASK(i) (((1 << ASRCDRi_AxCPi_WIDTH) - 1) << ASRCDRi_AOCPi_SHIFT(i))
#define ASRCDRi_AOCP(i, v) ((v) << ASRCDRi_AOCPi_SHIFT(i))
#define ASRCDRi_AOCDi_SHIFT(i) ((i < 2) ? 15 + i * 6 : 9)
#define ASRCDRi_AOCDi_MASK(i) (((1 << ASRCDRi_AxCPi_WIDTH) - 1) << ASRCDRi_AOCDi_SHIFT(i))
#define ASRCDRi_AOCD(i, v) ((v) << ASRCDRi_AOCDi_SHIFT(i))
/* REG7 0x20 REG_ASRSTR */
#define ASRSTR_DSLCNT_SHIFT 21
#define ASRSTR_DSLCNT_MASK (1 << ASRSTR_DSLCNT_SHIFT)
#define ASRSTR_DSLCNT (1 << ASRSTR_DSLCNT_SHIFT)
#define ASRSTR_ATQOL_SHIFT 20
#define ASRSTR_ATQOL_MASK (1 << ASRSTR_ATQOL_SHIFT)
#define ASRSTR_ATQOL (1 << ASRSTR_ATQOL_SHIFT)
#define ASRSTR_AOOLi_SHIFT(i) (17 + i)
#define ASRSTR_AOOLi_MASK(i) (1 << ASRSTR_AOOLi_SHIFT(i))
#define ASRSTR_AOOL(i) (1 << ASRSTR_AOOLi_SHIFT(i))
#define ASRSTR_AIOLi_SHIFT(i) (14 + i)
#define ASRSTR_AIOLi_MASK(i) (1 << ASRSTR_AIOLi_SHIFT(i))
#define ASRSTR_AIOL(i) (1 << ASRSTR_AIOLi_SHIFT(i))
#define ASRSTR_AODOi_SHIFT(i) (11 + i)
#define ASRSTR_AODOi_MASK(i) (1 << ASRSTR_AODOi_SHIFT(i))
#define ASRSTR_AODO(i) (1 << ASRSTR_AODOi_SHIFT(i))
#define ASRSTR_AIDUi_SHIFT(i) (8 + i)
#define ASRSTR_AIDUi_MASK(i) (1 << ASRSTR_AIDUi_SHIFT(i))
#define ASRSTR_AIDU(i) (1 << ASRSTR_AIDUi_SHIFT(i))
#define ASRSTR_FPWT_SHIFT 7
#define ASRSTR_FPWT_MASK (1 << ASRSTR_FPWT_SHIFT)
#define ASRSTR_FPWT (1 << ASRSTR_FPWT_SHIFT)
#define ASRSTR_AOLE_SHIFT 6
#define ASRSTR_AOLE_MASK (1 << ASRSTR_AOLE_SHIFT)
#define ASRSTR_AOLE (1 << ASRSTR_AOLE_SHIFT)
#define ASRSTR_AODEi_SHIFT(i) (3 + i)
#define ASRSTR_AODFi_MASK(i) (1 << ASRSTR_AODEi_SHIFT(i))
#define ASRSTR_AODF(i) (1 << ASRSTR_AODEi_SHIFT(i))
#define ASRSTR_AIDEi_SHIFT(i) (0 + i)
#define ASRSTR_AIDEi_MASK(i) (1 << ASRSTR_AIDEi_SHIFT(i))
#define ASRSTR_AIDE(i) (1 << ASRSTR_AIDEi_SHIFT(i))
/* REG10 0x54 REG_ASRTFR1 */
#define ASRTFR1_TF_BASE_WIDTH 7
#define ASRTFR1_TF_BASE_SHIFT 6
#define ASRTFR1_TF_BASE_MASK (((1 << ASRTFR1_TF_BASE_WIDTH) - 1) << ASRTFR1_TF_BASE_SHIFT)
#define ASRTFR1_TF_BASE(i) ((i) << ASRTFR1_TF_BASE_SHIFT)
/*
* REG22 0xA0 REG_ASRMCRA
* REG24 0xA8 REG_ASRMCRB
* REG26 0xB0 REG_ASRMCRC
*/
#define ASRMCRi_ZEROBUFi_SHIFT 23
#define ASRMCRi_ZEROBUFi_MASK (1 << ASRMCRi_ZEROBUFi_SHIFT)
#define ASRMCRi_ZEROBUFi (1 << ASRMCRi_ZEROBUFi_SHIFT)
#define ASRMCRi_EXTTHRSHi_SHIFT 22
#define ASRMCRi_EXTTHRSHi_MASK (1 << ASRMCRi_EXTTHRSHi_SHIFT)
#define ASRMCRi_EXTTHRSHi (1 << ASRMCRi_EXTTHRSHi_SHIFT)
#define ASRMCRi_BUFSTALLi_SHIFT 21
#define ASRMCRi_BUFSTALLi_MASK (1 << ASRMCRi_BUFSTALLi_SHIFT)
#define ASRMCRi_BUFSTALLi (1 << ASRMCRi_BUFSTALLi_SHIFT)
#define ASRMCRi_BYPASSPOLYi_SHIFT 20
#define ASRMCRi_BYPASSPOLYi_MASK (1 << ASRMCRi_BYPASSPOLYi_SHIFT)
#define ASRMCRi_BYPASSPOLYi (1 << ASRMCRi_BYPASSPOLYi_SHIFT)
#define ASRMCRi_OUTFIFO_THRESHOLD_WIDTH 6
#define ASRMCRi_OUTFIFO_THRESHOLD_SHIFT 12
#define ASRMCRi_OUTFIFO_THRESHOLD_MASK (((1 << ASRMCRi_OUTFIFO_THRESHOLD_WIDTH) - 1) << ASRMCRi_OUTFIFO_THRESHOLD_SHIFT)
#define ASRMCRi_OUTFIFO_THRESHOLD(v) (((v) << ASRMCRi_OUTFIFO_THRESHOLD_SHIFT) & ASRMCRi_OUTFIFO_THRESHOLD_MASK)
#define ASRMCRi_RSYNIFi_SHIFT 11
#define ASRMCRi_RSYNIFi_MASK (1 << ASRMCRi_RSYNIFi_SHIFT)
#define ASRMCRi_RSYNIFi (1 << ASRMCRi_RSYNIFi_SHIFT)
#define ASRMCRi_RSYNOFi_SHIFT 10
#define ASRMCRi_RSYNOFi_MASK (1 << ASRMCRi_RSYNOFi_SHIFT)
#define ASRMCRi_RSYNOFi (1 << ASRMCRi_RSYNOFi_SHIFT)
#define ASRMCRi_INFIFO_THRESHOLD_WIDTH 6
#define ASRMCRi_INFIFO_THRESHOLD_SHIFT 0
#define ASRMCRi_INFIFO_THRESHOLD_MASK (((1 << ASRMCRi_INFIFO_THRESHOLD_WIDTH) - 1) << ASRMCRi_INFIFO_THRESHOLD_SHIFT)
#define ASRMCRi_INFIFO_THRESHOLD(v) (((v) << ASRMCRi_INFIFO_THRESHOLD_SHIFT) & ASRMCRi_INFIFO_THRESHOLD_MASK)
/*
* REG23 0xA4 REG_ASRFSTA
* REG25 0xAC REG_ASRFSTB
* REG27 0xB4 REG_ASRFSTC
*/
#define ASRFSTi_OAFi_SHIFT 23
#define ASRFSTi_OAFi_MASK (1 << ASRFSTi_OAFi_SHIFT)
#define ASRFSTi_OAFi (1 << ASRFSTi_OAFi_SHIFT)
#define ASRFSTi_OUTPUT_FIFO_WIDTH 7
#define ASRFSTi_OUTPUT_FIFO_SHIFT 12
#define ASRFSTi_OUTPUT_FIFO_MASK (((1 << ASRFSTi_OUTPUT_FIFO_WIDTH) - 1) << ASRFSTi_OUTPUT_FIFO_SHIFT)
#define ASRFSTi_IAEi_SHIFT 11
#define ASRFSTi_IAEi_MASK (1 << ASRFSTi_OAFi_SHIFT)
#define ASRFSTi_IAEi (1 << ASRFSTi_OAFi_SHIFT)
#define ASRFSTi_INPUT_FIFO_WIDTH 7
#define ASRFSTi_INPUT_FIFO_SHIFT 0
#define ASRFSTi_INPUT_FIFO_MASK ((1 << ASRFSTi_INPUT_FIFO_WIDTH) - 1)
/* REG28 0xC0 & 0xC4 & 0xC8 REG_ASRMCR1i */
#define ASRMCR1i_IWD_WIDTH 3
#define ASRMCR1i_IWD_SHIFT 9
#define ASRMCR1i_IWD_MASK (((1 << ASRMCR1i_IWD_WIDTH) - 1) << ASRMCR1i_IWD_SHIFT)
#define ASRMCR1i_IWD(v) ((v) << ASRMCR1i_IWD_SHIFT)
#define ASRMCR1i_IMSB_SHIFT 8
#define ASRMCR1i_IMSB_MASK (1 << ASRMCR1i_IMSB_SHIFT)
#define ASRMCR1i_IMSB_MSB (1 << ASRMCR1i_IMSB_SHIFT)
#define ASRMCR1i_IMSB_LSB (0 << ASRMCR1i_IMSB_SHIFT)
#define ASRMCR1i_OMSB_SHIFT 2
#define ASRMCR1i_OMSB_MASK (1 << ASRMCR1i_OMSB_SHIFT)
#define ASRMCR1i_OMSB_MSB (1 << ASRMCR1i_OMSB_SHIFT)
#define ASRMCR1i_OMSB_LSB (0 << ASRMCR1i_OMSB_SHIFT)
#define ASRMCR1i_OSGN_SHIFT 1
#define ASRMCR1i_OSGN_MASK (1 << ASRMCR1i_OSGN_SHIFT)
#define ASRMCR1i_OSGN (1 << ASRMCR1i_OSGN_SHIFT)
#define ASRMCR1i_OW16_SHIFT 0
#define ASRMCR1i_OW16_MASK (1 << ASRMCR1i_OW16_SHIFT)
#define ASRMCR1i_OW16(v) ((v) << ASRMCR1i_OW16_SHIFT)
enum asrc_pair_index {
ASRC_INVALID_PAIR = -1,
ASRC_PAIR_A = 0,
ASRC_PAIR_B = 1,
ASRC_PAIR_C = 2,
};
#define ASRC_PAIR_MAX_NUM (ASRC_PAIR_C + 1)
enum asrc_inclk {
INCLK_NONE = 0x03,
INCLK_ESAI_RX = 0x00,
INCLK_SSI1_RX = 0x01,
INCLK_SSI2_RX = 0x02,
INCLK_SSI3_RX = 0x07,
INCLK_SPDIF_RX = 0x04,
INCLK_MLB_CLK = 0x05,
INCLK_PAD = 0x06,
INCLK_ESAI_TX = 0x08,
INCLK_SSI1_TX = 0x09,
INCLK_SSI2_TX = 0x0a,
INCLK_SSI3_TX = 0x0b,
INCLK_SPDIF_TX = 0x0c,
INCLK_ASRCK1_CLK = 0x0f,
};
enum asrc_outclk {
OUTCLK_NONE = 0x03,
OUTCLK_ESAI_TX = 0x00,
OUTCLK_SSI1_TX = 0x01,
OUTCLK_SSI2_TX = 0x02,
OUTCLK_SSI3_TX = 0x07,
OUTCLK_SPDIF_TX = 0x04,
OUTCLK_MLB_CLK = 0x05,
OUTCLK_PAD = 0x06,
OUTCLK_ESAI_RX = 0x08,
OUTCLK_SSI1_RX = 0x09,
OUTCLK_SSI2_RX = 0x0a,
OUTCLK_SSI3_RX = 0x0b,
OUTCLK_SPDIF_RX = 0x0c,
OUTCLK_ASRCK1_CLK = 0x0f,
};
#define ASRC_CLK_MAX_NUM 16
enum asrc_word_width {
ASRC_WIDTH_24_BIT = 0,
ASRC_WIDTH_16_BIT = 1,
ASRC_WIDTH_8_BIT = 2,
};
struct asrc_config {
enum asrc_pair_index pair;
unsigned int channel_num;
unsigned int buffer_num;
unsigned int dma_buffer_size;
unsigned int input_sample_rate;
unsigned int output_sample_rate;
enum asrc_word_width input_word_width;
enum asrc_word_width output_word_width;
enum asrc_inclk inclk;
enum asrc_outclk outclk;
};
struct asrc_req {
unsigned int chn_num;
enum asrc_pair_index index;
};
struct asrc_querybuf {
unsigned int buffer_index;
unsigned int input_length;
unsigned int output_length;
unsigned long input_offset;
unsigned long output_offset;
};
struct asrc_convert_buffer {
void *input_buffer_vaddr;
void *output_buffer_vaddr;
unsigned int input_buffer_length;
unsigned int output_buffer_length;
};
struct asrc_status_flags {
enum asrc_pair_index index;
unsigned int overload_error;
};
enum asrc_error_status {
ASRC_TASK_Q_OVERLOAD = 0x01,
ASRC_OUTPUT_TASK_OVERLOAD = 0x02,
ASRC_INPUT_TASK_OVERLOAD = 0x04,
ASRC_OUTPUT_BUFFER_OVERFLOW = 0x08,
ASRC_INPUT_BUFFER_UNDERRUN = 0x10,
};
struct dma_block {
dma_addr_t dma_paddr;
void *dma_vaddr;
unsigned int length;
};
/**
* fsl_asrc_pair: ASRC Pair private data
*
* @asrc_priv: pointer to its parent module
* @config: configuration profile
* @error: error record
* @index: pair index (ASRC_PAIR_A, ASRC_PAIR_B, ASRC_PAIR_C)
* @channels: occupied channel number
* @desc: input and output dma descriptors
* @dma_chan: inputer and output DMA channels
* @dma_data: private dma data
* @pos: hardware pointer position
* @private: pair private area
*/
struct fsl_asrc_pair {
struct fsl_asrc *asrc_priv;
struct asrc_config *config;
unsigned int error;
enum asrc_pair_index index;
unsigned int channels;
struct dma_async_tx_descriptor *desc[2];
struct dma_chan *dma_chan[2];
struct imx_dma_data dma_data;
unsigned int pos;
void *private;
};
/**
* fsl_asrc_pair: ASRC private data
*
* @dma_params_rx: DMA parameters for receive channel
* @dma_params_tx: DMA parameters for transmit channel
* @pdev: platform device pointer
* @regmap: regmap handler
* @paddr: physical address to the base address of registers
* @mem_clk: clock source to access register
* @ipg_clk: clock source to drive peripheral
* @asrck_clk: clock sources to driver ASRC internal logic
* @lock: spin lock for resource protection
* @pair: pair pointers
* @channel_bits: width of ASRCNCR register for each pair
* @channel_avail: non-occupied channel numbers
* @asrc_rate: default sample rate for ASoC Back-Ends
* @asrc_width: default sample width for ASoC Back-Ends
* @name: driver name
*/
struct fsl_asrc {
struct snd_dmaengine_dai_dma_data dma_params_rx;
struct snd_dmaengine_dai_dma_data dma_params_tx;
struct platform_device *pdev;
struct regmap *regmap;
unsigned long paddr;
struct clk *mem_clk;
struct clk *ipg_clk;
struct clk *asrck_clk[ASRC_CLK_MAX_NUM];
spinlock_t lock;
struct fsl_asrc_pair *pair[ASRC_PAIR_MAX_NUM];
unsigned int channel_bits;
unsigned int channel_avail;
int asrc_rate;
int asrc_width;
char name[32];
};
extern struct snd_soc_platform_driver fsl_asrc_platform;
struct dma_chan *fsl_asrc_get_dma_channel(struct fsl_asrc_pair *pair, bool dir);
#endif /* _FSL_ASRC_H */

View File

@ -0,0 +1,391 @@
/*
* Freescale ASRC ALSA SoC Platform (DMA) driver
*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* Author: Nicolin Chen <nicoleotsuka@gmail.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/platform_data/dma-imx.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "fsl_asrc.h"
#define FSL_ASRC_DMABUF_SIZE (256 * 1024)
static struct snd_pcm_hardware snd_imx_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME,
.buffer_bytes_max = FSL_ASRC_DMABUF_SIZE,
.period_bytes_min = 128,
.period_bytes_max = 65535, /* Limited by SDMA engine */
.periods_min = 2,
.periods_max = 255,
.fifo_size = 0,
};
static bool filter(struct dma_chan *chan, void *param)
{
if (!imx_dma_is_general_purpose(chan))
return false;
chan->private = param;
return true;
}
static void fsl_asrc_dma_complete(void *arg)
{
struct snd_pcm_substream *substream = arg;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
pair->pos += snd_pcm_lib_period_bytes(substream);
if (pair->pos >= snd_pcm_lib_buffer_bytes(substream))
pair->pos = 0;
snd_pcm_period_elapsed(substream);
}
static int fsl_asrc_dma_prepare_and_submit(struct snd_pcm_substream *substream)
{
u8 dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? OUT : IN;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
struct device *dev = rtd->platform->dev;
unsigned long flags = DMA_CTRL_ACK;
/* Prepare and submit Front-End DMA channel */
if (!substream->runtime->no_period_wakeup)
flags |= DMA_PREP_INTERRUPT;
pair->pos = 0;
pair->desc[!dir] = dmaengine_prep_dma_cyclic(
pair->dma_chan[!dir], runtime->dma_addr,
snd_pcm_lib_buffer_bytes(substream),
snd_pcm_lib_period_bytes(substream),
dir == OUT ? DMA_TO_DEVICE : DMA_FROM_DEVICE, flags);
if (!pair->desc[!dir]) {
dev_err(dev, "failed to prepare slave DMA for Front-End\n");
return -ENOMEM;
}
pair->desc[!dir]->callback = fsl_asrc_dma_complete;
pair->desc[!dir]->callback_param = substream;
dmaengine_submit(pair->desc[!dir]);
/* Prepare and submit Back-End DMA channel */
pair->desc[dir] = dmaengine_prep_dma_cyclic(
pair->dma_chan[dir], 0xffff, 64, 64, DMA_DEV_TO_DEV, 0);
if (!pair->desc[dir]) {
dev_err(dev, "failed to prepare slave DMA for Back-End\n");
return -ENOMEM;
}
dmaengine_submit(pair->desc[dir]);
return 0;
}
static int fsl_asrc_dma_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ret = fsl_asrc_dma_prepare_and_submit(substream);
if (ret)
return ret;
dma_async_issue_pending(pair->dma_chan[IN]);
dma_async_issue_pending(pair->dma_chan[OUT]);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
dmaengine_terminate_all(pair->dma_chan[OUT]);
dmaengine_terminate_all(pair->dma_chan[IN]);
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_asrc_dma_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
enum dma_slave_buswidth buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct snd_dmaengine_dai_dma_data *dma_params_fe = NULL;
struct snd_dmaengine_dai_dma_data *dma_params_be = NULL;
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
struct fsl_asrc *asrc_priv = pair->asrc_priv;
struct dma_slave_config config_fe, config_be;
enum asrc_pair_index index = pair->index;
struct device *dev = rtd->platform->dev;
int stream = substream->stream;
struct imx_dma_data *tmp_data;
struct snd_soc_dpcm *dpcm;
struct dma_chan *tmp_chan;
struct device *dev_be;
u8 dir = tx ? OUT : IN;
dma_cap_mask_t mask;
int ret;
/* Fetch the Back-End dma_data from DPCM */
list_for_each_entry(dpcm, &rtd->dpcm[stream].be_clients, list_be) {
struct snd_soc_pcm_runtime *be = dpcm->be;
struct snd_pcm_substream *substream_be;
struct snd_soc_dai *dai = be->cpu_dai;
if (dpcm->fe != rtd)
continue;
substream_be = snd_soc_dpcm_get_substream(be, stream);
dma_params_be = snd_soc_dai_get_dma_data(dai, substream_be);
dev_be = dai->dev;
break;
}
if (!dma_params_be) {
dev_err(dev, "failed to get the substream of Back-End\n");
return -EINVAL;
}
/* Override dma_data of the Front-End and config its dmaengine */
dma_params_fe = snd_soc_dai_get_dma_data(rtd->cpu_dai, substream);
dma_params_fe->addr = asrc_priv->paddr + REG_ASRDx(!dir, index);
dma_params_fe->maxburst = dma_params_be->maxburst;
pair->dma_chan[!dir] = fsl_asrc_get_dma_channel(pair, !dir);
if (!pair->dma_chan[!dir]) {
dev_err(dev, "failed to request DMA channel\n");
return -EINVAL;
}
memset(&config_fe, 0, sizeof(config_fe));
ret = snd_dmaengine_pcm_prepare_slave_config(substream, params, &config_fe);
if (ret) {
dev_err(dev, "failed to prepare DMA config for Front-End\n");
return ret;
}
ret = dmaengine_slave_config(pair->dma_chan[!dir], &config_fe);
if (ret) {
dev_err(dev, "failed to config DMA channel for Front-End\n");
return ret;
}
/* Request and config DMA channel for Back-End */
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dma_cap_set(DMA_CYCLIC, mask);
/* Get DMA request of Back-End */
tmp_chan = dma_request_slave_channel(dev_be, tx ? "tx" : "rx");
tmp_data = tmp_chan->private;
pair->dma_data.dma_request = tmp_data->dma_request;
dma_release_channel(tmp_chan);
/* Get DMA request of Front-End */
tmp_chan = fsl_asrc_get_dma_channel(pair, dir);
tmp_data = tmp_chan->private;
pair->dma_data.dma_request2 = tmp_data->dma_request;
pair->dma_data.peripheral_type = tmp_data->peripheral_type;
pair->dma_data.priority = tmp_data->priority;
dma_release_channel(tmp_chan);
pair->dma_chan[dir] = dma_request_channel(mask, filter, &pair->dma_data);
if (!pair->dma_chan[dir]) {
dev_err(dev, "failed to request DMA channel for Back-End\n");
return -EINVAL;
}
if (asrc_priv->asrc_width == 16)
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
else
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
config_be.direction = DMA_DEV_TO_DEV;
config_be.src_addr_width = buswidth;
config_be.src_maxburst = dma_params_be->maxburst;
config_be.dst_addr_width = buswidth;
config_be.dst_maxburst = dma_params_be->maxburst;
if (tx) {
config_be.src_addr = asrc_priv->paddr + REG_ASRDO(index);
config_be.dst_addr = dma_params_be->addr;
} else {
config_be.dst_addr = asrc_priv->paddr + REG_ASRDI(index);
config_be.src_addr = dma_params_be->addr;
}
ret = dmaengine_slave_config(pair->dma_chan[dir], &config_be);
if (ret) {
dev_err(dev, "failed to config DMA channel for Back-End\n");
return ret;
}
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
return 0;
}
static int fsl_asrc_dma_hw_free(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
snd_pcm_set_runtime_buffer(substream, NULL);
if (pair->dma_chan[IN])
dma_release_channel(pair->dma_chan[IN]);
if (pair->dma_chan[OUT])
dma_release_channel(pair->dma_chan[OUT]);
pair->dma_chan[IN] = NULL;
pair->dma_chan[OUT] = NULL;
return 0;
}
static int fsl_asrc_dma_startup(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
struct device *dev = rtd->platform->dev;
struct fsl_asrc *asrc_priv = dev_get_drvdata(dev);
struct fsl_asrc_pair *pair;
pair = kzalloc(sizeof(struct fsl_asrc_pair), GFP_KERNEL);
if (!pair) {
dev_err(dev, "failed to allocate pair\n");
return -ENOMEM;
}
pair->asrc_priv = asrc_priv;
runtime->private_data = pair;
snd_pcm_hw_constraint_integer(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
snd_soc_set_runtime_hwparams(substream, &snd_imx_hardware);
return 0;
}
static int fsl_asrc_dma_shutdown(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
struct fsl_asrc *asrc_priv;
if (!pair)
return 0;
asrc_priv = pair->asrc_priv;
if (asrc_priv->pair[pair->index] == pair)
asrc_priv->pair[pair->index] = NULL;
kfree(pair);
return 0;
}
static snd_pcm_uframes_t fsl_asrc_dma_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *pair = runtime->private_data;
return bytes_to_frames(substream->runtime, pair->pos);
}
static struct snd_pcm_ops fsl_asrc_dma_pcm_ops = {
.ioctl = snd_pcm_lib_ioctl,
.hw_params = fsl_asrc_dma_hw_params,
.hw_free = fsl_asrc_dma_hw_free,
.trigger = fsl_asrc_dma_trigger,
.open = fsl_asrc_dma_startup,
.close = fsl_asrc_dma_shutdown,
.pointer = fsl_asrc_dma_pcm_pointer,
};
static int fsl_asrc_dma_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_card *card = rtd->card->snd_card;
struct snd_pcm_substream *substream;
struct snd_pcm *pcm = rtd->pcm;
int ret, i;
ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(card->dev, "failed to set DMA mask\n");
return ret;
}
for (i = SNDRV_PCM_STREAM_PLAYBACK; i <= SNDRV_PCM_STREAM_LAST; i++) {
substream = pcm->streams[i].substream;
if (!substream)
continue;
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->card->dev,
FSL_ASRC_DMABUF_SIZE, &substream->dma_buffer);
if (ret) {
dev_err(card->dev, "failed to allocate DMA buffer\n");
goto err;
}
}
return 0;
err:
if (--i == 0 && pcm->streams[i].substream)
snd_dma_free_pages(&pcm->streams[i].substream->dma_buffer);
return ret;
}
static void fsl_asrc_dma_pcm_free(struct snd_pcm *pcm)
{
struct snd_pcm_substream *substream;
int i;
for (i = SNDRV_PCM_STREAM_PLAYBACK; i <= SNDRV_PCM_STREAM_LAST; i++) {
substream = pcm->streams[i].substream;
if (!substream)
continue;
snd_dma_free_pages(&substream->dma_buffer);
substream->dma_buffer.area = NULL;
substream->dma_buffer.addr = 0;
}
}
struct snd_soc_platform_driver fsl_asrc_platform = {
.ops = &fsl_asrc_dma_pcm_ops,
.pcm_new = fsl_asrc_dma_pcm_new,
.pcm_free = fsl_asrc_dma_pcm_free,
};
EXPORT_SYMBOL_GPL(fsl_asrc_platform);

View File

@ -624,12 +624,14 @@ static int fsl_esai_dai_probe(struct snd_soc_dai *dai)
static struct snd_soc_dai_driver fsl_esai_dai = {
.probe = fsl_esai_dai_probe,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 12,
.rates = FSL_ESAI_RATES,
.formats = FSL_ESAI_FORMATS,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 8,
.rates = FSL_ESAI_RATES,

View File

@ -455,12 +455,14 @@ static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
static struct snd_soc_dai_driver fsl_sai_dai = {
.probe = fsl_sai_dai_probe,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_96000,
.formats = FSL_SAI_FORMATS,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_96000,

View File

@ -32,10 +32,13 @@
#define FSL_SPDIF_TXFIFO_WML 0x8
#define FSL_SPDIF_RXFIFO_WML 0x8
#define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
#define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL | INT_URX_OV|\
INT_QRX_FUL | INT_QRX_OV | INT_UQ_SYNC | INT_UQ_ERR |\
INT_RXFIFO_RESYNC | INT_LOSS_LOCK | INT_DPLL_LOCKED)
#define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC)
#define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
INT_LOSS_LOCK | INT_DPLL_LOCKED)
#define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
/* Index list for the values that has if (DPLL Locked) condition */
static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
@ -96,7 +99,7 @@ struct fsl_spdif_priv {
struct platform_device *pdev;
struct regmap *regmap;
bool dpll_locked;
u16 txrate[SPDIF_TXRATE_MAX];
u32 txrate[SPDIF_TXRATE_MAX];
u8 txclk_df[SPDIF_TXRATE_MAX];
u8 sysclk_df[SPDIF_TXRATE_MAX];
u8 txclk_src[SPDIF_TXRATE_MAX];
@ -137,10 +140,9 @@ static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");
if (!spdif_priv->dpll_locked) {
/* DPLL unlocked seems no audio stream */
/* Clear illegal symbol if DPLL unlocked since no audio stream */
if (!spdif_priv->dpll_locked)
regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
}
}
/* U/Q Channel receive register full */
@ -335,8 +337,8 @@ static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
u32 ch_status;
ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
(bitrev8(ctrl->ch_status[1]) << 8) |
bitrev8(ctrl->ch_status[2]);
(bitrev8(ctrl->ch_status[1]) << 8) |
bitrev8(ctrl->ch_status[2]);
regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);
dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);
@ -390,6 +392,14 @@ static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
rate = SPDIF_TXRATE_48000;
csfs = IEC958_AES3_CON_FS_48000;
break;
case 96000:
rate = SPDIF_TXRATE_96000;
csfs = IEC958_AES3_CON_FS_96000;
break;
case 192000:
rate = SPDIF_TXRATE_192000;
csfs = IEC958_AES3_CON_FS_192000;
break;
default:
dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
return -EINVAL;
@ -433,13 +443,12 @@ clk_set_bypass:
spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);
/* select clock source and divisor */
stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) | STC_TXCLK_DF(txclk_df);
mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK | STC_TXCLK_DF_MASK;
stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);
regmap_update_bits(regmap, REG_SPDIF_STC,
STC_SYSCLK_DF_MASK, STC_SYSCLK_DF(sysclk_df));
dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
spdif_priv->txrate[rate], sample_rate);
@ -553,7 +562,7 @@ static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
return ret;
}
spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
IEC958_AES3_CON_CLOCK_1000PPM);
IEC958_AES3_CON_CLOCK_1000PPM);
spdif_write_channel_status(spdif_priv);
} else {
/* Setup rx clock source */
@ -569,9 +578,9 @@ static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(rtd->cpu_dai);
struct regmap *regmap = spdif_priv->regmap;
int is_playack = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
u32 intr = is_playack ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE;
u32 dmaen = is_playack ? SCR_DMA_TX_EN : SCR_DMA_RX_EN;;
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
u32 intr = SIE_INTR_FOR(tx);
u32 dmaen = SCR_DMA_xX_EN(tx);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
@ -662,9 +671,8 @@ static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
u32 cstatus, val;
regmap_read(regmap, REG_SPDIF_SIS, &val);
if (!(val & INT_CNEW)) {
if (!(val & INT_CNEW))
return -EAGAIN;
}
regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
@ -693,15 +701,14 @@ static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
unsigned long flags;
int ret = 0;
int ret = -EAGAIN;
spin_lock_irqsave(&ctrl->ctl_lock, flags);
if (ctrl->ready_buf) {
int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
memcpy(&ucontrol->value.iec958.subcode[0],
&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
} else {
ret = -EAGAIN;
ret = 0;
}
spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
@ -726,15 +733,14 @@ static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
unsigned long flags;
int ret = 0;
int ret = -EAGAIN;
spin_lock_irqsave(&ctrl->ctl_lock, flags);
if (ctrl->ready_buf) {
int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
memcpy(&ucontrol->value.bytes.data[0],
&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
} else {
ret = -EAGAIN;
ret = 0;
}
spin_unlock_irqrestore(&ctrl->ctl_lock, flags);
@ -799,10 +805,10 @@ static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);
clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED)) {
/* Get bus clock from system */
/* Get bus clock from system */
if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
busclk_freq = clk_get_rate(spdif_priv->sysclk);
}
/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
tmpval64 = (u64) busclk_freq * freqmeas;
@ -826,12 +832,12 @@ static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
int rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
int rate = 0;
if (spdif_priv->dpll_locked)
ucontrol->value.integer.value[0] = rate;
else
ucontrol->value.integer.value[0] = 0;
rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);
ucontrol->value.integer.value[0] = rate;
return 0;
}
@ -969,12 +975,14 @@ static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
static struct snd_soc_dai_driver fsl_spdif_dai = {
.probe = &fsl_spdif_dai_probe,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 2,
.channels_max = 2,
.rates = FSL_SPDIF_RATES_PLAYBACK,
.formats = FSL_SPDIF_FORMATS_PLAYBACK,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 2,
.channels_max = 2,
.rates = FSL_SPDIF_RATES_CAPTURE,
@ -1046,7 +1054,7 @@ static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
struct clk *clk, u64 savesub,
enum spdif_txrate index, bool round)
{
const u32 rate[] = { 32000, 44100, 48000 };
const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
bool is_sysclk = clk == spdif_priv->sysclk;
u64 rate_ideal, rate_actual, sub;
u32 sysclk_dfmin, sysclk_dfmax;
@ -1105,7 +1113,7 @@ out:
static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
enum spdif_txrate index)
{
const u32 rate[] = { 32000, 44100, 48000 };
const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
struct platform_device *pdev = spdif_priv->pdev;
struct device *dev = &pdev->dev;
u64 savesub = 100000, ret;
@ -1238,12 +1246,12 @@ static int fsl_spdif_probe(struct platform_device *pdev)
spin_lock_init(&ctrl->ctl_lock);
/* Init tx channel status default value */
ctrl->ch_status[0] =
IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_5015;
ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
IEC958_AES0_CON_EMPHASIS_5015;
ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
ctrl->ch_status[2] = 0x00;
ctrl->ch_status[3] =
IEC958_AES3_CON_FS_44100 | IEC958_AES3_CON_CLOCK_1000PPM;
ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
IEC958_AES3_CON_CLOCK_1000PPM;
spdif_priv->dpll_locked = false;

View File

@ -93,6 +93,8 @@
#define SCR_USRC_SEL_RECV (0x1 << SCR_USRC_SEL_OFFSET)
#define SCR_USRC_SEL_CHIP (0x3 << SCR_USRC_SEL_OFFSET)
#define SCR_DMA_xX_EN(tx) (tx ? SCR_DMA_TX_EN : SCR_DMA_RX_EN)
/* SPDIF CDText control */
#define SRCD_CD_USER_OFFSET 1
#define SRCD_CD_USER (1 << SRCD_CD_USER_OFFSET)
@ -164,8 +166,10 @@ enum spdif_txrate {
SPDIF_TXRATE_32000 = 0,
SPDIF_TXRATE_44100,
SPDIF_TXRATE_48000,
SPDIF_TXRATE_96000,
SPDIF_TXRATE_192000,
};
#define SPDIF_TXRATE_MAX (SPDIF_TXRATE_48000 + 1)
#define SPDIF_TXRATE_MAX (SPDIF_TXRATE_192000 + 1)
#define SPDIF_CSTATUS_BYTE 6
@ -175,7 +179,9 @@ enum spdif_txrate {
#define FSL_SPDIF_RATES_PLAYBACK (SNDRV_PCM_RATE_32000 | \
SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000)
SNDRV_PCM_RATE_48000 | \
SNDRV_PCM_RATE_96000 | \
SNDRV_PCM_RATE_192000)
#define FSL_SPDIF_RATES_CAPTURE (SNDRV_PCM_RATE_16000 | \
SNDRV_PCM_RATE_32000 | \

View File

@ -1032,12 +1032,14 @@ static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
.probe = fsl_ssi_dai_probe,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 2,
.rates = FSLSSI_I2S_RATES,
.formats = FSLSSI_I2S_FORMATS,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 2,
.rates = FSLSSI_I2S_RATES,

View File

@ -67,7 +67,7 @@ static ssize_t audmux_read_file(struct file *file, char __user *user_buf,
{
ssize_t ret;
char *buf;
int port = (int)file->private_data;
uintptr_t port = (uintptr_t)file->private_data;
u32 pdcr, ptcr;
if (audmux_clk) {
@ -147,7 +147,7 @@ static const struct file_operations audmux_debugfs_fops = {
static void audmux_debugfs_init(void)
{
int i;
uintptr_t i;
char buf[20];
audmux_debugfs_root = debugfs_create_dir("audmux", NULL);
@ -157,10 +157,10 @@ static void audmux_debugfs_init(void)
}
for (i = 0; i < MX31_AUDMUX_PORT7_SSI_PINS_7 + 1; i++) {
snprintf(buf, sizeof(buf), "ssi%d", i);
snprintf(buf, sizeof(buf), "ssi%lu", i);
if (!debugfs_create_file(buf, 0444, audmux_debugfs_root,
(void *)i, &audmux_debugfs_fops))
pr_warning("Failed to create AUDMUX port %d debugfs file\n",
pr_warning("Failed to create AUDMUX port %lu debugfs file\n",
i);
}
}