2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-03 10:54:03 +08:00

asm-generic changes for 4.5

The asm-generic tree this time contains one series from Nicolas Pitre
 that makes the optimized do_div() implementation from the ARM
 architecture available to all architectures. This also adds stricter
 type checking for callers of do_div, which has uncovered a number
 of bugs in existing code, and fixes up the ones we have found.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIVAwUAVqARKWCrR//JCVInAQJrBhAAlwZL0IiVGFfDXWtvQGOm+yC5j4vdIhMf
 1scsvRbk3ln1xUk5+NM61NpxbQotro78K5HxFZFhaVGUTbbFXM9w2VZSyI8ZaGAJ
 Od6lBUUyLQmzlbHDJ3v/zrZn8Up7qZlRApmXcbUVDtssfnEfKk4xA2RG9JwIMS1c
 uZMvnD7N3P9vxDPl+CsYlB2osi6Yks3VQ1tXYe2z6siO+H67zHaF08+ls7fbsd3d
 oyKjZqlaQ02MIOr+AdR0h9iKyJJ6SXT0DQlsMyzB6aBWmeBCNLNALNIiukDk9Qc1
 VV3sF1MOS3LtfU2TeOx4Na7hcd2iC6WYLb271iApO2Ww7t16n+de3i6AipZxLUJ0
 08jiRlisTzUhXDobRSqI3mcQlxrB5UGfyblab2z/MqGGmIGJSPPRdTPRQUgi0ZKg
 jksSmsaPwOQp64FhTgECLJthlYX7h6ULjkvJ9h60gZHa4jhGZbGPeMwHPf1uSm95
 EvQE971Ssgm4jwhvxZ/kt1ruuZI/fxxG1Qfw+C25QkXZGKye2nB+icLWeMwz+FXG
 HLqkmaAjasf5MAV1GiK8U6zoC6bCOLU0Lea83hOwRPZ999v3Nym1giSatNv4/pB+
 QmkXRvFi93cdQ643l7xcUEDT2zpk4pogF3xREiBhyaXtqLlT7pPMKsBQOgdWvFuu
 Ou0ZbEAwIVo=
 =4psa
 -----END PGP SIGNATURE-----

Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic

Pull asm-generic updates from Arnd Bergmann:
 "The asm-generic tree this time contains one series from Nicolas Pitre
  that makes the optimized do_div() implementation from the ARM
  architecture available to all architectures.

  This also adds stricter type checking for callers of do_div, which has
  uncovered a number of bugs in existing code, and fixes up the ones we
  have found"

* tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
  ARM: asm/div64.h: adjust to generic codde
  __div64_32(): make it overridable at compile time
  __div64_const32(): abstract out the actual 128-bit cross product code
  do_div(): generic optimization for constant divisor on 32-bit machines
  div64.h: optimize do_div() for power-of-two constant divisors
  mtd/sm_ftl.c: fix wrong do_div() usage
  drm/mgag200/mgag200_mode.c: fix wrong do_div() usage
  hid-sensor-hub.c: fix wrong do_div() usage
  ti/fapll: fix wrong do_div() usage
  ti/clkt_dpll: fix wrong do_div() usage
  tegra/clk-divider: fix wrong do_div() usage
  imx/clk-pllv2: fix wrong do_div() usage
  imx/clk-pllv1: fix wrong do_div() usage
  nouveau/nvkm/subdev/clk/gk20a.c: fix wrong do_div() usage
This commit is contained in:
Linus Torvalds 2016-01-20 17:30:20 -08:00
commit e3de671dd6
7 changed files with 278 additions and 197 deletions

View File

@ -5,9 +5,9 @@
#include <asm/compiler.h>
/*
* The semantics of do_div() are:
* The semantics of __div64_32() are:
*
* uint32_t do_div(uint64_t *n, uint32_t base)
* uint32_t __div64_32(uint64_t *n, uint32_t base)
* {
* uint32_t remainder = *n % base;
* *n = *n / base;
@ -16,8 +16,9 @@
*
* In other words, a 64-bit dividend with a 32-bit divisor producing
* a 64-bit result and a 32-bit remainder. To accomplish this optimally
* we call a special __do_div64 helper with completely non standard
* calling convention for arguments and results (beware).
* we override the generic version in lib/div64.c to call our __do_div64
* assembly implementation with completely non standard calling convention
* for arguments and results (beware).
*/
#ifdef __ARMEB__
@ -28,199 +29,101 @@
#define __xh "r1"
#endif
#define __do_div_asm(n, base) \
({ \
register unsigned int __base asm("r4") = base; \
register unsigned long long __n asm("r0") = n; \
register unsigned long long __res asm("r2"); \
register unsigned int __rem asm(__xh); \
asm( __asmeq("%0", __xh) \
__asmeq("%1", "r2") \
__asmeq("%2", "r0") \
__asmeq("%3", "r4") \
"bl __do_div64" \
: "=r" (__rem), "=r" (__res) \
: "r" (__n), "r" (__base) \
: "ip", "lr", "cc"); \
n = __res; \
__rem; \
})
static inline uint32_t __div64_32(uint64_t *n, uint32_t base)
{
register unsigned int __base asm("r4") = base;
register unsigned long long __n asm("r0") = *n;
register unsigned long long __res asm("r2");
register unsigned int __rem asm(__xh);
asm( __asmeq("%0", __xh)
__asmeq("%1", "r2")
__asmeq("%2", "r0")
__asmeq("%3", "r4")
"bl __do_div64"
: "=r" (__rem), "=r" (__res)
: "r" (__n), "r" (__base)
: "ip", "lr", "cc");
*n = __res;
return __rem;
}
#define __div64_32 __div64_32
#if __GNUC__ < 4 || !defined(CONFIG_AEABI)
#if !defined(CONFIG_AEABI)
/*
* In OABI configurations, some uses of the do_div function
* cause gcc to run out of registers. To work around that,
* we can force the use of the out-of-line version for
* configurations that build a OABI kernel.
*/
#define do_div(n, base) __div64_32(&(n), base)
#else
/*
* gcc versions earlier than 4.0 are simply too problematic for the
* optimized implementation below. First there is gcc PR 15089 that
* tend to trig on more complex constructs, spurious .global __udivsi3
* are inserted even if none of those symbols are referenced in the
* generated code, and those gcc versions are not able to do constant
* propagation on long long values anyway.
* __div64_const32() code in asm-generic/div64.h. First there is
* gcc PR 15089 that tend to trig on more complex constructs, spurious
* .global __udivsi3 are inserted even if none of those symbols are
* referenced in the generated code, and those gcc versions are not able
* to do constant propagation on long long values anyway.
*/
#define do_div(n, base) __do_div_asm(n, base)
#elif __GNUC__ >= 4
#define __div64_const32_is_OK (__GNUC__ >= 4)
#include <asm/bug.h>
static inline uint64_t __arch_xprod_64(uint64_t m, uint64_t n, bool bias)
{
unsigned long long res;
unsigned int tmp = 0;
/*
* If the divisor happens to be constant, we determine the appropriate
* inverse at compile time to turn the division into a few inline
* multiplications instead which is much faster. And yet only if compiling
* for ARMv4 or higher (we need umull/umlal) and if the gcc version is
* sufficiently recent to perform proper long long constant propagation.
* (It is unfortunate that gcc doesn't perform all this internally.)
*/
#define do_div(n, base) \
({ \
unsigned int __r, __b = (base); \
if (!__builtin_constant_p(__b) || __b == 0 || \
(__LINUX_ARM_ARCH__ < 4 && (__b & (__b - 1)) != 0)) { \
/* non-constant divisor (or zero): slow path */ \
__r = __do_div_asm(n, __b); \
} else if ((__b & (__b - 1)) == 0) { \
/* Trivial: __b is constant and a power of 2 */ \
/* gcc does the right thing with this code. */ \
__r = n; \
__r &= (__b - 1); \
n /= __b; \
} else { \
/* Multiply by inverse of __b: n/b = n*(p/b)/p */ \
/* We rely on the fact that most of this code gets */ \
/* optimized away at compile time due to constant */ \
/* propagation and only a couple inline assembly */ \
/* instructions should remain. Better avoid any */ \
/* code construct that might prevent that. */ \
unsigned long long __res, __x, __t, __m, __n = n; \
unsigned int __c, __p, __z = 0; \
/* preserve low part of n for reminder computation */ \
__r = __n; \
/* determine number of bits to represent __b */ \
__p = 1 << __div64_fls(__b); \
/* compute __m = ((__p << 64) + __b - 1) / __b */ \
__m = (~0ULL / __b) * __p; \
__m += (((~0ULL % __b + 1) * __p) + __b - 1) / __b; \
/* compute __res = __m*(~0ULL/__b*__b-1)/(__p << 64) */ \
__x = ~0ULL / __b * __b - 1; \
__res = (__m & 0xffffffff) * (__x & 0xffffffff); \
__res >>= 32; \
__res += (__m & 0xffffffff) * (__x >> 32); \
__t = __res; \
__res += (__x & 0xffffffff) * (__m >> 32); \
__t = (__res < __t) ? (1ULL << 32) : 0; \
__res = (__res >> 32) + __t; \
__res += (__m >> 32) * (__x >> 32); \
__res /= __p; \
/* Now sanitize and optimize what we've got. */ \
if (~0ULL % (__b / (__b & -__b)) == 0) { \
/* those cases can be simplified with: */ \
__n /= (__b & -__b); \
__m = ~0ULL / (__b / (__b & -__b)); \
__p = 1; \
__c = 1; \
} else if (__res != __x / __b) { \
/* We can't get away without a correction */ \
/* to compensate for bit truncation errors. */ \
/* To avoid it we'd need an additional bit */ \
/* to represent __m which would overflow it. */ \
/* Instead we do m=p/b and n/b=(n*m+m)/p. */ \
__c = 1; \
/* Compute __m = (__p << 64) / __b */ \
__m = (~0ULL / __b) * __p; \
__m += ((~0ULL % __b + 1) * __p) / __b; \
} else { \
/* Reduce __m/__p, and try to clear bit 31 */ \
/* of __m when possible otherwise that'll */ \
/* need extra overflow handling later. */ \
unsigned int __bits = -(__m & -__m); \
__bits |= __m >> 32; \
__bits = (~__bits) << 1; \
/* If __bits == 0 then setting bit 31 is */ \
/* unavoidable. Simply apply the maximum */ \
/* possible reduction in that case. */ \
/* Otherwise the MSB of __bits indicates the */ \
/* best reduction we should apply. */ \
if (!__bits) { \
__p /= (__m & -__m); \
__m /= (__m & -__m); \
} else { \
__p >>= __div64_fls(__bits); \
__m >>= __div64_fls(__bits); \
} \
/* No correction needed. */ \
__c = 0; \
} \
/* Now we have a combination of 2 conditions: */ \
/* 1) whether or not we need a correction (__c), and */ \
/* 2) whether or not there might be an overflow in */ \
/* the cross product (__m & ((1<<63) | (1<<31))) */ \
/* Select the best insn combination to perform the */ \
/* actual __m * __n / (__p << 64) operation. */ \
if (!__c) { \
asm ( "umull %Q0, %R0, %Q1, %Q2\n\t" \
"mov %Q0, #0" \
: "=&r" (__res) \
: "r" (__m), "r" (__n) \
: "cc" ); \
} else if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
__res = __m; \
asm ( "umlal %Q0, %R0, %Q1, %Q2\n\t" \
"mov %Q0, #0" \
: "+&r" (__res) \
: "r" (__m), "r" (__n) \
: "cc" ); \
} else { \
asm ( "umull %Q0, %R0, %Q1, %Q2\n\t" \
"cmn %Q0, %Q1\n\t" \
"adcs %R0, %R0, %R1\n\t" \
"adc %Q0, %3, #0" \
: "=&r" (__res) \
: "r" (__m), "r" (__n), "r" (__z) \
: "cc" ); \
} \
if (!(__m & ((1ULL << 63) | (1ULL << 31)))) { \
asm ( "umlal %R0, %Q0, %R1, %Q2\n\t" \
"umlal %R0, %Q0, %Q1, %R2\n\t" \
"mov %R0, #0\n\t" \
"umlal %Q0, %R0, %R1, %R2" \
: "+&r" (__res) \
: "r" (__m), "r" (__n) \
: "cc" ); \
} else { \
asm ( "umlal %R0, %Q0, %R2, %Q3\n\t" \
"umlal %R0, %1, %Q2, %R3\n\t" \
"mov %R0, #0\n\t" \
"adds %Q0, %1, %Q0\n\t" \
"adc %R0, %R0, #0\n\t" \
"umlal %Q0, %R0, %R2, %R3" \
: "+&r" (__res), "+&r" (__z) \
: "r" (__m), "r" (__n) \
: "cc" ); \
} \
__res /= __p; \
/* The reminder can be computed with 32-bit regs */ \
/* only, and gcc is good at that. */ \
{ \
unsigned int __res0 = __res; \
unsigned int __b0 = __b; \
__r -= __res0 * __b0; \
} \
/* BUG_ON(__r >= __b || __res * __b + __r != n); */ \
n = __res; \
} \
__r; \
})
if (!bias) {
asm ( "umull %Q0, %R0, %Q1, %Q2\n\t"
"mov %Q0, #0"
: "=&r" (res)
: "r" (m), "r" (n)
: "cc");
} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
res = m;
asm ( "umlal %Q0, %R0, %Q1, %Q2\n\t"
"mov %Q0, #0"
: "+&r" (res)
: "r" (m), "r" (n)
: "cc");
} else {
asm ( "umull %Q0, %R0, %Q1, %Q2\n\t"
"cmn %Q0, %Q1\n\t"
"adcs %R0, %R0, %R1\n\t"
"adc %Q0, %3, #0"
: "=&r" (res)
: "r" (m), "r" (n), "r" (tmp)
: "cc");
}
/* our own fls implementation to make sure constant propagation is fine */
#define __div64_fls(bits) \
({ \
unsigned int __left = (bits), __nr = 0; \
if (__left & 0xffff0000) __nr += 16, __left >>= 16; \
if (__left & 0x0000ff00) __nr += 8, __left >>= 8; \
if (__left & 0x000000f0) __nr += 4, __left >>= 4; \
if (__left & 0x0000000c) __nr += 2, __left >>= 2; \
if (__left & 0x00000002) __nr += 1; \
__nr; \
})
if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
asm ( "umlal %R0, %Q0, %R1, %Q2\n\t"
"umlal %R0, %Q0, %Q1, %R2\n\t"
"mov %R0, #0\n\t"
"umlal %Q0, %R0, %R1, %R2"
: "+&r" (res)
: "r" (m), "r" (n)
: "cc");
} else {
asm ( "umlal %R0, %Q0, %R2, %Q3\n\t"
"umlal %R0, %1, %Q2, %R3\n\t"
"mov %R0, #0\n\t"
"adds %Q0, %1, %Q0\n\t"
"adc %R0, %R0, #0\n\t"
"umlal %Q0, %R0, %R2, %R3"
: "+&r" (res), "+&r" (tmp)
: "r" (m), "r" (n)
: "cc");
}
return res;
}
#define __arch_xprod_64 __arch_xprod_64
#include <asm-generic/div64.h>
#endif

View File

@ -32,7 +32,7 @@
static int get_div(struct tegra_clk_frac_div *divider, unsigned long rate,
unsigned long parent_rate)
{
s64 divider_ux1 = parent_rate;
u64 divider_ux1 = parent_rate;
u8 flags = divider->flags;
int mul;
@ -54,7 +54,7 @@ static int get_div(struct tegra_clk_frac_div *divider, unsigned long rate,
divider_ux1 -= mul;
if (divider_ux1 < 0)
if ((s64)divider_ux1 < 0)
return 0;
if (divider_ux1 > get_max_div(divider))

View File

@ -1564,7 +1564,7 @@ static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
int bits_per_pixel)
{
uint32_t total_area, divisor;
int64_t active_area, pixels_per_second, bandwidth;
uint64_t active_area, pixels_per_second, bandwidth;
uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
divisor = 1024;

View File

@ -141,9 +141,8 @@ gk20a_pllg_calc_rate(struct gk20a_clk *clk)
rate = clk->parent_rate * clk->n;
divider = clk->m * pl_to_div[clk->pl];
do_div(rate, divider);
return rate / 2;
return rate / divider / 2;
}
static int

View File

@ -218,7 +218,8 @@ int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
goto done_proc;
}
remaining_bytes = do_div(buffer_size, sizeof(__s32));
remaining_bytes = buffer_size % sizeof(__s32);
buffer_size = buffer_size / sizeof(__s32);
if (buffer_size) {
for (i = 0; i < buffer_size; ++i) {
hid_set_field(report->field[field_index], i,

View File

@ -4,6 +4,9 @@
* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
* Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
*
* Optimization for constant divisors on 32-bit machines:
* Copyright (C) 2006-2015 Nicolas Pitre
*
* The semantics of do_div() are:
*
* uint32_t do_div(uint64_t *n, uint32_t base)
@ -32,7 +35,168 @@
#elif BITS_PER_LONG == 32
#include <linux/log2.h>
/*
* If the divisor happens to be constant, we determine the appropriate
* inverse at compile time to turn the division into a few inline
* multiplications which ought to be much faster. And yet only if compiling
* with a sufficiently recent gcc version to perform proper 64-bit constant
* propagation.
*
* (It is unfortunate that gcc doesn't perform all this internally.)
*/
#ifndef __div64_const32_is_OK
#define __div64_const32_is_OK (__GNUC__ >= 4)
#endif
#define __div64_const32(n, ___b) \
({ \
/* \
* Multiplication by reciprocal of b: n / b = n * (p / b) / p \
* \
* We rely on the fact that most of this code gets optimized \
* away at compile time due to constant propagation and only \
* a few multiplication instructions should remain. \
* Hence this monstrous macro (static inline doesn't always \
* do the trick here). \
*/ \
uint64_t ___res, ___x, ___t, ___m, ___n = (n); \
uint32_t ___p, ___bias; \
\
/* determine MSB of b */ \
___p = 1 << ilog2(___b); \
\
/* compute m = ((p << 64) + b - 1) / b */ \
___m = (~0ULL / ___b) * ___p; \
___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \
\
/* one less than the dividend with highest result */ \
___x = ~0ULL / ___b * ___b - 1; \
\
/* test our ___m with res = m * x / (p << 64) */ \
___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \
___t = ___res += (___m & 0xffffffff) * (___x >> 32); \
___res += (___x & 0xffffffff) * (___m >> 32); \
___t = (___res < ___t) ? (1ULL << 32) : 0; \
___res = (___res >> 32) + ___t; \
___res += (___m >> 32) * (___x >> 32); \
___res /= ___p; \
\
/* Now sanitize and optimize what we've got. */ \
if (~0ULL % (___b / (___b & -___b)) == 0) { \
/* special case, can be simplified to ... */ \
___n /= (___b & -___b); \
___m = ~0ULL / (___b / (___b & -___b)); \
___p = 1; \
___bias = 1; \
} else if (___res != ___x / ___b) { \
/* \
* We can't get away without a bias to compensate \
* for bit truncation errors. To avoid it we'd need an \
* additional bit to represent m which would overflow \
* a 64-bit variable. \
* \
* Instead we do m = p / b and n / b = (n * m + m) / p. \
*/ \
___bias = 1; \
/* Compute m = (p << 64) / b */ \
___m = (~0ULL / ___b) * ___p; \
___m += ((~0ULL % ___b + 1) * ___p) / ___b; \
} else { \
/* \
* Reduce m / p, and try to clear bit 31 of m when \
* possible, otherwise that'll need extra overflow \
* handling later. \
*/ \
uint32_t ___bits = -(___m & -___m); \
___bits |= ___m >> 32; \
___bits = (~___bits) << 1; \
/* \
* If ___bits == 0 then setting bit 31 is unavoidable. \
* Simply apply the maximum possible reduction in that \
* case. Otherwise the MSB of ___bits indicates the \
* best reduction we should apply. \
*/ \
if (!___bits) { \
___p /= (___m & -___m); \
___m /= (___m & -___m); \
} else { \
___p >>= ilog2(___bits); \
___m >>= ilog2(___bits); \
} \
/* No bias needed. */ \
___bias = 0; \
} \
\
/* \
* Now we have a combination of 2 conditions: \
* \
* 1) whether or not we need to apply a bias, and \
* \
* 2) whether or not there might be an overflow in the cross \
* product determined by (___m & ((1 << 63) | (1 << 31))). \
* \
* Select the best way to do (m_bias + m * n) / (1 << 64). \
* From now on there will be actual runtime code generated. \
*/ \
___res = __arch_xprod_64(___m, ___n, ___bias); \
\
___res /= ___p; \
})
#ifndef __arch_xprod_64
/*
* Default C implementation for __arch_xprod_64()
*
* Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
* Semantic: retval = ((bias ? m : 0) + m * n) >> 64
*
* The product is a 128-bit value, scaled down to 64 bits.
* Assuming constant propagation to optimize away unused conditional code.
* Architectures may provide their own optimized assembly implementation.
*/
static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
{
uint32_t m_lo = m;
uint32_t m_hi = m >> 32;
uint32_t n_lo = n;
uint32_t n_hi = n >> 32;
uint64_t res, tmp;
if (!bias) {
res = ((uint64_t)m_lo * n_lo) >> 32;
} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
/* there can't be any overflow here */
res = (m + (uint64_t)m_lo * n_lo) >> 32;
} else {
res = m + (uint64_t)m_lo * n_lo;
tmp = (res < m) ? (1ULL << 32) : 0;
res = (res >> 32) + tmp;
}
if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
/* there can't be any overflow here */
res += (uint64_t)m_lo * n_hi;
res += (uint64_t)m_hi * n_lo;
res >>= 32;
} else {
tmp = res += (uint64_t)m_lo * n_hi;
res += (uint64_t)m_hi * n_lo;
tmp = (res < tmp) ? (1ULL << 32) : 0;
res = (res >> 32) + tmp;
}
res += (uint64_t)m_hi * n_hi;
return res;
}
#endif
#ifndef __div64_32
extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
#endif
/* The unnecessary pointer compare is there
* to check for type safety (n must be 64bit)
@ -41,7 +205,19 @@ extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
uint32_t __base = (base); \
uint32_t __rem; \
(void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
if (likely(((n) >> 32) == 0)) { \
if (__builtin_constant_p(__base) && \
is_power_of_2(__base)) { \
__rem = (n) & (__base - 1); \
(n) >>= ilog2(__base); \
} else if (__div64_const32_is_OK && \
__builtin_constant_p(__base) && \
__base != 0) { \
uint32_t __res_lo, __n_lo = (n); \
(n) = __div64_const32(n, __base); \
/* the remainder can be computed with 32-bit regs */ \
__res_lo = (n); \
__rem = __n_lo - __res_lo * __base; \
} else if (likely(((n) >> 32) == 0)) { \
__rem = (uint32_t)(n) % __base; \
(n) = (uint32_t)(n) / __base; \
} else \

View File

@ -13,7 +13,8 @@
*
* Code generated for this function might be very inefficient
* for some CPUs. __div64_32() can be overridden by linking arch-specific
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S.
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
* or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
#include <linux/export.h>
@ -23,6 +24,7 @@
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
#ifndef __div64_32
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
{
uint64_t rem = *n;
@ -55,8 +57,8 @@ uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
*n = res;
return rem;
}
EXPORT_SYMBOL(__div64_32);
#endif
#ifndef div_s64_rem
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)