2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-12 15:24:00 +08:00

iio: frequency: New driver for Analog Devices ADF4350/ADF4351 Wideband Synthesizers

Changes since V1:
Apply Jonathan's review feedback:
    Introduce and use IIO_ALTVOLTAGE.
    Fix up comments and documentation.
    Remove dead code.
    Reorder some code fragments.
    Add missing iio_device_free.

Convert to new API.
Fix-up out of staging includes.
Removed pll_locked attribute.

Changes since V2:
Use module_spi_driver.
adf4350_remove: move gpio_free after regulator.
target patch to drivers/iio

Signed-off-by: Michael Hennerich <michael.hennerich@analog.com>
Acked-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Michael Hennerich 2012-05-29 12:41:20 +02:00 committed by Greg Kroah-Hartman
parent cd1678f963
commit e31166f0fd
5 changed files with 644 additions and 0 deletions

View File

@ -0,0 +1,21 @@
What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_frequency_resolution
KernelVersion: 3.4.0
Contact: linux-iio@vger.kernel.org
Description:
Stores channel Y frequency resolution/channel spacing in Hz.
The value given directly influences the MODULUS used by
the fractional-N PLL. It is assumed that the algorithm
that is used to compute the various dividers, is able to
generate proper values for multiples of channel spacing.
What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_refin_frequency
KernelVersion: 3.4.0
Contact: linux-iio@vger.kernel.org
Description:
Sets channel Y REFin frequency in Hz. In some clock chained
applications, the reference frequency used by the PLL may
change during runtime. This attribute allows the user to
adjust the reference frequency accordingly.
The value written has no effect until out_altvoltageY_frequency
is updated. Consider to use out_altvoltageY_powerdown to power
down the PLL and it's RFOut buffers during REFin changes.

View File

@ -19,5 +19,23 @@ config AD9523
To compile this driver as a module, choose M here: the
module will be called ad9523.
endmenu
#
# Phase-Locked Loop (PLL) frequency synthesizers
#
menu "Phase-Locked Loop (PLL) frequency synthesizers"
config ADF4350
tristate "Analog Devices ADF4350/ADF4351 Wideband Synthesizers"
depends on SPI
help
Say yes here to build support for Analog Devices ADF4350/ADF4351
Wideband Synthesizers. The driver provides direct access via sysfs.
To compile this driver as a module, choose M here: the
module will be called adf4350.
endmenu
endmenu

View File

@ -3,3 +3,4 @@
#
obj-$(CONFIG_AD9523) += ad9523.o
obj-$(CONFIG_ADF4350) += adf4350.o

View File

@ -0,0 +1,478 @@
/*
* ADF4350/ADF4351 SPI Wideband Synthesizer driver
*
* Copyright 2012 Analog Devices Inc.
*
* Licensed under the GPL-2.
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/regulator/consumer.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/gcd.h>
#include <linux/gpio.h>
#include <asm/div64.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/frequency/adf4350.h>
enum {
ADF4350_FREQ,
ADF4350_FREQ_REFIN,
ADF4350_FREQ_RESOLUTION,
ADF4350_PWRDOWN,
};
struct adf4350_state {
struct spi_device *spi;
struct regulator *reg;
struct adf4350_platform_data *pdata;
unsigned long clkin;
unsigned long chspc; /* Channel Spacing */
unsigned long fpfd; /* Phase Frequency Detector */
unsigned long min_out_freq;
unsigned r0_fract;
unsigned r0_int;
unsigned r1_mod;
unsigned r4_rf_div_sel;
unsigned long regs[6];
unsigned long regs_hw[6];
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
__be32 val ____cacheline_aligned;
};
static struct adf4350_platform_data default_pdata = {
.clkin = 122880000,
.channel_spacing = 10000,
.r2_user_settings = ADF4350_REG2_PD_POLARITY_POS,
ADF4350_REG2_CHARGE_PUMP_CURR_uA(2500),
.r3_user_settings = ADF4350_REG3_12BIT_CLKDIV_MODE(0),
.r4_user_settings = ADF4350_REG4_OUTPUT_PWR(3) |
ADF4350_REG4_MUTE_TILL_LOCK_EN,
.gpio_lock_detect = -1,
};
static int adf4350_sync_config(struct adf4350_state *st)
{
int ret, i, doublebuf = 0;
for (i = ADF4350_REG5; i >= ADF4350_REG0; i--) {
if ((st->regs_hw[i] != st->regs[i]) ||
((i == ADF4350_REG0) && doublebuf)) {
switch (i) {
case ADF4350_REG1:
case ADF4350_REG4:
doublebuf = 1;
break;
}
st->val = cpu_to_be32(st->regs[i] | i);
ret = spi_write(st->spi, &st->val, 4);
if (ret < 0)
return ret;
st->regs_hw[i] = st->regs[i];
dev_dbg(&st->spi->dev, "[%d] 0x%X\n",
i, (u32)st->regs[i] | i);
}
}
return 0;
}
static int adf4350_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct adf4350_state *st = iio_priv(indio_dev);
int ret;
if (reg > ADF4350_REG5)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
if (readval == NULL) {
st->regs[reg] = writeval & ~(BIT(0) | BIT(1) | BIT(2));
ret = adf4350_sync_config(st);
} else {
*readval = st->regs_hw[reg];
ret = 0;
}
mutex_unlock(&indio_dev->mlock);
return ret;
}
static int adf4350_tune_r_cnt(struct adf4350_state *st, unsigned short r_cnt)
{
struct adf4350_platform_data *pdata = st->pdata;
do {
r_cnt++;
st->fpfd = (st->clkin * (pdata->ref_doubler_en ? 2 : 1)) /
(r_cnt * (pdata->ref_div2_en ? 2 : 1));
} while (st->fpfd > ADF4350_MAX_FREQ_PFD);
return r_cnt;
}
static int adf4350_set_freq(struct adf4350_state *st, unsigned long long freq)
{
struct adf4350_platform_data *pdata = st->pdata;
u64 tmp;
u32 div_gcd, prescaler;
u16 mdiv, r_cnt = 0;
u8 band_sel_div;
if (freq > ADF4350_MAX_OUT_FREQ || freq < st->min_out_freq)
return -EINVAL;
if (freq > ADF4350_MAX_FREQ_45_PRESC) {
prescaler = ADF4350_REG1_PRESCALER;
mdiv = 75;
} else {
prescaler = 0;
mdiv = 23;
}
st->r4_rf_div_sel = 0;
while (freq < ADF4350_MIN_VCO_FREQ) {
freq <<= 1;
st->r4_rf_div_sel++;
}
/*
* Allow a predefined reference division factor
* if not set, compute our own
*/
if (pdata->ref_div_factor)
r_cnt = pdata->ref_div_factor - 1;
do {
r_cnt = adf4350_tune_r_cnt(st, r_cnt);
st->r1_mod = st->fpfd / st->chspc;
while (st->r1_mod > ADF4350_MAX_MODULUS) {
r_cnt = adf4350_tune_r_cnt(st, r_cnt);
st->r1_mod = st->fpfd / st->chspc;
}
tmp = freq * (u64)st->r1_mod + (st->fpfd > 1);
do_div(tmp, st->fpfd); /* Div round closest (n + d/2)/d */
st->r0_fract = do_div(tmp, st->r1_mod);
st->r0_int = tmp;
} while (mdiv > st->r0_int);
band_sel_div = DIV_ROUND_UP(st->fpfd, ADF4350_MAX_BANDSEL_CLK);
if (st->r0_fract && st->r1_mod) {
div_gcd = gcd(st->r1_mod, st->r0_fract);
st->r1_mod /= div_gcd;
st->r0_fract /= div_gcd;
} else {
st->r0_fract = 0;
st->r1_mod = 1;
}
dev_dbg(&st->spi->dev, "VCO: %llu Hz, PFD %lu Hz\n"
"REF_DIV %d, R0_INT %d, R0_FRACT %d\n"
"R1_MOD %d, RF_DIV %d\nPRESCALER %s, BAND_SEL_DIV %d\n",
freq, st->fpfd, r_cnt, st->r0_int, st->r0_fract, st->r1_mod,
1 << st->r4_rf_div_sel, prescaler ? "8/9" : "4/5",
band_sel_div);
st->regs[ADF4350_REG0] = ADF4350_REG0_INT(st->r0_int) |
ADF4350_REG0_FRACT(st->r0_fract);
st->regs[ADF4350_REG1] = ADF4350_REG1_PHASE(0) |
ADF4350_REG1_MOD(st->r1_mod) |
prescaler;
st->regs[ADF4350_REG2] =
ADF4350_REG2_10BIT_R_CNT(r_cnt) |
ADF4350_REG2_DOUBLE_BUFF_EN |
(pdata->ref_doubler_en ? ADF4350_REG2_RMULT2_EN : 0) |
(pdata->ref_div2_en ? ADF4350_REG2_RDIV2_EN : 0) |
(pdata->r2_user_settings & (ADF4350_REG2_PD_POLARITY_POS |
ADF4350_REG2_LDP_6ns | ADF4350_REG2_LDF_INT_N |
ADF4350_REG2_CHARGE_PUMP_CURR_uA(5000) |
ADF4350_REG2_MUXOUT(0x7) | ADF4350_REG2_NOISE_MODE(0x9)));
st->regs[ADF4350_REG3] = pdata->r3_user_settings &
(ADF4350_REG3_12BIT_CLKDIV(0xFFF) |
ADF4350_REG3_12BIT_CLKDIV_MODE(0x3) |
ADF4350_REG3_12BIT_CSR_EN |
ADF4351_REG3_CHARGE_CANCELLATION_EN |
ADF4351_REG3_ANTI_BACKLASH_3ns_EN |
ADF4351_REG3_BAND_SEL_CLOCK_MODE_HIGH);
st->regs[ADF4350_REG4] =
ADF4350_REG4_FEEDBACK_FUND |
ADF4350_REG4_RF_DIV_SEL(st->r4_rf_div_sel) |
ADF4350_REG4_8BIT_BAND_SEL_CLKDIV(band_sel_div) |
ADF4350_REG4_RF_OUT_EN |
(pdata->r4_user_settings &
(ADF4350_REG4_OUTPUT_PWR(0x3) |
ADF4350_REG4_AUX_OUTPUT_PWR(0x3) |
ADF4350_REG4_AUX_OUTPUT_EN |
ADF4350_REG4_AUX_OUTPUT_FUND |
ADF4350_REG4_MUTE_TILL_LOCK_EN));
st->regs[ADF4350_REG5] = ADF4350_REG5_LD_PIN_MODE_DIGITAL;
return adf4350_sync_config(st);
}
static ssize_t adf4350_write(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct adf4350_state *st = iio_priv(indio_dev);
unsigned long long readin;
int ret;
ret = kstrtoull(buf, 10, &readin);
if (ret)
return ret;
mutex_lock(&indio_dev->mlock);
switch ((u32)private) {
case ADF4350_FREQ:
ret = adf4350_set_freq(st, readin);
break;
case ADF4350_FREQ_REFIN:
if (readin > ADF4350_MAX_FREQ_REFIN)
ret = -EINVAL;
else
st->clkin = readin;
break;
case ADF4350_FREQ_RESOLUTION:
if (readin == 0)
ret = -EINVAL;
else
st->chspc = readin;
break;
case ADF4350_PWRDOWN:
if (readin)
st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN;
else
st->regs[ADF4350_REG2] &= ~ADF4350_REG2_POWER_DOWN_EN;
adf4350_sync_config(st);
break;
default:
ret = -ENODEV;
}
mutex_unlock(&indio_dev->mlock);
return ret ? ret : len;
}
static ssize_t adf4350_read(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct adf4350_state *st = iio_priv(indio_dev);
unsigned long long val;
int ret = 0;
mutex_lock(&indio_dev->mlock);
switch ((u32)private) {
case ADF4350_FREQ:
val = (u64)((st->r0_int * st->r1_mod) + st->r0_fract) *
(u64)st->fpfd;
do_div(val, st->r1_mod * (1 << st->r4_rf_div_sel));
/* PLL unlocked? return error */
if (gpio_is_valid(st->pdata->gpio_lock_detect))
if (!gpio_get_value(st->pdata->gpio_lock_detect)) {
dev_dbg(&st->spi->dev, "PLL un-locked\n");
ret = -EBUSY;
}
break;
case ADF4350_FREQ_REFIN:
val = st->clkin;
break;
case ADF4350_FREQ_RESOLUTION:
val = st->chspc;
break;
case ADF4350_PWRDOWN:
val = !!(st->regs[ADF4350_REG2] & ADF4350_REG2_POWER_DOWN_EN);
break;
}
mutex_unlock(&indio_dev->mlock);
return ret < 0 ? ret : sprintf(buf, "%llu\n", val);
}
#define _ADF4350_EXT_INFO(_name, _ident) { \
.name = _name, \
.read = adf4350_read, \
.write = adf4350_write, \
.private = _ident, \
}
static const struct iio_chan_spec_ext_info adf4350_ext_info[] = {
/* Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are
* values > 2^32 in order to support the entire frequency range
* in Hz. Using scale is a bit ugly.
*/
_ADF4350_EXT_INFO("frequency", ADF4350_FREQ),
_ADF4350_EXT_INFO("frequency_resolution", ADF4350_FREQ_RESOLUTION),
_ADF4350_EXT_INFO("refin_frequency", ADF4350_FREQ_REFIN),
_ADF4350_EXT_INFO("powerdown", ADF4350_PWRDOWN),
{ },
};
static const struct iio_chan_spec adf4350_chan = {
.type = IIO_ALTVOLTAGE,
.indexed = 1,
.output = 1,
.ext_info = adf4350_ext_info,
};
static const struct iio_info adf4350_info = {
.debugfs_reg_access = &adf4350_reg_access,
.driver_module = THIS_MODULE,
};
static int __devinit adf4350_probe(struct spi_device *spi)
{
struct adf4350_platform_data *pdata = spi->dev.platform_data;
struct iio_dev *indio_dev;
struct adf4350_state *st;
int ret;
if (!pdata) {
dev_warn(&spi->dev, "no platform data? using default\n");
pdata = &default_pdata;
}
indio_dev = iio_device_alloc(sizeof(*st));
if (indio_dev == NULL)
return -ENOMEM;
st = iio_priv(indio_dev);
st->reg = regulator_get(&spi->dev, "vcc");
if (!IS_ERR(st->reg)) {
ret = regulator_enable(st->reg);
if (ret)
goto error_put_reg;
}
spi_set_drvdata(spi, indio_dev);
st->spi = spi;
st->pdata = pdata;
indio_dev->dev.parent = &spi->dev;
indio_dev->name = (pdata->name[0] != 0) ? pdata->name :
spi_get_device_id(spi)->name;
indio_dev->info = &adf4350_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = &adf4350_chan;
indio_dev->num_channels = 1;
st->chspc = pdata->channel_spacing;
st->clkin = pdata->clkin;
st->min_out_freq = spi_get_device_id(spi)->driver_data == 4351 ?
ADF4351_MIN_OUT_FREQ : ADF4350_MIN_OUT_FREQ;
memset(st->regs_hw, 0xFF, sizeof(st->regs_hw));
if (gpio_is_valid(pdata->gpio_lock_detect)) {
ret = gpio_request(pdata->gpio_lock_detect, indio_dev->name);
if (ret) {
dev_err(&spi->dev, "fail to request lock detect GPIO-%d",
pdata->gpio_lock_detect);
goto error_disable_reg;
}
gpio_direction_input(pdata->gpio_lock_detect);
}
if (pdata->power_up_frequency) {
ret = adf4350_set_freq(st, pdata->power_up_frequency);
if (ret)
goto error_free_gpio;
}
ret = iio_device_register(indio_dev);
if (ret)
goto error_free_gpio;
return 0;
error_free_gpio:
if (gpio_is_valid(pdata->gpio_lock_detect))
gpio_free(pdata->gpio_lock_detect);
error_disable_reg:
if (!IS_ERR(st->reg))
regulator_disable(st->reg);
error_put_reg:
if (!IS_ERR(st->reg))
regulator_put(st->reg);
iio_device_free(indio_dev);
return ret;
}
static int __devexit adf4350_remove(struct spi_device *spi)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct adf4350_state *st = iio_priv(indio_dev);
struct regulator *reg = st->reg;
st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN;
adf4350_sync_config(st);
iio_device_unregister(indio_dev);
if (!IS_ERR(reg)) {
regulator_disable(reg);
regulator_put(reg);
}
if (gpio_is_valid(st->pdata->gpio_lock_detect))
gpio_free(st->pdata->gpio_lock_detect);
iio_device_free(indio_dev);
return 0;
}
static const struct spi_device_id adf4350_id[] = {
{"adf4350", 4350},
{"adf4351", 4351},
{}
};
static struct spi_driver adf4350_driver = {
.driver = {
.name = "adf4350",
.owner = THIS_MODULE,
},
.probe = adf4350_probe,
.remove = __devexit_p(adf4350_remove),
.id_table = adf4350_id,
};
module_spi_driver(adf4350_driver);
MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("Analog Devices ADF4350/ADF4351 PLL");
MODULE_LICENSE("GPL v2");

View File

@ -0,0 +1,126 @@
/*
* ADF4350/ADF4351 SPI PLL driver
*
* Copyright 2012 Analog Devices Inc.
*
* Licensed under the GPL-2.
*/
#ifndef IIO_PLL_ADF4350_H_
#define IIO_PLL_ADF4350_H_
/* Registers */
#define ADF4350_REG0 0
#define ADF4350_REG1 1
#define ADF4350_REG2 2
#define ADF4350_REG3 3
#define ADF4350_REG4 4
#define ADF4350_REG5 5
/* REG0 Bit Definitions */
#define ADF4350_REG0_FRACT(x) (((x) & 0xFFF) << 3)
#define ADF4350_REG0_INT(x) (((x) & 0xFFFF) << 15)
/* REG1 Bit Definitions */
#define ADF4350_REG1_MOD(x) (((x) & 0xFFF) << 3)
#define ADF4350_REG1_PHASE(x) (((x) & 0xFFF) << 15)
#define ADF4350_REG1_PRESCALER (1 << 27)
/* REG2 Bit Definitions */
#define ADF4350_REG2_COUNTER_RESET_EN (1 << 3)
#define ADF4350_REG2_CP_THREESTATE_EN (1 << 4)
#define ADF4350_REG2_POWER_DOWN_EN (1 << 5)
#define ADF4350_REG2_PD_POLARITY_POS (1 << 6)
#define ADF4350_REG2_LDP_6ns (1 << 7)
#define ADF4350_REG2_LDP_10ns (0 << 7)
#define ADF4350_REG2_LDF_FRACT_N (0 << 8)
#define ADF4350_REG2_LDF_INT_N (1 << 8)
#define ADF4350_REG2_CHARGE_PUMP_CURR_uA(x) (((((x)-312) / 312) & 0xF) << 9)
#define ADF4350_REG2_DOUBLE_BUFF_EN (1 << 13)
#define ADF4350_REG2_10BIT_R_CNT(x) ((x) << 14)
#define ADF4350_REG2_RDIV2_EN (1 << 24)
#define ADF4350_REG2_RMULT2_EN (1 << 25)
#define ADF4350_REG2_MUXOUT(x) ((x) << 26)
#define ADF4350_REG2_NOISE_MODE(x) ((x) << 29)
#define ADF4350_MUXOUT_THREESTATE 0
#define ADF4350_MUXOUT_DVDD 1
#define ADF4350_MUXOUT_GND 2
#define ADF4350_MUXOUT_R_DIV_OUT 3
#define ADF4350_MUXOUT_N_DIV_OUT 4
#define ADF4350_MUXOUT_ANALOG_LOCK_DETECT 5
#define ADF4350_MUXOUT_DIGITAL_LOCK_DETECT 6
/* REG3 Bit Definitions */
#define ADF4350_REG3_12BIT_CLKDIV(x) ((x) << 3)
#define ADF4350_REG3_12BIT_CLKDIV_MODE(x) ((x) << 16)
#define ADF4350_REG3_12BIT_CSR_EN (1 << 18)
#define ADF4351_REG3_CHARGE_CANCELLATION_EN (1 << 21)
#define ADF4351_REG3_ANTI_BACKLASH_3ns_EN (1 << 22)
#define ADF4351_REG3_BAND_SEL_CLOCK_MODE_HIGH (1 << 23)
/* REG4 Bit Definitions */
#define ADF4350_REG4_OUTPUT_PWR(x) ((x) << 3)
#define ADF4350_REG4_RF_OUT_EN (1 << 5)
#define ADF4350_REG4_AUX_OUTPUT_PWR(x) ((x) << 6)
#define ADF4350_REG4_AUX_OUTPUT_EN (1 << 8)
#define ADF4350_REG4_AUX_OUTPUT_FUND (1 << 9)
#define ADF4350_REG4_AUX_OUTPUT_DIV (0 << 9)
#define ADF4350_REG4_MUTE_TILL_LOCK_EN (1 << 10)
#define ADF4350_REG4_VCO_PWRDOWN_EN (1 << 11)
#define ADF4350_REG4_8BIT_BAND_SEL_CLKDIV(x) ((x) << 12)
#define ADF4350_REG4_RF_DIV_SEL(x) ((x) << 20)
#define ADF4350_REG4_FEEDBACK_DIVIDED (0 << 23)
#define ADF4350_REG4_FEEDBACK_FUND (1 << 23)
/* REG5 Bit Definitions */
#define ADF4350_REG5_LD_PIN_MODE_LOW (0 << 22)
#define ADF4350_REG5_LD_PIN_MODE_DIGITAL (1 << 22)
#define ADF4350_REG5_LD_PIN_MODE_HIGH (3 << 22)
/* Specifications */
#define ADF4350_MAX_OUT_FREQ 4400000000ULL /* Hz */
#define ADF4350_MIN_OUT_FREQ 137500000 /* Hz */
#define ADF4351_MIN_OUT_FREQ 34375000 /* Hz */
#define ADF4350_MIN_VCO_FREQ 2200000000ULL /* Hz */
#define ADF4350_MAX_FREQ_45_PRESC 3000000000ULL /* Hz */
#define ADF4350_MAX_FREQ_PFD 32000000 /* Hz */
#define ADF4350_MAX_BANDSEL_CLK 125000 /* Hz */
#define ADF4350_MAX_FREQ_REFIN 250000000 /* Hz */
#define ADF4350_MAX_MODULUS 4095
/**
* struct adf4350_platform_data - platform specific information
* @name: Optional device name.
* @clkin: REFin frequency in Hz.
* @channel_spacing: Channel spacing in Hz (influences MODULUS).
* @power_up_frequency: Optional, If set in Hz the PLL tunes to the desired
* frequency on probe.
* @ref_div_factor: Optional, if set the driver skips dynamic calculation
* and uses this default value instead.
* @ref_doubler_en: Enables reference doubler.
* @ref_div2_en: Enables reference divider.
* @r2_user_settings: User defined settings for ADF4350/1 REGISTER_2.
* @r3_user_settings: User defined settings for ADF4350/1 REGISTER_3.
* @r4_user_settings: User defined settings for ADF4350/1 REGISTER_4.
* @gpio_lock_detect: Optional, if set with a valid GPIO number,
* pll lock state is tested upon read.
* If not used - set to -1.
*/
struct adf4350_platform_data {
char name[32];
unsigned long clkin;
unsigned long channel_spacing;
unsigned long long power_up_frequency;
unsigned short ref_div_factor; /* 10-bit R counter */
bool ref_doubler_en;
bool ref_div2_en;
unsigned r2_user_settings;
unsigned r3_user_settings;
unsigned r4_user_settings;
int gpio_lock_detect;
};
#endif /* IIO_PLL_ADF4350_H_ */