mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 03:33:59 +08:00
Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
* 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus: [MIPS] SMTC: Fix SMTC dyntick support. [MIPS] SMTC: Close tiny holes in the SMTC IPI replay system. [MIPS] SMTC: Fix holes in SMTC and FPU affinity support. [MIPS] SMTC: Build fix: Fix filename in Makefile [MIPS] Build fix: Fix irq flags type
This commit is contained in:
commit
e105eabb5b
@ -1403,7 +1403,6 @@ config MIPS_MT_SMTC
|
||||
depends on CPU_MIPS32_R2
|
||||
#depends on CPU_MIPS64_R2 # once there is hardware ...
|
||||
depends on SYS_SUPPORTS_MULTITHREADING
|
||||
select GENERIC_CLOCKEVENTS_BROADCAST
|
||||
select CPU_MIPSR2_IRQ_VI
|
||||
select CPU_MIPSR2_IRQ_EI
|
||||
select MIPS_MT
|
||||
@ -1451,32 +1450,17 @@ config MIPS_VPE_LOADER
|
||||
Includes a loader for loading an elf relocatable object
|
||||
onto another VPE and running it.
|
||||
|
||||
config MIPS_MT_SMTC_INSTANT_REPLAY
|
||||
bool "Low-latency Dispatch of Deferred SMTC IPIs"
|
||||
depends on MIPS_MT_SMTC && !PREEMPT
|
||||
default y
|
||||
help
|
||||
SMTC pseudo-interrupts between TCs are deferred and queued
|
||||
if the target TC is interrupt-inhibited (IXMT). In the first
|
||||
SMTC prototypes, these queued IPIs were serviced on return
|
||||
to user mode, or on entry into the kernel idle loop. The
|
||||
INSTANT_REPLAY option dispatches them as part of local_irq_restore()
|
||||
processing, which adds runtime overhead (hence the option to turn
|
||||
it off), but ensures that IPIs are handled promptly even under
|
||||
heavy I/O interrupt load.
|
||||
|
||||
config MIPS_MT_SMTC_IM_BACKSTOP
|
||||
bool "Use per-TC register bits as backstop for inhibited IM bits"
|
||||
depends on MIPS_MT_SMTC
|
||||
default y
|
||||
default n
|
||||
help
|
||||
To support multiple TC microthreads acting as "CPUs" within
|
||||
a VPE, VPE-wide interrupt mask bits must be specially manipulated
|
||||
during interrupt handling. To support legacy drivers and interrupt
|
||||
controller management code, SMTC has a "backstop" to track and
|
||||
if necessary restore the interrupt mask. This has some performance
|
||||
impact on interrupt service overhead. Disable it only if you know
|
||||
what you are doing.
|
||||
impact on interrupt service overhead.
|
||||
|
||||
config MIPS_MT_SMTC_IRQAFF
|
||||
bool "Support IRQ affinity API"
|
||||
@ -1486,10 +1470,8 @@ config MIPS_MT_SMTC_IRQAFF
|
||||
Enables SMP IRQ affinity API (/proc/irq/*/smp_affinity, etc.)
|
||||
for SMTC Linux kernel. Requires platform support, of which
|
||||
an example can be found in the MIPS kernel i8259 and Malta
|
||||
platform code. It is recommended that MIPS_MT_SMTC_INSTANT_REPLAY
|
||||
be enabled if MIPS_MT_SMTC_IRQAFF is used. Adds overhead to
|
||||
interrupt dispatch, and should be used only if you know what
|
||||
you are doing.
|
||||
platform code. Adds some overhead to interrupt dispatch, and
|
||||
should be used only if you know what you are doing.
|
||||
|
||||
config MIPS_VPE_LOADER_TOM
|
||||
bool "Load VPE program into memory hidden from linux"
|
||||
|
@ -10,6 +10,7 @@ obj-y += cpu-probe.o branch.o entry.o genex.o irq.o process.o \
|
||||
|
||||
obj-$(CONFIG_CEVT_BCM1480) += cevt-bcm1480.o
|
||||
obj-$(CONFIG_CEVT_R4K) += cevt-r4k.o
|
||||
obj-$(CONFIG_MIPS_MT_SMTC) += cevt-smtc.o
|
||||
obj-$(CONFIG_CEVT_DS1287) += cevt-ds1287.o
|
||||
obj-$(CONFIG_CEVT_GT641XX) += cevt-gt641xx.o
|
||||
obj-$(CONFIG_CEVT_SB1250) += cevt-sb1250.o
|
||||
|
@ -12,6 +12,14 @@
|
||||
|
||||
#include <asm/smtc_ipi.h>
|
||||
#include <asm/time.h>
|
||||
#include <asm/cevt-r4k.h>
|
||||
|
||||
/*
|
||||
* The SMTC Kernel for the 34K, 1004K, et. al. replaces several
|
||||
* of these routines with SMTC-specific variants.
|
||||
*/
|
||||
|
||||
#ifndef CONFIG_MIPS_MT_SMTC
|
||||
|
||||
static int mips_next_event(unsigned long delta,
|
||||
struct clock_event_device *evt)
|
||||
@ -19,60 +27,27 @@ static int mips_next_event(unsigned long delta,
|
||||
unsigned int cnt;
|
||||
int res;
|
||||
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
{
|
||||
unsigned long flags, vpflags;
|
||||
local_irq_save(flags);
|
||||
vpflags = dvpe();
|
||||
#endif
|
||||
cnt = read_c0_count();
|
||||
cnt += delta;
|
||||
write_c0_compare(cnt);
|
||||
res = ((int)(read_c0_count() - cnt) > 0) ? -ETIME : 0;
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
evpe(vpflags);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
#endif
|
||||
return res;
|
||||
}
|
||||
|
||||
static void mips_set_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *evt)
|
||||
#endif /* CONFIG_MIPS_MT_SMTC */
|
||||
|
||||
void mips_set_clock_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
/* Nothing to do ... */
|
||||
}
|
||||
|
||||
static DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
|
||||
static int cp0_timer_irq_installed;
|
||||
DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
|
||||
int cp0_timer_irq_installed;
|
||||
|
||||
/*
|
||||
* Timer ack for an R4k-compatible timer of a known frequency.
|
||||
*/
|
||||
static void c0_timer_ack(void)
|
||||
{
|
||||
write_c0_compare(read_c0_compare());
|
||||
}
|
||||
#ifndef CONFIG_MIPS_MT_SMTC
|
||||
|
||||
/*
|
||||
* Possibly handle a performance counter interrupt.
|
||||
* Return true if the timer interrupt should not be checked
|
||||
*/
|
||||
static inline int handle_perf_irq(int r2)
|
||||
{
|
||||
/*
|
||||
* The performance counter overflow interrupt may be shared with the
|
||||
* timer interrupt (cp0_perfcount_irq < 0). If it is and a
|
||||
* performance counter has overflowed (perf_irq() == IRQ_HANDLED)
|
||||
* and we can't reliably determine if a counter interrupt has also
|
||||
* happened (!r2) then don't check for a timer interrupt.
|
||||
*/
|
||||
return (cp0_perfcount_irq < 0) &&
|
||||
perf_irq() == IRQ_HANDLED &&
|
||||
!r2;
|
||||
}
|
||||
|
||||
static irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
|
||||
irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
const int r2 = cpu_has_mips_r2;
|
||||
struct clock_event_device *cd;
|
||||
@ -93,12 +68,8 @@ static irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
|
||||
* interrupt. Being the paranoiacs we are we check anyway.
|
||||
*/
|
||||
if (!r2 || (read_c0_cause() & (1 << 30))) {
|
||||
c0_timer_ack();
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
if (cpu_data[cpu].vpe_id)
|
||||
goto out;
|
||||
cpu = 0;
|
||||
#endif
|
||||
/* Clear Count/Compare Interrupt */
|
||||
write_c0_compare(read_c0_compare());
|
||||
cd = &per_cpu(mips_clockevent_device, cpu);
|
||||
cd->event_handler(cd);
|
||||
}
|
||||
@ -107,65 +78,16 @@ out:
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static struct irqaction c0_compare_irqaction = {
|
||||
#endif /* Not CONFIG_MIPS_MT_SMTC */
|
||||
|
||||
struct irqaction c0_compare_irqaction = {
|
||||
.handler = c0_compare_interrupt,
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
.flags = IRQF_DISABLED,
|
||||
#else
|
||||
.flags = IRQF_DISABLED | IRQF_PERCPU,
|
||||
#endif
|
||||
.name = "timer",
|
||||
};
|
||||
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
DEFINE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
|
||||
|
||||
static void smtc_set_mode(enum clock_event_mode mode,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
}
|
||||
|
||||
static void mips_broadcast(cpumask_t mask)
|
||||
{
|
||||
unsigned int cpu;
|
||||
|
||||
for_each_cpu_mask(cpu, mask)
|
||||
smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
|
||||
}
|
||||
|
||||
static void setup_smtc_dummy_clockevent_device(void)
|
||||
{
|
||||
//uint64_t mips_freq = mips_hpt_^frequency;
|
||||
unsigned int cpu = smp_processor_id();
|
||||
struct clock_event_device *cd;
|
||||
|
||||
cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
|
||||
|
||||
cd->name = "SMTC";
|
||||
cd->features = CLOCK_EVT_FEAT_DUMMY;
|
||||
|
||||
/* Calculate the min / max delta */
|
||||
cd->mult = 0; //div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
|
||||
cd->shift = 0; //32;
|
||||
cd->max_delta_ns = 0; //clockevent_delta2ns(0x7fffffff, cd);
|
||||
cd->min_delta_ns = 0; //clockevent_delta2ns(0x30, cd);
|
||||
|
||||
cd->rating = 200;
|
||||
cd->irq = 17; //-1;
|
||||
// if (cpu)
|
||||
// cd->cpumask = CPU_MASK_ALL; // cpumask_of_cpu(cpu);
|
||||
// else
|
||||
cd->cpumask = cpumask_of_cpu(cpu);
|
||||
|
||||
cd->set_mode = smtc_set_mode;
|
||||
|
||||
cd->broadcast = mips_broadcast;
|
||||
|
||||
clockevents_register_device(cd);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void mips_event_handler(struct clock_event_device *dev)
|
||||
void mips_event_handler(struct clock_event_device *dev)
|
||||
{
|
||||
}
|
||||
|
||||
@ -177,7 +99,23 @@ static int c0_compare_int_pending(void)
|
||||
return (read_c0_cause() >> cp0_compare_irq) & 0x100;
|
||||
}
|
||||
|
||||
static int c0_compare_int_usable(void)
|
||||
/*
|
||||
* Compare interrupt can be routed and latched outside the core,
|
||||
* so a single execution hazard barrier may not be enough to give
|
||||
* it time to clear as seen in the Cause register. 4 time the
|
||||
* pipeline depth seems reasonably conservative, and empirically
|
||||
* works better in configurations with high CPU/bus clock ratios.
|
||||
*/
|
||||
|
||||
#define compare_change_hazard() \
|
||||
do { \
|
||||
irq_disable_hazard(); \
|
||||
irq_disable_hazard(); \
|
||||
irq_disable_hazard(); \
|
||||
irq_disable_hazard(); \
|
||||
} while (0)
|
||||
|
||||
int c0_compare_int_usable(void)
|
||||
{
|
||||
unsigned int delta;
|
||||
unsigned int cnt;
|
||||
@ -187,7 +125,7 @@ static int c0_compare_int_usable(void)
|
||||
*/
|
||||
if (c0_compare_int_pending()) {
|
||||
write_c0_compare(read_c0_count());
|
||||
irq_disable_hazard();
|
||||
compare_change_hazard();
|
||||
if (c0_compare_int_pending())
|
||||
return 0;
|
||||
}
|
||||
@ -196,7 +134,7 @@ static int c0_compare_int_usable(void)
|
||||
cnt = read_c0_count();
|
||||
cnt += delta;
|
||||
write_c0_compare(cnt);
|
||||
irq_disable_hazard();
|
||||
compare_change_hazard();
|
||||
if ((int)(read_c0_count() - cnt) < 0)
|
||||
break;
|
||||
/* increase delta if the timer was already expired */
|
||||
@ -205,11 +143,12 @@ static int c0_compare_int_usable(void)
|
||||
while ((int)(read_c0_count() - cnt) <= 0)
|
||||
; /* Wait for expiry */
|
||||
|
||||
compare_change_hazard();
|
||||
if (!c0_compare_int_pending())
|
||||
return 0;
|
||||
|
||||
write_c0_compare(read_c0_count());
|
||||
irq_disable_hazard();
|
||||
compare_change_hazard();
|
||||
if (c0_compare_int_pending())
|
||||
return 0;
|
||||
|
||||
@ -219,6 +158,8 @@ static int c0_compare_int_usable(void)
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifndef CONFIG_MIPS_MT_SMTC
|
||||
|
||||
int __cpuinit mips_clockevent_init(void)
|
||||
{
|
||||
uint64_t mips_freq = mips_hpt_frequency;
|
||||
@ -229,17 +170,6 @@ int __cpuinit mips_clockevent_init(void)
|
||||
if (!cpu_has_counter || !mips_hpt_frequency)
|
||||
return -ENXIO;
|
||||
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
setup_smtc_dummy_clockevent_device();
|
||||
|
||||
/*
|
||||
* On SMTC we only register VPE0's compare interrupt as clockevent
|
||||
* device.
|
||||
*/
|
||||
if (cpu)
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
if (!c0_compare_int_usable())
|
||||
return -ENXIO;
|
||||
|
||||
@ -265,13 +195,9 @@ int __cpuinit mips_clockevent_init(void)
|
||||
|
||||
cd->rating = 300;
|
||||
cd->irq = irq;
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
cd->cpumask = CPU_MASK_ALL;
|
||||
#else
|
||||
cd->cpumask = cpumask_of_cpu(cpu);
|
||||
#endif
|
||||
cd->set_next_event = mips_next_event;
|
||||
cd->set_mode = mips_set_mode;
|
||||
cd->set_mode = mips_set_clock_mode;
|
||||
cd->event_handler = mips_event_handler;
|
||||
|
||||
clockevents_register_device(cd);
|
||||
@ -281,12 +207,9 @@ int __cpuinit mips_clockevent_init(void)
|
||||
|
||||
cp0_timer_irq_installed = 1;
|
||||
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
#define CPUCTR_IMASKBIT (0x100 << cp0_compare_irq)
|
||||
setup_irq_smtc(irq, &c0_compare_irqaction, CPUCTR_IMASKBIT);
|
||||
#else
|
||||
setup_irq(irq, &c0_compare_irqaction);
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* Not CONFIG_MIPS_MT_SMTC */
|
||||
|
321
arch/mips/kernel/cevt-smtc.c
Normal file
321
arch/mips/kernel/cevt-smtc.c
Normal file
@ -0,0 +1,321 @@
|
||||
/*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*
|
||||
* Copyright (C) 2007 MIPS Technologies, Inc.
|
||||
* Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
|
||||
* Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
|
||||
*/
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/percpu.h>
|
||||
|
||||
#include <asm/smtc_ipi.h>
|
||||
#include <asm/time.h>
|
||||
#include <asm/cevt-r4k.h>
|
||||
|
||||
/*
|
||||
* Variant clock event timer support for SMTC on MIPS 34K, 1004K
|
||||
* or other MIPS MT cores.
|
||||
*
|
||||
* Notes on SMTC Support:
|
||||
*
|
||||
* SMTC has multiple microthread TCs pretending to be Linux CPUs.
|
||||
* But there's only one Count/Compare pair per VPE, and Compare
|
||||
* interrupts are taken opportunisitically by available TCs
|
||||
* bound to the VPE with the Count register. The new timer
|
||||
* framework provides for global broadcasts, but we really
|
||||
* want VPE-level multicasts for best behavior. So instead
|
||||
* of invoking the high-level clock-event broadcast code,
|
||||
* this version of SMTC support uses the historical SMTC
|
||||
* multicast mechanisms "under the hood", appearing to the
|
||||
* generic clock layer as if the interrupts are per-CPU.
|
||||
*
|
||||
* The approach taken here is to maintain a set of NR_CPUS
|
||||
* virtual timers, and track which "CPU" needs to be alerted
|
||||
* at each event.
|
||||
*
|
||||
* It's unlikely that we'll see a MIPS MT core with more than
|
||||
* 2 VPEs, but we *know* that we won't need to handle more
|
||||
* VPEs than we have "CPUs". So NCPUs arrays of NCPUs elements
|
||||
* is always going to be overkill, but always going to be enough.
|
||||
*/
|
||||
|
||||
unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
|
||||
static int smtc_nextinvpe[NR_CPUS];
|
||||
|
||||
/*
|
||||
* Timestamps stored are absolute values to be programmed
|
||||
* into Count register. Valid timestamps will never be zero.
|
||||
* If a Zero Count value is actually calculated, it is converted
|
||||
* to be a 1, which will introduce 1 or two CPU cycles of error
|
||||
* roughly once every four billion events, which at 1000 HZ means
|
||||
* about once every 50 days. If that's actually a problem, one
|
||||
* could alternate squashing 0 to 1 and to -1.
|
||||
*/
|
||||
|
||||
#define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
|
||||
#define ISVALID(x) ((x) != 0L)
|
||||
|
||||
/*
|
||||
* Time comparison is subtle, as it's really truncated
|
||||
* modular arithmetic.
|
||||
*/
|
||||
|
||||
#define IS_SOONER(a, b, reference) \
|
||||
(((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))
|
||||
|
||||
/*
|
||||
* CATCHUP_INCREMENT, used when the function falls behind the counter.
|
||||
* Could be an increasing function instead of a constant;
|
||||
*/
|
||||
|
||||
#define CATCHUP_INCREMENT 64
|
||||
|
||||
static int mips_next_event(unsigned long delta,
|
||||
struct clock_event_device *evt)
|
||||
{
|
||||
unsigned long flags;
|
||||
unsigned int mtflags;
|
||||
unsigned long timestamp, reference, previous;
|
||||
unsigned long nextcomp = 0L;
|
||||
int vpe = current_cpu_data.vpe_id;
|
||||
int cpu = smp_processor_id();
|
||||
local_irq_save(flags);
|
||||
mtflags = dmt();
|
||||
|
||||
/*
|
||||
* Maintain the per-TC virtual timer
|
||||
* and program the per-VPE shared Count register
|
||||
* as appropriate here...
|
||||
*/
|
||||
reference = (unsigned long)read_c0_count();
|
||||
timestamp = MAKEVALID(reference + delta);
|
||||
/*
|
||||
* To really model the clock, we have to catch the case
|
||||
* where the current next-in-VPE timestamp is the old
|
||||
* timestamp for the calling CPE, but the new value is
|
||||
* in fact later. In that case, we have to do a full
|
||||
* scan and discover the new next-in-VPE CPU id and
|
||||
* timestamp.
|
||||
*/
|
||||
previous = smtc_nexttime[vpe][cpu];
|
||||
if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
|
||||
&& IS_SOONER(previous, timestamp, reference)) {
|
||||
int i;
|
||||
int soonest = cpu;
|
||||
|
||||
/*
|
||||
* Update timestamp array here, so that new
|
||||
* value gets considered along with those of
|
||||
* other virtual CPUs on the VPE.
|
||||
*/
|
||||
smtc_nexttime[vpe][cpu] = timestamp;
|
||||
for_each_online_cpu(i) {
|
||||
if (ISVALID(smtc_nexttime[vpe][i])
|
||||
&& IS_SOONER(smtc_nexttime[vpe][i],
|
||||
smtc_nexttime[vpe][soonest], reference)) {
|
||||
soonest = i;
|
||||
}
|
||||
}
|
||||
smtc_nextinvpe[vpe] = soonest;
|
||||
nextcomp = smtc_nexttime[vpe][soonest];
|
||||
/*
|
||||
* Otherwise, we don't have to process the whole array rank,
|
||||
* we just have to see if the event horizon has gotten closer.
|
||||
*/
|
||||
} else {
|
||||
if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
|
||||
IS_SOONER(timestamp,
|
||||
smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
|
||||
smtc_nextinvpe[vpe] = cpu;
|
||||
nextcomp = timestamp;
|
||||
}
|
||||
/*
|
||||
* Since next-in-VPE may me the same as the executing
|
||||
* virtual CPU, we update the array *after* checking
|
||||
* its value.
|
||||
*/
|
||||
smtc_nexttime[vpe][cpu] = timestamp;
|
||||
}
|
||||
|
||||
/*
|
||||
* It may be that, in fact, we don't need to update Compare,
|
||||
* but if we do, we want to make sure we didn't fall into
|
||||
* a crack just behind Count.
|
||||
*/
|
||||
if (ISVALID(nextcomp)) {
|
||||
write_c0_compare(nextcomp);
|
||||
ehb();
|
||||
/*
|
||||
* We never return an error, we just make sure
|
||||
* that we trigger the handlers as quickly as
|
||||
* we can if we fell behind.
|
||||
*/
|
||||
while ((nextcomp - (unsigned long)read_c0_count())
|
||||
> (unsigned long)LONG_MAX) {
|
||||
nextcomp += CATCHUP_INCREMENT;
|
||||
write_c0_compare(nextcomp);
|
||||
ehb();
|
||||
}
|
||||
}
|
||||
emt(mtflags);
|
||||
local_irq_restore(flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void smtc_distribute_timer(int vpe)
|
||||
{
|
||||
unsigned long flags;
|
||||
unsigned int mtflags;
|
||||
int cpu;
|
||||
struct clock_event_device *cd;
|
||||
unsigned long nextstamp = 0L;
|
||||
unsigned long reference;
|
||||
|
||||
|
||||
repeat:
|
||||
for_each_online_cpu(cpu) {
|
||||
/*
|
||||
* Find virtual CPUs within the current VPE who have
|
||||
* unserviced timer requests whose time is now past.
|
||||
*/
|
||||
local_irq_save(flags);
|
||||
mtflags = dmt();
|
||||
if (cpu_data[cpu].vpe_id == vpe &&
|
||||
ISVALID(smtc_nexttime[vpe][cpu])) {
|
||||
reference = (unsigned long)read_c0_count();
|
||||
if ((smtc_nexttime[vpe][cpu] - reference)
|
||||
> (unsigned long)LONG_MAX) {
|
||||
smtc_nexttime[vpe][cpu] = 0L;
|
||||
emt(mtflags);
|
||||
local_irq_restore(flags);
|
||||
/*
|
||||
* We don't send IPIs to ourself.
|
||||
*/
|
||||
if (cpu != smp_processor_id()) {
|
||||
smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
|
||||
} else {
|
||||
cd = &per_cpu(mips_clockevent_device, cpu);
|
||||
cd->event_handler(cd);
|
||||
}
|
||||
} else {
|
||||
/* Local to VPE but Valid Time not yet reached. */
|
||||
if (!ISVALID(nextstamp) ||
|
||||
IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
|
||||
reference)) {
|
||||
smtc_nextinvpe[vpe] = cpu;
|
||||
nextstamp = smtc_nexttime[vpe][cpu];
|
||||
}
|
||||
emt(mtflags);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
} else {
|
||||
emt(mtflags);
|
||||
local_irq_restore(flags);
|
||||
|
||||
}
|
||||
}
|
||||
/* Reprogram for interrupt at next soonest timestamp for VPE */
|
||||
if (ISVALID(nextstamp)) {
|
||||
write_c0_compare(nextstamp);
|
||||
ehb();
|
||||
if ((nextstamp - (unsigned long)read_c0_count())
|
||||
> (unsigned long)LONG_MAX)
|
||||
goto repeat;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
int cpu = smp_processor_id();
|
||||
|
||||
/* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
|
||||
handle_perf_irq(1);
|
||||
|
||||
if (read_c0_cause() & (1 << 30)) {
|
||||
/* Clear Count/Compare Interrupt */
|
||||
write_c0_compare(read_c0_compare());
|
||||
smtc_distribute_timer(cpu_data[cpu].vpe_id);
|
||||
}
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
|
||||
int __cpuinit mips_clockevent_init(void)
|
||||
{
|
||||
uint64_t mips_freq = mips_hpt_frequency;
|
||||
unsigned int cpu = smp_processor_id();
|
||||
struct clock_event_device *cd;
|
||||
unsigned int irq;
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (!cpu_has_counter || !mips_hpt_frequency)
|
||||
return -ENXIO;
|
||||
if (cpu == 0) {
|
||||
for (i = 0; i < num_possible_cpus(); i++) {
|
||||
smtc_nextinvpe[i] = 0;
|
||||
for (j = 0; j < num_possible_cpus(); j++)
|
||||
smtc_nexttime[i][j] = 0L;
|
||||
}
|
||||
/*
|
||||
* SMTC also can't have the usablility test
|
||||
* run by secondary TCs once Compare is in use.
|
||||
*/
|
||||
if (!c0_compare_int_usable())
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
/*
|
||||
* With vectored interrupts things are getting platform specific.
|
||||
* get_c0_compare_int is a hook to allow a platform to return the
|
||||
* interrupt number of it's liking.
|
||||
*/
|
||||
irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
|
||||
if (get_c0_compare_int)
|
||||
irq = get_c0_compare_int();
|
||||
|
||||
cd = &per_cpu(mips_clockevent_device, cpu);
|
||||
|
||||
cd->name = "MIPS";
|
||||
cd->features = CLOCK_EVT_FEAT_ONESHOT;
|
||||
|
||||
/* Calculate the min / max delta */
|
||||
cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
|
||||
cd->shift = 32;
|
||||
cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
|
||||
cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
|
||||
|
||||
cd->rating = 300;
|
||||
cd->irq = irq;
|
||||
cd->cpumask = cpumask_of_cpu(cpu);
|
||||
cd->set_next_event = mips_next_event;
|
||||
cd->set_mode = mips_set_clock_mode;
|
||||
cd->event_handler = mips_event_handler;
|
||||
|
||||
clockevents_register_device(cd);
|
||||
|
||||
/*
|
||||
* On SMTC we only want to do the data structure
|
||||
* initialization and IRQ setup once.
|
||||
*/
|
||||
if (cpu)
|
||||
return 0;
|
||||
/*
|
||||
* And we need the hwmask associated with the c0_compare
|
||||
* vector to be initialized.
|
||||
*/
|
||||
irq_hwmask[irq] = (0x100 << cp0_compare_irq);
|
||||
if (cp0_timer_irq_installed)
|
||||
return 0;
|
||||
|
||||
cp0_timer_irq_installed = 1;
|
||||
|
||||
setup_irq(irq, &c0_compare_irqaction);
|
||||
|
||||
return 0;
|
||||
}
|
@ -54,14 +54,18 @@ extern void r4k_wait(void);
|
||||
* interrupt is requested" restriction in the MIPS32/MIPS64 architecture makes
|
||||
* using this version a gamble.
|
||||
*/
|
||||
static void r4k_wait_irqoff(void)
|
||||
void r4k_wait_irqoff(void)
|
||||
{
|
||||
local_irq_disable();
|
||||
if (!need_resched())
|
||||
__asm__(" .set mips3 \n"
|
||||
__asm__(" .set push \n"
|
||||
" .set mips3 \n"
|
||||
" wait \n"
|
||||
" .set mips0 \n");
|
||||
" .set pop \n");
|
||||
local_irq_enable();
|
||||
__asm__(" .globl __pastwait \n"
|
||||
"__pastwait: \n");
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -79,11 +79,6 @@ FEXPORT(syscall_exit)
|
||||
|
||||
FEXPORT(restore_all) # restore full frame
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
/* Detect and execute deferred IPI "interrupts" */
|
||||
LONG_L s0, TI_REGS($28)
|
||||
LONG_S sp, TI_REGS($28)
|
||||
jal deferred_smtc_ipi
|
||||
LONG_S s0, TI_REGS($28)
|
||||
#ifdef CONFIG_MIPS_MT_SMTC_IM_BACKSTOP
|
||||
/* Re-arm any temporarily masked interrupts not explicitly "acked" */
|
||||
mfc0 v0, CP0_TCSTATUS
|
||||
@ -112,6 +107,11 @@ FEXPORT(restore_all) # restore full frame
|
||||
xor t0, t0, t3
|
||||
mtc0 t0, CP0_TCCONTEXT
|
||||
#endif /* CONFIG_MIPS_MT_SMTC_IM_BACKSTOP */
|
||||
/* Detect and execute deferred IPI "interrupts" */
|
||||
LONG_L s0, TI_REGS($28)
|
||||
LONG_S sp, TI_REGS($28)
|
||||
jal deferred_smtc_ipi
|
||||
LONG_S s0, TI_REGS($28)
|
||||
#endif /* CONFIG_MIPS_MT_SMTC */
|
||||
.set noat
|
||||
RESTORE_TEMP
|
||||
|
@ -282,8 +282,8 @@ NESTED(except_vec_vi_handler, 0, sp)
|
||||
and t0, a0, t1
|
||||
#ifdef CONFIG_MIPS_MT_SMTC_IM_BACKSTOP
|
||||
mfc0 t2, CP0_TCCONTEXT
|
||||
or t0, t0, t2
|
||||
mtc0 t0, CP0_TCCONTEXT
|
||||
or t2, t0, t2
|
||||
mtc0 t2, CP0_TCCONTEXT
|
||||
#endif /* CONFIG_MIPS_MT_SMTC_IM_BACKSTOP */
|
||||
xor t1, t1, t0
|
||||
mtc0 t1, CP0_STATUS
|
||||
|
@ -159,7 +159,7 @@ __setup("fpaff=", fpaff_thresh);
|
||||
/*
|
||||
* FPU Use Factor empirically derived from experiments on 34K
|
||||
*/
|
||||
#define FPUSEFACTOR 333
|
||||
#define FPUSEFACTOR 2000
|
||||
|
||||
static __init int mt_fp_affinity_init(void)
|
||||
{
|
||||
|
@ -55,7 +55,7 @@ void __noreturn cpu_idle(void)
|
||||
while (1) {
|
||||
tick_nohz_stop_sched_tick(1);
|
||||
while (!need_resched()) {
|
||||
#ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
extern void smtc_idle_loop_hook(void);
|
||||
|
||||
smtc_idle_loop_hook();
|
||||
@ -145,19 +145,18 @@ int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
|
||||
*/
|
||||
p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
|
||||
childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
|
||||
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
/*
|
||||
* SMTC restores TCStatus after Status, and the CU bits
|
||||
* are aliased there.
|
||||
*/
|
||||
childregs->cp0_tcstatus &= ~(ST0_CU2|ST0_CU1);
|
||||
#endif
|
||||
clear_tsk_thread_flag(p, TIF_USEDFPU);
|
||||
|
||||
#ifdef CONFIG_MIPS_MT_FPAFF
|
||||
clear_tsk_thread_flag(p, TIF_FPUBOUND);
|
||||
|
||||
/*
|
||||
* FPU affinity support is cleaner if we track the
|
||||
* user-visible CPU affinity from the very beginning.
|
||||
* The generic cpus_allowed mask will already have
|
||||
* been copied from the parent before copy_thread
|
||||
* is invoked.
|
||||
*/
|
||||
p->thread.user_cpus_allowed = p->cpus_allowed;
|
||||
#endif /* CONFIG_MIPS_MT_FPAFF */
|
||||
|
||||
if (clone_flags & CLONE_SETTLS)
|
||||
|
@ -238,7 +238,7 @@ long arch_ptrace(struct task_struct *child, long request, long addr, long data)
|
||||
case FPC_EIR: { /* implementation / version register */
|
||||
unsigned int flags;
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
unsigned int irqflags;
|
||||
unsigned long irqflags;
|
||||
unsigned int mtflags;
|
||||
#endif /* CONFIG_MIPS_MT_SMTC */
|
||||
|
||||
|
@ -1,4 +1,21 @@
|
||||
/* Copyright (C) 2004 Mips Technologies, Inc */
|
||||
/*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
*
|
||||
* Copyright (C) 2004 Mips Technologies, Inc
|
||||
* Copyright (C) 2008 Kevin D. Kissell
|
||||
*/
|
||||
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/kernel.h>
|
||||
@ -21,7 +38,6 @@
|
||||
#include <asm/time.h>
|
||||
#include <asm/addrspace.h>
|
||||
#include <asm/smtc.h>
|
||||
#include <asm/smtc_ipi.h>
|
||||
#include <asm/smtc_proc.h>
|
||||
|
||||
/*
|
||||
@ -58,11 +74,6 @@ unsigned long irq_hwmask[NR_IRQS];
|
||||
|
||||
asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
|
||||
|
||||
/*
|
||||
* Clock interrupt "latch" buffers, per "CPU"
|
||||
*/
|
||||
|
||||
static atomic_t ipi_timer_latch[NR_CPUS];
|
||||
|
||||
/*
|
||||
* Number of InterProcessor Interrupt (IPI) message buffers to allocate
|
||||
@ -70,7 +81,7 @@ static atomic_t ipi_timer_latch[NR_CPUS];
|
||||
|
||||
#define IPIBUF_PER_CPU 4
|
||||
|
||||
static struct smtc_ipi_q IPIQ[NR_CPUS];
|
||||
struct smtc_ipi_q IPIQ[NR_CPUS];
|
||||
static struct smtc_ipi_q freeIPIq;
|
||||
|
||||
|
||||
@ -282,7 +293,7 @@ static void smtc_configure_tlb(void)
|
||||
* phys_cpu_present_map and the logical/physical mappings.
|
||||
*/
|
||||
|
||||
int __init mipsmt_build_cpu_map(int start_cpu_slot)
|
||||
int __init smtc_build_cpu_map(int start_cpu_slot)
|
||||
{
|
||||
int i, ntcs;
|
||||
|
||||
@ -325,7 +336,12 @@ static void smtc_tc_setup(int vpe, int tc, int cpu)
|
||||
write_tc_c0_tcstatus((read_tc_c0_tcstatus()
|
||||
& ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
|
||||
| TCSTATUS_A);
|
||||
write_tc_c0_tccontext(0);
|
||||
/*
|
||||
* TCContext gets an offset from the base of the IPIQ array
|
||||
* to be used in low-level code to detect the presence of
|
||||
* an active IPI queue
|
||||
*/
|
||||
write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
|
||||
/* Bind tc to vpe */
|
||||
write_tc_c0_tcbind(vpe);
|
||||
/* In general, all TCs should have the same cpu_data indications */
|
||||
@ -336,10 +352,18 @@ static void smtc_tc_setup(int vpe, int tc, int cpu)
|
||||
cpu_data[cpu].options &= ~MIPS_CPU_FPU;
|
||||
cpu_data[cpu].vpe_id = vpe;
|
||||
cpu_data[cpu].tc_id = tc;
|
||||
/* Multi-core SMTC hasn't been tested, but be prepared */
|
||||
cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
|
||||
}
|
||||
|
||||
/*
|
||||
* Tweak to get Count registes in as close a sync as possible.
|
||||
* Value seems good for 34K-class cores.
|
||||
*/
|
||||
|
||||
void mipsmt_prepare_cpus(void)
|
||||
#define CP0_SKEW 8
|
||||
|
||||
void smtc_prepare_cpus(int cpus)
|
||||
{
|
||||
int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
|
||||
unsigned long flags;
|
||||
@ -363,13 +387,13 @@ void mipsmt_prepare_cpus(void)
|
||||
IPIQ[i].head = IPIQ[i].tail = NULL;
|
||||
spin_lock_init(&IPIQ[i].lock);
|
||||
IPIQ[i].depth = 0;
|
||||
atomic_set(&ipi_timer_latch[i], 0);
|
||||
}
|
||||
|
||||
/* cpu_data index starts at zero */
|
||||
cpu = 0;
|
||||
cpu_data[cpu].vpe_id = 0;
|
||||
cpu_data[cpu].tc_id = 0;
|
||||
cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
|
||||
cpu++;
|
||||
|
||||
/* Report on boot-time options */
|
||||
@ -484,7 +508,8 @@ void mipsmt_prepare_cpus(void)
|
||||
write_vpe_c0_compare(0);
|
||||
/* Propagate Config7 */
|
||||
write_vpe_c0_config7(read_c0_config7());
|
||||
write_vpe_c0_count(read_c0_count());
|
||||
write_vpe_c0_count(read_c0_count() + CP0_SKEW);
|
||||
ehb();
|
||||
}
|
||||
/* enable multi-threading within VPE */
|
||||
write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
|
||||
@ -556,7 +581,7 @@ void mipsmt_prepare_cpus(void)
|
||||
void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
|
||||
{
|
||||
extern u32 kernelsp[NR_CPUS];
|
||||
long flags;
|
||||
unsigned long flags;
|
||||
int mtflags;
|
||||
|
||||
LOCK_MT_PRA();
|
||||
@ -585,24 +610,22 @@ void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
|
||||
|
||||
void smtc_init_secondary(void)
|
||||
{
|
||||
/*
|
||||
* Start timer on secondary VPEs if necessary.
|
||||
* plat_timer_setup has already have been invoked by init/main
|
||||
* on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
|
||||
* SMTC init code assigns TCs consdecutively and in ascending order
|
||||
* to across available VPEs.
|
||||
*/
|
||||
if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
|
||||
((read_c0_tcbind() & TCBIND_CURVPE)
|
||||
!= cpu_data[smp_processor_id() - 1].vpe_id)){
|
||||
write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
|
||||
}
|
||||
|
||||
local_irq_enable();
|
||||
}
|
||||
|
||||
void smtc_smp_finish(void)
|
||||
{
|
||||
int cpu = smp_processor_id();
|
||||
|
||||
/*
|
||||
* Lowest-numbered CPU per VPE starts a clock tick.
|
||||
* Like per_cpu_trap_init() hack, this assumes that
|
||||
* SMTC init code assigns TCs consdecutively and
|
||||
* in ascending order across available VPEs.
|
||||
*/
|
||||
if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
|
||||
write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
|
||||
|
||||
printk("TC %d going on-line as CPU %d\n",
|
||||
cpu_data[smp_processor_id()].tc_id, smp_processor_id());
|
||||
}
|
||||
@ -753,8 +776,10 @@ void smtc_send_ipi(int cpu, int type, unsigned int action)
|
||||
{
|
||||
int tcstatus;
|
||||
struct smtc_ipi *pipi;
|
||||
long flags;
|
||||
unsigned long flags;
|
||||
int mtflags;
|
||||
unsigned long tcrestart;
|
||||
extern void r4k_wait_irqoff(void), __pastwait(void);
|
||||
|
||||
if (cpu == smp_processor_id()) {
|
||||
printk("Cannot Send IPI to self!\n");
|
||||
@ -771,8 +796,6 @@ void smtc_send_ipi(int cpu, int type, unsigned int action)
|
||||
pipi->arg = (void *)action;
|
||||
pipi->dest = cpu;
|
||||
if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
|
||||
if (type == SMTC_CLOCK_TICK)
|
||||
atomic_inc(&ipi_timer_latch[cpu]);
|
||||
/* If not on same VPE, enqueue and send cross-VPE interrupt */
|
||||
smtc_ipi_nq(&IPIQ[cpu], pipi);
|
||||
LOCK_CORE_PRA();
|
||||
@ -800,22 +823,29 @@ void smtc_send_ipi(int cpu, int type, unsigned int action)
|
||||
|
||||
if ((tcstatus & TCSTATUS_IXMT) != 0) {
|
||||
/*
|
||||
* Spin-waiting here can deadlock,
|
||||
* so we queue the message for the target TC.
|
||||
* If we're in the the irq-off version of the wait
|
||||
* loop, we need to force exit from the wait and
|
||||
* do a direct post of the IPI.
|
||||
*/
|
||||
if (cpu_wait == r4k_wait_irqoff) {
|
||||
tcrestart = read_tc_c0_tcrestart();
|
||||
if (tcrestart >= (unsigned long)r4k_wait_irqoff
|
||||
&& tcrestart < (unsigned long)__pastwait) {
|
||||
write_tc_c0_tcrestart(__pastwait);
|
||||
tcstatus &= ~TCSTATUS_IXMT;
|
||||
write_tc_c0_tcstatus(tcstatus);
|
||||
goto postdirect;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Otherwise we queue the message for the target TC
|
||||
* to pick up when he does a local_irq_restore()
|
||||
*/
|
||||
write_tc_c0_tchalt(0);
|
||||
UNLOCK_CORE_PRA();
|
||||
/* Try to reduce redundant timer interrupt messages */
|
||||
if (type == SMTC_CLOCK_TICK) {
|
||||
if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
|
||||
smtc_ipi_nq(&freeIPIq, pipi);
|
||||
return;
|
||||
}
|
||||
}
|
||||
smtc_ipi_nq(&IPIQ[cpu], pipi);
|
||||
} else {
|
||||
if (type == SMTC_CLOCK_TICK)
|
||||
atomic_inc(&ipi_timer_latch[cpu]);
|
||||
postdirect:
|
||||
post_direct_ipi(cpu, pipi);
|
||||
write_tc_c0_tchalt(0);
|
||||
UNLOCK_CORE_PRA();
|
||||
@ -883,7 +913,7 @@ static void ipi_call_interrupt(void)
|
||||
smp_call_function_interrupt();
|
||||
}
|
||||
|
||||
DECLARE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
|
||||
DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
|
||||
|
||||
void ipi_decode(struct smtc_ipi *pipi)
|
||||
{
|
||||
@ -891,20 +921,13 @@ void ipi_decode(struct smtc_ipi *pipi)
|
||||
struct clock_event_device *cd;
|
||||
void *arg_copy = pipi->arg;
|
||||
int type_copy = pipi->type;
|
||||
int ticks;
|
||||
|
||||
smtc_ipi_nq(&freeIPIq, pipi);
|
||||
switch (type_copy) {
|
||||
case SMTC_CLOCK_TICK:
|
||||
irq_enter();
|
||||
kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + 1]++;
|
||||
cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
|
||||
ticks = atomic_read(&ipi_timer_latch[cpu]);
|
||||
atomic_sub(ticks, &ipi_timer_latch[cpu]);
|
||||
while (ticks) {
|
||||
cd->event_handler(cd);
|
||||
ticks--;
|
||||
}
|
||||
cd = &per_cpu(mips_clockevent_device, cpu);
|
||||
cd->event_handler(cd);
|
||||
irq_exit();
|
||||
break;
|
||||
|
||||
@ -937,24 +960,48 @@ void ipi_decode(struct smtc_ipi *pipi)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Similar to smtc_ipi_replay(), but invoked from context restore,
|
||||
* so it reuses the current exception frame rather than set up a
|
||||
* new one with self_ipi.
|
||||
*/
|
||||
|
||||
void deferred_smtc_ipi(void)
|
||||
{
|
||||
struct smtc_ipi *pipi;
|
||||
unsigned long flags;
|
||||
/* DEBUG */
|
||||
int q = smp_processor_id();
|
||||
int cpu = smp_processor_id();
|
||||
|
||||
/*
|
||||
* Test is not atomic, but much faster than a dequeue,
|
||||
* and the vast majority of invocations will have a null queue.
|
||||
* If irq_disabled when this was called, then any IPIs queued
|
||||
* after we test last will be taken on the next irq_enable/restore.
|
||||
* If interrupts were enabled, then any IPIs added after the
|
||||
* last test will be taken directly.
|
||||
*/
|
||||
if (IPIQ[q].head != NULL) {
|
||||
while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
|
||||
/* ipi_decode() should be called with interrupts off */
|
||||
local_irq_save(flags);
|
||||
|
||||
while (IPIQ[cpu].head != NULL) {
|
||||
struct smtc_ipi_q *q = &IPIQ[cpu];
|
||||
struct smtc_ipi *pipi;
|
||||
unsigned long flags;
|
||||
|
||||
/*
|
||||
* It may be possible we'll come in with interrupts
|
||||
* already enabled.
|
||||
*/
|
||||
local_irq_save(flags);
|
||||
|
||||
spin_lock(&q->lock);
|
||||
pipi = __smtc_ipi_dq(q);
|
||||
spin_unlock(&q->lock);
|
||||
if (pipi != NULL)
|
||||
ipi_decode(pipi);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
/*
|
||||
* The use of the __raw_local restore isn't
|
||||
* as obviously necessary here as in smtc_ipi_replay(),
|
||||
* but it's more efficient, given that we're already
|
||||
* running down the IPI queue.
|
||||
*/
|
||||
__raw_local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
|
||||
@ -975,7 +1022,7 @@ static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
|
||||
struct smtc_ipi *pipi;
|
||||
unsigned long tcstatus;
|
||||
int sent;
|
||||
long flags;
|
||||
unsigned long flags;
|
||||
unsigned int mtflags;
|
||||
unsigned int vpflags;
|
||||
|
||||
@ -1066,55 +1113,53 @@ static void setup_cross_vpe_interrupts(unsigned int nvpe)
|
||||
|
||||
/*
|
||||
* SMTC-specific hacks invoked from elsewhere in the kernel.
|
||||
*
|
||||
* smtc_ipi_replay is called from raw_local_irq_restore which is only ever
|
||||
* called with interrupts disabled. We do rely on interrupts being disabled
|
||||
* here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
|
||||
* result in a recursive call to raw_local_irq_restore().
|
||||
*/
|
||||
|
||||
static void __smtc_ipi_replay(void)
|
||||
/*
|
||||
* smtc_ipi_replay is called from raw_local_irq_restore
|
||||
*/
|
||||
|
||||
void smtc_ipi_replay(void)
|
||||
{
|
||||
unsigned int cpu = smp_processor_id();
|
||||
|
||||
/*
|
||||
* To the extent that we've ever turned interrupts off,
|
||||
* we may have accumulated deferred IPIs. This is subtle.
|
||||
* If we use the smtc_ipi_qdepth() macro, we'll get an
|
||||
* exact number - but we'll also disable interrupts
|
||||
* and create a window of failure where a new IPI gets
|
||||
* queued after we test the depth but before we re-enable
|
||||
* interrupts. So long as IXMT never gets set, however,
|
||||
* we should be OK: If we pick up something and dispatch
|
||||
* it here, that's great. If we see nothing, but concurrent
|
||||
* with this operation, another TC sends us an IPI, IXMT
|
||||
* is clear, and we'll handle it as a real pseudo-interrupt
|
||||
* and not a pseudo-pseudo interrupt.
|
||||
* and not a pseudo-pseudo interrupt. The important thing
|
||||
* is to do the last check for queued message *after* the
|
||||
* re-enabling of interrupts.
|
||||
*/
|
||||
if (IPIQ[cpu].depth > 0) {
|
||||
while (1) {
|
||||
struct smtc_ipi_q *q = &IPIQ[cpu];
|
||||
struct smtc_ipi *pipi;
|
||||
extern void self_ipi(struct smtc_ipi *);
|
||||
while (IPIQ[cpu].head != NULL) {
|
||||
struct smtc_ipi_q *q = &IPIQ[cpu];
|
||||
struct smtc_ipi *pipi;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock(&q->lock);
|
||||
pipi = __smtc_ipi_dq(q);
|
||||
spin_unlock(&q->lock);
|
||||
if (!pipi)
|
||||
break;
|
||||
/*
|
||||
* It's just possible we'll come in with interrupts
|
||||
* already enabled.
|
||||
*/
|
||||
local_irq_save(flags);
|
||||
|
||||
spin_lock(&q->lock);
|
||||
pipi = __smtc_ipi_dq(q);
|
||||
spin_unlock(&q->lock);
|
||||
/*
|
||||
** But use a raw restore here to avoid recursion.
|
||||
*/
|
||||
__raw_local_irq_restore(flags);
|
||||
|
||||
if (pipi) {
|
||||
self_ipi(pipi);
|
||||
smtc_cpu_stats[cpu].selfipis++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void smtc_ipi_replay(void)
|
||||
{
|
||||
raw_local_irq_disable();
|
||||
__smtc_ipi_replay();
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(smtc_ipi_replay);
|
||||
|
||||
void smtc_idle_loop_hook(void)
|
||||
@ -1193,40 +1238,13 @@ void smtc_idle_loop_hook(void)
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Now that we limit outstanding timer IPIs, check for hung TC
|
||||
*/
|
||||
for (tc = 0; tc < NR_CPUS; tc++) {
|
||||
/* Don't check ourself - we'll dequeue IPIs just below */
|
||||
if ((tc != smp_processor_id()) &&
|
||||
atomic_read(&ipi_timer_latch[tc]) > timerq_limit) {
|
||||
if (clock_hang_reported[tc] == 0) {
|
||||
pdb_msg += sprintf(pdb_msg,
|
||||
"TC %d looks hung with timer latch at %d\n",
|
||||
tc, atomic_read(&ipi_timer_latch[tc]));
|
||||
clock_hang_reported[tc]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
emt(mtflags);
|
||||
local_irq_restore(flags);
|
||||
if (pdb_msg != &id_ho_db_msg[0])
|
||||
printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
|
||||
#endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
|
||||
|
||||
/*
|
||||
* Replay any accumulated deferred IPIs. If "Instant Replay"
|
||||
* is in use, there should never be any.
|
||||
*/
|
||||
#ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
__smtc_ipi_replay();
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
#endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
|
||||
smtc_ipi_replay();
|
||||
}
|
||||
|
||||
void smtc_soft_dump(void)
|
||||
@ -1242,10 +1260,6 @@ void smtc_soft_dump(void)
|
||||
printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
|
||||
}
|
||||
smtc_ipi_qdump();
|
||||
printk("Timer IPI Backlogs:\n");
|
||||
for (i=0; i < NR_CPUS; i++) {
|
||||
printk("%d: %d\n", i, atomic_read(&ipi_timer_latch[i]));
|
||||
}
|
||||
printk("%d Recoveries of \"stolen\" FPU\n",
|
||||
atomic_read(&smtc_fpu_recoveries));
|
||||
}
|
||||
|
@ -825,8 +825,10 @@ static void mt_ase_fp_affinity(void)
|
||||
if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
|
||||
cpumask_t tmask;
|
||||
|
||||
cpus_and(tmask, current->thread.user_cpus_allowed,
|
||||
mt_fpu_cpumask);
|
||||
current->thread.user_cpus_allowed
|
||||
= current->cpus_allowed;
|
||||
cpus_and(tmask, current->cpus_allowed,
|
||||
mt_fpu_cpumask);
|
||||
set_cpus_allowed(current, tmask);
|
||||
set_thread_flag(TIF_FPUBOUND);
|
||||
}
|
||||
|
@ -15,6 +15,6 @@ obj-$(CONFIG_EARLY_PRINTK) += malta-console.o
|
||||
obj-$(CONFIG_PCI) += malta-pci.o
|
||||
|
||||
# FIXME FIXME FIXME
|
||||
obj-$(CONFIG_MIPS_MT_SMTC) += malta_smtc.o
|
||||
obj-$(CONFIG_MIPS_MT_SMTC) += malta-smtc.o
|
||||
|
||||
EXTRA_CFLAGS += -Werror
|
||||
|
@ -84,12 +84,17 @@ static void msmtc_cpus_done(void)
|
||||
|
||||
static void __init msmtc_smp_setup(void)
|
||||
{
|
||||
mipsmt_build_cpu_map(0);
|
||||
/*
|
||||
* we won't get the definitive value until
|
||||
* we've run smtc_prepare_cpus later, but
|
||||
* we would appear to need an upper bound now.
|
||||
*/
|
||||
smp_num_siblings = smtc_build_cpu_map(0);
|
||||
}
|
||||
|
||||
static void __init msmtc_prepare_cpus(unsigned int max_cpus)
|
||||
{
|
||||
mipsmt_prepare_cpus();
|
||||
smtc_prepare_cpus(max_cpus);
|
||||
}
|
||||
|
||||
struct plat_smp_ops msmtc_smp_ops = {
|
||||
|
46
include/asm-mips/cevt-r4k.h
Normal file
46
include/asm-mips/cevt-r4k.h
Normal file
@ -0,0 +1,46 @@
|
||||
/*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*
|
||||
* Copyright (C) 2008 Kevin D. Kissell
|
||||
*/
|
||||
|
||||
/*
|
||||
* Definitions used for common event timer implementation
|
||||
* for MIPS 4K-type processors and their MIPS MT variants.
|
||||
* Avoids unsightly extern declarations in C files.
|
||||
*/
|
||||
#ifndef __ASM_CEVT_R4K_H
|
||||
#define __ASM_CEVT_R4K_H
|
||||
|
||||
DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
|
||||
|
||||
void mips_event_handler(struct clock_event_device *dev);
|
||||
int c0_compare_int_usable(void);
|
||||
void mips_set_clock_mode(enum clock_event_mode, struct clock_event_device *);
|
||||
irqreturn_t c0_compare_interrupt(int, void *);
|
||||
|
||||
extern struct irqaction c0_compare_irqaction;
|
||||
extern int cp0_timer_irq_installed;
|
||||
|
||||
/*
|
||||
* Possibly handle a performance counter interrupt.
|
||||
* Return true if the timer interrupt should not be checked
|
||||
*/
|
||||
|
||||
static inline int handle_perf_irq(int r2)
|
||||
{
|
||||
/*
|
||||
* The performance counter overflow interrupt may be shared with the
|
||||
* timer interrupt (cp0_perfcount_irq < 0). If it is and a
|
||||
* performance counter has overflowed (perf_irq() == IRQ_HANDLED)
|
||||
* and we can't reliably determine if a counter interrupt has also
|
||||
* happened (!r2) then don't check for a timer interrupt.
|
||||
*/
|
||||
return (cp0_perfcount_irq < 0) &&
|
||||
perf_irq() == IRQ_HANDLED &&
|
||||
!r2;
|
||||
}
|
||||
|
||||
#endif /* __ASM_CEVT_R4K_H */
|
@ -38,8 +38,17 @@ __asm__(
|
||||
" .set pop \n"
|
||||
" .endm");
|
||||
|
||||
extern void smtc_ipi_replay(void);
|
||||
|
||||
static inline void raw_local_irq_enable(void)
|
||||
{
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
/*
|
||||
* SMTC kernel needs to do a software replay of queued
|
||||
* IPIs, at the cost of call overhead on each local_irq_enable()
|
||||
*/
|
||||
smtc_ipi_replay();
|
||||
#endif
|
||||
__asm__ __volatile__(
|
||||
"raw_local_irq_enable"
|
||||
: /* no outputs */
|
||||
@ -47,6 +56,7 @@ static inline void raw_local_irq_enable(void)
|
||||
: "memory");
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* For cli() we have to insert nops to make sure that the new value
|
||||
* has actually arrived in the status register before the end of this
|
||||
@ -185,15 +195,14 @@ __asm__(
|
||||
" .set pop \n"
|
||||
" .endm \n");
|
||||
|
||||
extern void smtc_ipi_replay(void);
|
||||
|
||||
static inline void raw_local_irq_restore(unsigned long flags)
|
||||
{
|
||||
unsigned long __tmp1;
|
||||
|
||||
#ifdef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
/*
|
||||
* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY does prompt replay of deferred
|
||||
* SMTC kernel needs to do a software replay of queued
|
||||
* IPIs, at the cost of branch and call overhead on each
|
||||
* local_irq_restore()
|
||||
*/
|
||||
@ -208,6 +217,17 @@ static inline void raw_local_irq_restore(unsigned long flags)
|
||||
: "memory");
|
||||
}
|
||||
|
||||
static inline void __raw_local_irq_restore(unsigned long flags)
|
||||
{
|
||||
unsigned long __tmp1;
|
||||
|
||||
__asm__ __volatile__(
|
||||
"raw_local_irq_restore\t%0"
|
||||
: "=r" (__tmp1)
|
||||
: "0" (flags)
|
||||
: "memory");
|
||||
}
|
||||
|
||||
static inline int raw_irqs_disabled_flags(unsigned long flags)
|
||||
{
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
|
@ -1462,7 +1462,7 @@ set_c0_##name(unsigned int set) \
|
||||
{ \
|
||||
unsigned int res; \
|
||||
unsigned int omt; \
|
||||
unsigned int flags; \
|
||||
unsigned long flags; \
|
||||
\
|
||||
local_irq_save(flags); \
|
||||
omt = __dmt(); \
|
||||
@ -1480,7 +1480,7 @@ clear_c0_##name(unsigned int clear) \
|
||||
{ \
|
||||
unsigned int res; \
|
||||
unsigned int omt; \
|
||||
unsigned int flags; \
|
||||
unsigned long flags; \
|
||||
\
|
||||
local_irq_save(flags); \
|
||||
omt = __dmt(); \
|
||||
@ -1498,7 +1498,7 @@ change_c0_##name(unsigned int change, unsigned int new) \
|
||||
{ \
|
||||
unsigned int res; \
|
||||
unsigned int omt; \
|
||||
unsigned int flags; \
|
||||
unsigned long flags; \
|
||||
\
|
||||
local_irq_save(flags); \
|
||||
\
|
||||
|
@ -6,6 +6,7 @@
|
||||
*/
|
||||
|
||||
#include <asm/mips_mt.h>
|
||||
#include <asm/smtc_ipi.h>
|
||||
|
||||
/*
|
||||
* System-wide SMTC status information
|
||||
@ -38,14 +39,15 @@ struct mm_struct;
|
||||
struct task_struct;
|
||||
|
||||
void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu);
|
||||
|
||||
void self_ipi(struct smtc_ipi *);
|
||||
void smtc_flush_tlb_asid(unsigned long asid);
|
||||
extern int mipsmt_build_cpu_map(int startslot);
|
||||
extern void mipsmt_prepare_cpus(void);
|
||||
extern int smtc_build_cpu_map(int startslot);
|
||||
extern void smtc_prepare_cpus(int cpus);
|
||||
extern void smtc_smp_finish(void);
|
||||
extern void smtc_boot_secondary(int cpu, struct task_struct *t);
|
||||
extern void smtc_cpus_done(void);
|
||||
|
||||
|
||||
/*
|
||||
* Sharing the TLB between multiple VPEs means that the
|
||||
* "random" index selection function is not allowed to
|
||||
|
@ -297,14 +297,31 @@
|
||||
#ifdef CONFIG_MIPS_MT_SMTC
|
||||
.set mips32r2
|
||||
/*
|
||||
* This may not really be necessary if ints are already
|
||||
* inhibited here.
|
||||
* We need to make sure the read-modify-write
|
||||
* of Status below isn't perturbed by an interrupt
|
||||
* or cross-TC access, so we need to do at least a DMT,
|
||||
* protected by an interrupt-inhibit. But setting IXMT
|
||||
* also creates a few-cycle window where an IPI could
|
||||
* be queued and not be detected before potentially
|
||||
* returning to a WAIT or user-mode loop. It must be
|
||||
* replayed.
|
||||
*
|
||||
* We're in the middle of a context switch, and
|
||||
* we can't dispatch it directly without trashing
|
||||
* some registers, so we'll try to detect this unlikely
|
||||
* case and program a software interrupt in the VPE,
|
||||
* as would be done for a cross-VPE IPI. To accomodate
|
||||
* the handling of that case, we're doing a DVPE instead
|
||||
* of just a DMT here to protect against other threads.
|
||||
* This is a lot of cruft to cover a tiny window.
|
||||
* If you can find a better design, implement it!
|
||||
*
|
||||
*/
|
||||
mfc0 v0, CP0_TCSTATUS
|
||||
ori v0, TCSTATUS_IXMT
|
||||
mtc0 v0, CP0_TCSTATUS
|
||||
_ehb
|
||||
DMT 5 # dmt a1
|
||||
DVPE 5 # dvpe a1
|
||||
jal mips_ihb
|
||||
#endif /* CONFIG_MIPS_MT_SMTC */
|
||||
mfc0 a0, CP0_STATUS
|
||||
@ -325,17 +342,50 @@
|
||||
*/
|
||||
LONG_L v1, PT_TCSTATUS(sp)
|
||||
_ehb
|
||||
mfc0 v0, CP0_TCSTATUS
|
||||
mfc0 a0, CP0_TCSTATUS
|
||||
andi v1, TCSTATUS_IXMT
|
||||
/* We know that TCStatua.IXMT should be set from above */
|
||||
xori v0, v0, TCSTATUS_IXMT
|
||||
or v0, v0, v1
|
||||
mtc0 v0, CP0_TCSTATUS
|
||||
_ehb
|
||||
andi a1, a1, VPECONTROL_TE
|
||||
bnez v1, 0f
|
||||
|
||||
/*
|
||||
* We'd like to detect any IPIs queued in the tiny window
|
||||
* above and request an software interrupt to service them
|
||||
* when we ERET.
|
||||
*
|
||||
* Computing the offset into the IPIQ array of the executing
|
||||
* TC's IPI queue in-line would be tedious. We use part of
|
||||
* the TCContext register to hold 16 bits of offset that we
|
||||
* can add in-line to find the queue head.
|
||||
*/
|
||||
mfc0 v0, CP0_TCCONTEXT
|
||||
la a2, IPIQ
|
||||
srl v0, v0, 16
|
||||
addu a2, a2, v0
|
||||
LONG_L v0, 0(a2)
|
||||
beqz v0, 0f
|
||||
/*
|
||||
* If we have a queue, provoke dispatch within the VPE by setting C_SW1
|
||||
*/
|
||||
mfc0 v0, CP0_CAUSE
|
||||
ori v0, v0, C_SW1
|
||||
mtc0 v0, CP0_CAUSE
|
||||
0:
|
||||
/*
|
||||
* This test should really never branch but
|
||||
* let's be prudent here. Having atomized
|
||||
* the shared register modifications, we can
|
||||
* now EVPE, and must do so before interrupts
|
||||
* are potentially re-enabled.
|
||||
*/
|
||||
andi a1, a1, MVPCONTROL_EVP
|
||||
beqz a1, 1f
|
||||
emt
|
||||
evpe
|
||||
1:
|
||||
/* We know that TCStatua.IXMT should be set from above */
|
||||
xori a0, a0, TCSTATUS_IXMT
|
||||
or a0, a0, v1
|
||||
mtc0 a0, CP0_TCSTATUS
|
||||
_ehb
|
||||
|
||||
.set mips0
|
||||
#endif /* CONFIG_MIPS_MT_SMTC */
|
||||
LONG_L v1, PT_EPC(sp)
|
||||
|
Loading…
Reference in New Issue
Block a user