mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-18 10:34:24 +08:00
Pagetables to use normal kernel types
This is my first step in the migration of page_tables.c to the kernel types and functions/macros (2.6.23-rc3). Seems to be working OK. Signed-off-by: Matias Zabaljauregui <matias.zabaljauregui@cern.ch> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
parent
47aee45ae3
commit
df29f43e65
@ -83,7 +83,7 @@ static void do_hcall(struct lguest *lg, struct hcall_args *args)
|
||||
guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
|
||||
break;
|
||||
case LHCALL_SET_PTE:
|
||||
guest_set_pte(lg, args->arg1, args->arg2, mkgpte(args->arg3));
|
||||
guest_set_pte(lg, args->arg1, args->arg2, __pte(args->arg3));
|
||||
break;
|
||||
case LHCALL_SET_PMD:
|
||||
guest_set_pmd(lg, args->arg1, args->arg2);
|
||||
|
@ -28,45 +28,10 @@ struct lguest_dma_info
|
||||
u8 interrupt; /* 0 when not registered */
|
||||
};
|
||||
|
||||
/*H:310 The page-table code owes a great debt of gratitude to Andi Kleen. He
|
||||
* reviewed the original code which used "u32" for all page table entries, and
|
||||
* insisted that it would be far clearer with explicit typing. I thought it
|
||||
* was overkill, but he was right: it is much clearer than it was before.
|
||||
*
|
||||
* We have separate types for the Guest's ptes & pgds and the shadow ptes &
|
||||
* pgds. There's already a Linux type for these (pte_t and pgd_t) but they
|
||||
* change depending on kernel config options (PAE). */
|
||||
|
||||
/* Each entry is identical: lower 12 bits of flags and upper 20 bits for the
|
||||
* "page frame number" (0 == first physical page, etc). They are different
|
||||
* types so the compiler will warn us if we mix them improperly. */
|
||||
typedef union {
|
||||
struct { unsigned flags:12, pfn:20; };
|
||||
struct { unsigned long val; } raw;
|
||||
} spgd_t;
|
||||
typedef union {
|
||||
struct { unsigned flags:12, pfn:20; };
|
||||
struct { unsigned long val; } raw;
|
||||
} spte_t;
|
||||
typedef union {
|
||||
struct { unsigned flags:12, pfn:20; };
|
||||
struct { unsigned long val; } raw;
|
||||
} gpgd_t;
|
||||
typedef union {
|
||||
struct { unsigned flags:12, pfn:20; };
|
||||
struct { unsigned long val; } raw;
|
||||
} gpte_t;
|
||||
|
||||
/* We have two convenient macros to convert a "raw" value as handed to us by
|
||||
* the Guest into the correct Guest PGD or PTE type. */
|
||||
#define mkgpte(_val) ((gpte_t){.raw.val = _val})
|
||||
#define mkgpgd(_val) ((gpgd_t){.raw.val = _val})
|
||||
/*:*/
|
||||
|
||||
struct pgdir
|
||||
{
|
||||
unsigned long cr3;
|
||||
spgd_t *pgdir;
|
||||
pgd_t *pgdir;
|
||||
};
|
||||
|
||||
/* We have two pages shared with guests, per cpu. */
|
||||
@ -157,6 +122,12 @@ int lguest_address_ok(const struct lguest *lg,
|
||||
unsigned long addr, unsigned long len);
|
||||
int run_guest(struct lguest *lg, unsigned long __user *user);
|
||||
|
||||
/* Helper macros to obtain the first 12 or the last 20 bits, this is only the
|
||||
* first step in the migration to the kernel types. pte_pfn is already defined
|
||||
* in the kernel. */
|
||||
#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
|
||||
#define pte_flags(x) (pte_val(x) & ~PAGE_MASK)
|
||||
#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
|
||||
|
||||
/* interrupts_and_traps.c: */
|
||||
void maybe_do_interrupt(struct lguest *lg);
|
||||
@ -187,7 +158,7 @@ void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 i);
|
||||
void guest_pagetable_clear_all(struct lguest *lg);
|
||||
void guest_pagetable_flush_user(struct lguest *lg);
|
||||
void guest_set_pte(struct lguest *lg, unsigned long cr3,
|
||||
unsigned long vaddr, gpte_t val);
|
||||
unsigned long vaddr, pte_t val);
|
||||
void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages);
|
||||
int demand_page(struct lguest *info, unsigned long cr2, int errcode);
|
||||
void pin_page(struct lguest *lg, unsigned long vaddr);
|
||||
|
@ -44,44 +44,32 @@
|
||||
* (vii) Setting up the page tables initially.
|
||||
:*/
|
||||
|
||||
/* Pages a 4k long, and each page table entry is 4 bytes long, giving us 1024
|
||||
* (or 2^10) entries per page. */
|
||||
#define PTES_PER_PAGE_SHIFT 10
|
||||
#define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT)
|
||||
|
||||
/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
|
||||
* conveniently placed at the top 4MB, so it uses a separate, complete PTE
|
||||
* page. */
|
||||
#define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1)
|
||||
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
|
||||
|
||||
/* We actually need a separate PTE page for each CPU. Remember that after the
|
||||
* Switcher code itself comes two pages for each CPU, and we don't want this
|
||||
* CPU's guest to see the pages of any other CPU. */
|
||||
static DEFINE_PER_CPU(spte_t *, switcher_pte_pages);
|
||||
static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
|
||||
#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
|
||||
|
||||
/*H:320 With our shadow and Guest types established, we need to deal with
|
||||
* them: the page table code is curly enough to need helper functions to keep
|
||||
* it clear and clean.
|
||||
*
|
||||
* The first helper takes a virtual address, and says which entry in the top
|
||||
* level page table deals with that address. Since each top level entry deals
|
||||
* with 4M, this effectively divides by 4M. */
|
||||
static unsigned vaddr_to_pgd_index(unsigned long vaddr)
|
||||
{
|
||||
return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
|
||||
}
|
||||
|
||||
/* There are two functions which return pointers to the shadow (aka "real")
|
||||
* There are two functions which return pointers to the shadow (aka "real")
|
||||
* page tables.
|
||||
*
|
||||
* spgd_addr() takes the virtual address and returns a pointer to the top-level
|
||||
* page directory entry for that address. Since we keep track of several page
|
||||
* tables, the "i" argument tells us which one we're interested in (it's
|
||||
* usually the current one). */
|
||||
static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
|
||||
static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
|
||||
{
|
||||
unsigned int index = vaddr_to_pgd_index(vaddr);
|
||||
unsigned int index = pgd_index(vaddr);
|
||||
|
||||
/* We kill any Guest trying to touch the Switcher addresses. */
|
||||
if (index >= SWITCHER_PGD_INDEX) {
|
||||
@ -95,28 +83,28 @@ static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
|
||||
/* This routine then takes the PGD entry given above, which contains the
|
||||
* address of the PTE page. It then returns a pointer to the PTE entry for the
|
||||
* given address. */
|
||||
static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr)
|
||||
static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
|
||||
{
|
||||
spte_t *page = __va(spgd.pfn << PAGE_SHIFT);
|
||||
pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
|
||||
/* You should never call this if the PGD entry wasn't valid */
|
||||
BUG_ON(!(spgd.flags & _PAGE_PRESENT));
|
||||
return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE];
|
||||
BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
|
||||
return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
|
||||
}
|
||||
|
||||
/* These two functions just like the above two, except they access the Guest
|
||||
* page tables. Hence they return a Guest address. */
|
||||
static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
|
||||
{
|
||||
unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
|
||||
return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t);
|
||||
unsigned int index = vaddr >> (PGDIR_SHIFT);
|
||||
return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(pgd_t);
|
||||
}
|
||||
|
||||
static unsigned long gpte_addr(struct lguest *lg,
|
||||
gpgd_t gpgd, unsigned long vaddr)
|
||||
pgd_t gpgd, unsigned long vaddr)
|
||||
{
|
||||
unsigned long gpage = gpgd.pfn << PAGE_SHIFT;
|
||||
BUG_ON(!(gpgd.flags & _PAGE_PRESENT));
|
||||
return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t);
|
||||
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
|
||||
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
|
||||
return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
|
||||
}
|
||||
|
||||
/*H:350 This routine takes a page number given by the Guest and converts it to
|
||||
@ -149,16 +137,15 @@ static unsigned long get_pfn(unsigned long virtpfn, int write)
|
||||
* entry can be a little tricky. The flags are (almost) the same, but the
|
||||
* Guest PTE contains a virtual page number: the CPU needs the real page
|
||||
* number. */
|
||||
static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write)
|
||||
static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
|
||||
{
|
||||
spte_t spte;
|
||||
unsigned long pfn, base;
|
||||
unsigned long pfn, base, flags;
|
||||
|
||||
/* The Guest sets the global flag, because it thinks that it is using
|
||||
* PGE. We only told it to use PGE so it would tell us whether it was
|
||||
* flushing a kernel mapping or a userspace mapping. We don't actually
|
||||
* use the global bit, so throw it away. */
|
||||
spte.flags = (gpte.flags & ~_PAGE_GLOBAL);
|
||||
flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
|
||||
|
||||
/* The Guest's pages are offset inside the Launcher. */
|
||||
base = (unsigned long)lg->mem_base / PAGE_SIZE;
|
||||
@ -167,38 +154,38 @@ static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write)
|
||||
* get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
|
||||
* fit in spte.pfn. get_pfn() finds the real physical number of the
|
||||
* page, given the virtual number. */
|
||||
pfn = get_pfn(base + gpte.pfn, write);
|
||||
pfn = get_pfn(base + pte_pfn(gpte), write);
|
||||
if (pfn == -1UL) {
|
||||
kill_guest(lg, "failed to get page %u", gpte.pfn);
|
||||
kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
|
||||
/* When we destroy the Guest, we'll go through the shadow page
|
||||
* tables and release_pte() them. Make sure we don't think
|
||||
* this one is valid! */
|
||||
spte.flags = 0;
|
||||
flags = 0;
|
||||
}
|
||||
/* Now we assign the page number, and our shadow PTE is complete. */
|
||||
spte.pfn = pfn;
|
||||
return spte;
|
||||
/* Now we assemble our shadow PTE from the page number and flags. */
|
||||
return pfn_pte(pfn, __pgprot(flags));
|
||||
}
|
||||
|
||||
/*H:460 And to complete the chain, release_pte() looks like this: */
|
||||
static void release_pte(spte_t pte)
|
||||
static void release_pte(pte_t pte)
|
||||
{
|
||||
/* Remember that get_user_pages() took a reference to the page, in
|
||||
* get_pfn()? We have to put it back now. */
|
||||
if (pte.flags & _PAGE_PRESENT)
|
||||
put_page(pfn_to_page(pte.pfn));
|
||||
if (pte_flags(pte) & _PAGE_PRESENT)
|
||||
put_page(pfn_to_page(pte_pfn(pte)));
|
||||
}
|
||||
/*:*/
|
||||
|
||||
static void check_gpte(struct lguest *lg, gpte_t gpte)
|
||||
static void check_gpte(struct lguest *lg, pte_t gpte)
|
||||
{
|
||||
if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit)
|
||||
if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
|
||||
|| pte_pfn(gpte) >= lg->pfn_limit)
|
||||
kill_guest(lg, "bad page table entry");
|
||||
}
|
||||
|
||||
static void check_gpgd(struct lguest *lg, gpgd_t gpgd)
|
||||
static void check_gpgd(struct lguest *lg, pgd_t gpgd)
|
||||
{
|
||||
if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit)
|
||||
if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
|
||||
kill_guest(lg, "bad page directory entry");
|
||||
}
|
||||
|
||||
@ -214,21 +201,21 @@ static void check_gpgd(struct lguest *lg, gpgd_t gpgd)
|
||||
* true. */
|
||||
int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
|
||||
{
|
||||
gpgd_t gpgd;
|
||||
spgd_t *spgd;
|
||||
pgd_t gpgd;
|
||||
pgd_t *spgd;
|
||||
unsigned long gpte_ptr;
|
||||
gpte_t gpte;
|
||||
spte_t *spte;
|
||||
pte_t gpte;
|
||||
pte_t *spte;
|
||||
|
||||
/* First step: get the top-level Guest page table entry. */
|
||||
gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
|
||||
gpgd = __pgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
|
||||
/* Toplevel not present? We can't map it in. */
|
||||
if (!(gpgd.flags & _PAGE_PRESENT))
|
||||
if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
|
||||
return 0;
|
||||
|
||||
/* Now look at the matching shadow entry. */
|
||||
spgd = spgd_addr(lg, lg->pgdidx, vaddr);
|
||||
if (!(spgd->flags & _PAGE_PRESENT)) {
|
||||
if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
|
||||
/* No shadow entry: allocate a new shadow PTE page. */
|
||||
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
|
||||
/* This is not really the Guest's fault, but killing it is
|
||||
@ -241,34 +228,35 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
|
||||
check_gpgd(lg, gpgd);
|
||||
/* And we copy the flags to the shadow PGD entry. The page
|
||||
* number in the shadow PGD is the page we just allocated. */
|
||||
spgd->raw.val = (__pa(ptepage) | gpgd.flags);
|
||||
*spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
|
||||
}
|
||||
|
||||
/* OK, now we look at the lower level in the Guest page table: keep its
|
||||
* address, because we might update it later. */
|
||||
gpte_ptr = gpte_addr(lg, gpgd, vaddr);
|
||||
gpte = mkgpte(lgread_u32(lg, gpte_ptr));
|
||||
gpte = __pte(lgread_u32(lg, gpte_ptr));
|
||||
|
||||
/* If this page isn't in the Guest page tables, we can't page it in. */
|
||||
if (!(gpte.flags & _PAGE_PRESENT))
|
||||
if (!(pte_flags(gpte) & _PAGE_PRESENT))
|
||||
return 0;
|
||||
|
||||
/* Check they're not trying to write to a page the Guest wants
|
||||
* read-only (bit 2 of errcode == write). */
|
||||
if ((errcode & 2) && !(gpte.flags & _PAGE_RW))
|
||||
if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
|
||||
return 0;
|
||||
|
||||
/* User access to a kernel page? (bit 3 == user access) */
|
||||
if ((errcode & 4) && !(gpte.flags & _PAGE_USER))
|
||||
if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
|
||||
return 0;
|
||||
|
||||
/* Check that the Guest PTE flags are OK, and the page number is below
|
||||
* the pfn_limit (ie. not mapping the Launcher binary). */
|
||||
check_gpte(lg, gpte);
|
||||
/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
|
||||
gpte.flags |= _PAGE_ACCESSED;
|
||||
gpte = pte_mkyoung(gpte);
|
||||
|
||||
if (errcode & 2)
|
||||
gpte.flags |= _PAGE_DIRTY;
|
||||
gpte = pte_mkdirty(gpte);
|
||||
|
||||
/* Get the pointer to the shadow PTE entry we're going to set. */
|
||||
spte = spte_addr(lg, *spgd, vaddr);
|
||||
@ -278,21 +266,18 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
|
||||
|
||||
/* If this is a write, we insist that the Guest page is writable (the
|
||||
* final arg to gpte_to_spte()). */
|
||||
if (gpte.flags & _PAGE_DIRTY)
|
||||
if (pte_dirty(gpte))
|
||||
*spte = gpte_to_spte(lg, gpte, 1);
|
||||
else {
|
||||
else
|
||||
/* If this is a read, don't set the "writable" bit in the page
|
||||
* table entry, even if the Guest says it's writable. That way
|
||||
* we come back here when a write does actually ocur, so we can
|
||||
* update the Guest's _PAGE_DIRTY flag. */
|
||||
gpte_t ro_gpte = gpte;
|
||||
ro_gpte.flags &= ~_PAGE_RW;
|
||||
*spte = gpte_to_spte(lg, ro_gpte, 0);
|
||||
}
|
||||
*spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
|
||||
|
||||
/* Finally, we write the Guest PTE entry back: we've set the
|
||||
* _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
|
||||
lgwrite_u32(lg, gpte_ptr, gpte.raw.val);
|
||||
lgwrite_u32(lg, gpte_ptr, pte_val(gpte));
|
||||
|
||||
/* We succeeded in mapping the page! */
|
||||
return 1;
|
||||
@ -308,17 +293,18 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
|
||||
* mapped by the shadow page tables, and is it writable? */
|
||||
static int page_writable(struct lguest *lg, unsigned long vaddr)
|
||||
{
|
||||
spgd_t *spgd;
|
||||
pgd_t *spgd;
|
||||
unsigned long flags;
|
||||
|
||||
/* Look at the top level entry: is it present? */
|
||||
spgd = spgd_addr(lg, lg->pgdidx, vaddr);
|
||||
if (!(spgd->flags & _PAGE_PRESENT))
|
||||
if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
|
||||
return 0;
|
||||
|
||||
/* Check the flags on the pte entry itself: it must be present and
|
||||
* writable. */
|
||||
flags = spte_addr(lg, *spgd, vaddr)->flags;
|
||||
flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
|
||||
|
||||
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
|
||||
}
|
||||
|
||||
@ -332,22 +318,22 @@ void pin_page(struct lguest *lg, unsigned long vaddr)
|
||||
}
|
||||
|
||||
/*H:450 If we chase down the release_pgd() code, it looks like this: */
|
||||
static void release_pgd(struct lguest *lg, spgd_t *spgd)
|
||||
static void release_pgd(struct lguest *lg, pgd_t *spgd)
|
||||
{
|
||||
/* If the entry's not present, there's nothing to release. */
|
||||
if (spgd->flags & _PAGE_PRESENT) {
|
||||
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
||||
unsigned int i;
|
||||
/* Converting the pfn to find the actual PTE page is easy: turn
|
||||
* the page number into a physical address, then convert to a
|
||||
* virtual address (easy for kernel pages like this one). */
|
||||
spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT);
|
||||
pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
|
||||
/* For each entry in the page, we might need to release it. */
|
||||
for (i = 0; i < PTES_PER_PAGE; i++)
|
||||
for (i = 0; i < PTRS_PER_PTE; i++)
|
||||
release_pte(ptepage[i]);
|
||||
/* Now we can free the page of PTEs */
|
||||
free_page((long)ptepage);
|
||||
/* And zero out the PGD entry we we never release it twice. */
|
||||
spgd->raw.val = 0;
|
||||
*spgd = __pgd(0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -359,7 +345,7 @@ static void flush_user_mappings(struct lguest *lg, int idx)
|
||||
{
|
||||
unsigned int i;
|
||||
/* Release every pgd entry up to the kernel's address. */
|
||||
for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++)
|
||||
for (i = 0; i < pgd_index(lg->page_offset); i++)
|
||||
release_pgd(lg, lg->pgdirs[idx].pgdir + i);
|
||||
}
|
||||
|
||||
@ -398,7 +384,7 @@ static unsigned int new_pgdir(struct lguest *lg,
|
||||
next = random32() % ARRAY_SIZE(lg->pgdirs);
|
||||
/* If it's never been allocated at all before, try now. */
|
||||
if (!lg->pgdirs[next].pgdir) {
|
||||
lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL);
|
||||
lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
|
||||
/* If the allocation fails, just keep using the one we have */
|
||||
if (!lg->pgdirs[next].pgdir)
|
||||
next = lg->pgdidx;
|
||||
@ -475,26 +461,27 @@ void guest_pagetable_clear_all(struct lguest *lg)
|
||||
* they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
|
||||
*/
|
||||
static void do_set_pte(struct lguest *lg, int idx,
|
||||
unsigned long vaddr, gpte_t gpte)
|
||||
unsigned long vaddr, pte_t gpte)
|
||||
{
|
||||
/* Look up the matching shadow page directot entry. */
|
||||
spgd_t *spgd = spgd_addr(lg, idx, vaddr);
|
||||
pgd_t *spgd = spgd_addr(lg, idx, vaddr);
|
||||
|
||||
/* If the top level isn't present, there's no entry to update. */
|
||||
if (spgd->flags & _PAGE_PRESENT) {
|
||||
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
|
||||
/* Otherwise, we start by releasing the existing entry. */
|
||||
spte_t *spte = spte_addr(lg, *spgd, vaddr);
|
||||
pte_t *spte = spte_addr(lg, *spgd, vaddr);
|
||||
release_pte(*spte);
|
||||
|
||||
/* If they're setting this entry as dirty or accessed, we might
|
||||
* as well put that entry they've given us in now. This shaves
|
||||
* 10% off a copy-on-write micro-benchmark. */
|
||||
if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
|
||||
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
|
||||
check_gpte(lg, gpte);
|
||||
*spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY);
|
||||
*spte = gpte_to_spte(lg, gpte,
|
||||
pte_flags(gpte) & _PAGE_DIRTY);
|
||||
} else
|
||||
/* Otherwise we can demand_page() it in later. */
|
||||
spte->raw.val = 0;
|
||||
*spte = __pte(0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -509,7 +496,7 @@ static void do_set_pte(struct lguest *lg, int idx,
|
||||
* The benefit is that when we have to track a new page table, we can copy keep
|
||||
* all the kernel mappings. This speeds up context switch immensely. */
|
||||
void guest_set_pte(struct lguest *lg,
|
||||
unsigned long cr3, unsigned long vaddr, gpte_t gpte)
|
||||
unsigned long cr3, unsigned long vaddr, pte_t gpte)
|
||||
{
|
||||
/* Kernel mappings must be changed on all top levels. Slow, but
|
||||
* doesn't happen often. */
|
||||
@ -564,15 +551,15 @@ void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx)
|
||||
int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
|
||||
{
|
||||
/* In flush_user_mappings() we loop from 0 to
|
||||
* "vaddr_to_pgd_index(lg->page_offset)". This assumes it won't hit
|
||||
* "pgd_index(lg->page_offset)". This assumes it won't hit
|
||||
* the Switcher mappings, so check that now. */
|
||||
if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
|
||||
if (pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
|
||||
return -EINVAL;
|
||||
/* We start on the first shadow page table, and give it a blank PGD
|
||||
* page. */
|
||||
lg->pgdidx = 0;
|
||||
lg->pgdirs[lg->pgdidx].cr3 = pgtable;
|
||||
lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL);
|
||||
lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
|
||||
if (!lg->pgdirs[lg->pgdidx].pgdir)
|
||||
return -ENOMEM;
|
||||
return 0;
|
||||
@ -597,14 +584,14 @@ void free_guest_pagetable(struct lguest *lg)
|
||||
* for each CPU already set up, we just need to hook them in. */
|
||||
void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
|
||||
{
|
||||
spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
|
||||
spgd_t switcher_pgd;
|
||||
spte_t regs_pte;
|
||||
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
|
||||
pgd_t switcher_pgd;
|
||||
pte_t regs_pte;
|
||||
|
||||
/* Make the last PGD entry for this Guest point to the Switcher's PTE
|
||||
* page for this CPU (with appropriate flags). */
|
||||
switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT;
|
||||
switcher_pgd.flags = _PAGE_KERNEL;
|
||||
switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
|
||||
|
||||
lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
|
||||
|
||||
/* We also change the Switcher PTE page. When we're running the Guest,
|
||||
@ -614,10 +601,8 @@ void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
|
||||
* CPU's "struct lguest_pages": if we make sure the Guest's register
|
||||
* page is already mapped there, we don't have to copy them out
|
||||
* again. */
|
||||
regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT;
|
||||
regs_pte.flags = _PAGE_KERNEL;
|
||||
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE]
|
||||
= regs_pte;
|
||||
regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
|
||||
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
|
||||
}
|
||||
/*:*/
|
||||
|
||||
@ -638,24 +623,25 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
|
||||
unsigned int pages)
|
||||
{
|
||||
unsigned int i;
|
||||
spte_t *pte = switcher_pte_page(cpu);
|
||||
pte_t *pte = switcher_pte_page(cpu);
|
||||
|
||||
/* The first entries are easy: they map the Switcher code. */
|
||||
for (i = 0; i < pages; i++) {
|
||||
pte[i].pfn = page_to_pfn(switcher_page[i]);
|
||||
pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
|
||||
pte[i] = mk_pte(switcher_page[i],
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
|
||||
}
|
||||
|
||||
/* The only other thing we map is this CPU's pair of pages. */
|
||||
i = pages + cpu*2;
|
||||
|
||||
/* First page (Guest registers) is writable from the Guest */
|
||||
pte[i].pfn = page_to_pfn(switcher_page[i]);
|
||||
pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW;
|
||||
pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
|
||||
|
||||
/* The second page contains the "struct lguest_ro_state", and is
|
||||
* read-only. */
|
||||
pte[i+1].pfn = page_to_pfn(switcher_page[i+1]);
|
||||
pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
|
||||
pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
|
||||
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
|
||||
}
|
||||
|
||||
/*H:510 At boot or module load time, init_pagetables() allocates and populates
|
||||
@ -665,7 +651,7 @@ __init int init_pagetables(struct page **switcher_page, unsigned int pages)
|
||||
unsigned int i;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL);
|
||||
switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
|
||||
if (!switcher_pte_page(i)) {
|
||||
free_switcher_pte_pages();
|
||||
return -ENOMEM;
|
||||
|
Loading…
Reference in New Issue
Block a user