2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-02 02:14:01 +08:00

vfs: add d_walk()

This one replaces three instances open coded tree walking (have_submounts,
select_parent, d_genocide) with a common helper.

In addition to slightly reducing the kernel size, this simplifies the
callers and makes them less bug prone.

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This commit is contained in:
Miklos Szeredi 2013-09-05 11:44:35 +02:00 committed by Al Viro
parent 01ddc4ede5
commit db14fc3abc

View File

@ -1031,34 +1031,56 @@ static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq
return new;
}
/*
* Search for at least 1 mount point in the dentry's subdirs.
* We descend to the next level whenever the d_subdirs
* list is non-empty and continue searching.
*/
/**
* have_submounts - check for mounts over a dentry
* @parent: dentry to check.
*
* Return true if the parent or its subdirectories contain
* a mount point
* enum d_walk_ret - action to talke during tree walk
* @D_WALK_CONTINUE: contrinue walk
* @D_WALK_QUIT: quit walk
* @D_WALK_NORETRY: quit when retry is needed
* @D_WALK_SKIP: skip this dentry and its children
*/
int have_submounts(struct dentry *parent)
enum d_walk_ret {
D_WALK_CONTINUE,
D_WALK_QUIT,
D_WALK_NORETRY,
D_WALK_SKIP,
};
/**
* d_walk - walk the dentry tree
* @parent: start of walk
* @data: data passed to @enter() and @finish()
* @enter: callback when first entering the dentry
* @finish: callback when successfully finished the walk
*
* The @enter() and @finish() callbacks are called with d_lock held.
*/
static void d_walk(struct dentry *parent, void *data,
enum d_walk_ret (*enter)(void *, struct dentry *),
void (*finish)(void *))
{
struct dentry *this_parent;
struct list_head *next;
unsigned seq;
int locked = 0;
enum d_walk_ret ret;
bool retry = true;
seq = read_seqbegin(&rename_lock);
again:
this_parent = parent;
if (d_mountpoint(parent))
goto positive;
spin_lock(&this_parent->d_lock);
ret = enter(data, this_parent);
switch (ret) {
case D_WALK_CONTINUE:
break;
case D_WALK_QUIT:
case D_WALK_SKIP:
goto out_unlock;
case D_WALK_NORETRY:
retry = false;
break;
}
repeat:
next = this_parent->d_subdirs.next;
resume:
@ -1068,12 +1090,22 @@ resume:
next = tmp->next;
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
/* Have we found a mount point ? */
if (d_mountpoint(dentry)) {
ret = enter(data, dentry);
switch (ret) {
case D_WALK_CONTINUE:
break;
case D_WALK_QUIT:
spin_unlock(&dentry->d_lock);
spin_unlock(&this_parent->d_lock);
goto positive;
goto out_unlock;
case D_WALK_NORETRY:
retry = false;
break;
case D_WALK_SKIP:
spin_unlock(&dentry->d_lock);
continue;
}
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&this_parent->d_lock);
spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
@ -1094,26 +1126,61 @@ resume:
next = child->d_u.d_child.next;
goto resume;
}
if (!locked && read_seqretry(&rename_lock, seq)) {
spin_unlock(&this_parent->d_lock);
goto rename_retry;
}
if (finish)
finish(data);
out_unlock:
spin_unlock(&this_parent->d_lock);
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return 0; /* No mount points found in tree */
positive:
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return 1;
return;
rename_retry:
if (!retry)
return;
if (locked)
goto again;
locked = 1;
write_seqlock(&rename_lock);
goto again;
}
/*
* Search for at least 1 mount point in the dentry's subdirs.
* We descend to the next level whenever the d_subdirs
* list is non-empty and continue searching.
*/
/**
* have_submounts - check for mounts over a dentry
* @parent: dentry to check.
*
* Return true if the parent or its subdirectories contain
* a mount point
*/
static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
{
int *ret = data;
if (d_mountpoint(dentry)) {
*ret = 1;
return D_WALK_QUIT;
}
return D_WALK_CONTINUE;
}
int have_submounts(struct dentry *parent)
{
int ret = 0;
d_walk(parent, &ret, check_mount, NULL);
return ret;
}
EXPORT_SYMBOL(have_submounts);
/*
@ -1130,93 +1197,46 @@ EXPORT_SYMBOL(have_submounts);
* drop the lock and return early due to latency
* constraints.
*/
static int select_parent(struct dentry *parent, struct list_head *dispose)
struct select_data {
struct dentry *start;
struct list_head dispose;
int found;
};
static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
{
struct dentry *this_parent;
struct list_head *next;
unsigned seq;
int found = 0;
int locked = 0;
struct select_data *data = _data;
enum d_walk_ret ret = D_WALK_CONTINUE;
seq = read_seqbegin(&rename_lock);
again:
this_parent = parent;
spin_lock(&this_parent->d_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
if (data->start == dentry)
goto out;
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
/*
* move only zero ref count dentries to the dispose list.
*
* Those which are presently on the shrink list, being processed
* by shrink_dentry_list(), shouldn't be moved. Otherwise the
* loop in shrink_dcache_parent() might not make any progress
* and loop forever.
*/
if (dentry->d_lockref.count) {
dentry_lru_del(dentry);
} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
dentry_lru_move_list(dentry, dispose);
dentry->d_flags |= DCACHE_SHRINK_LIST;
found++;
}
/*
* We can return to the caller if we have found some (this
* ensures forward progress). We'll be coming back to find
* the rest.
*/
if (found && need_resched()) {
spin_unlock(&dentry->d_lock);
goto out;
}
/*
* Descend a level if the d_subdirs list is non-empty.
*/
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&this_parent->d_lock);
spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
this_parent = dentry;
spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
goto repeat;
}
spin_unlock(&dentry->d_lock);
/*
* move only zero ref count dentries to the dispose list.
*
* Those which are presently on the shrink list, being processed
* by shrink_dentry_list(), shouldn't be moved. Otherwise the
* loop in shrink_dcache_parent() might not make any progress
* and loop forever.
*/
if (dentry->d_lockref.count) {
dentry_lru_del(dentry);
} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
dentry_lru_move_list(dentry, &data->dispose);
dentry->d_flags |= DCACHE_SHRINK_LIST;
data->found++;
ret = D_WALK_NORETRY;
}
/*
* All done at this level ... ascend and resume the search.
* We can return to the caller if we have found some (this
* ensures forward progress). We'll be coming back to find
* the rest.
*/
if (this_parent != parent) {
struct dentry *child = this_parent;
this_parent = try_to_ascend(this_parent, locked, seq);
if (!this_parent)
goto rename_retry;
next = child->d_u.d_child.next;
goto resume;
}
if (data->found && need_resched())
ret = D_WALK_QUIT;
out:
spin_unlock(&this_parent->d_lock);
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return found;
rename_retry:
if (found)
return found;
if (locked)
goto again;
locked = 1;
write_seqlock(&rename_lock);
goto again;
return ret;
}
/**
@ -1225,13 +1245,20 @@ rename_retry:
*
* Prune the dcache to remove unused children of the parent dentry.
*/
void shrink_dcache_parent(struct dentry * parent)
void shrink_dcache_parent(struct dentry *parent)
{
LIST_HEAD(dispose);
int found;
for (;;) {
struct select_data data;
while ((found = select_parent(parent, &dispose)) != 0) {
shrink_dentry_list(&dispose);
INIT_LIST_HEAD(&data.dispose);
data.start = parent;
data.found = 0;
d_walk(parent, &data, select_collect, NULL);
if (!data.found)
break;
shrink_dentry_list(&data.dispose);
cond_resched();
}
}
@ -2928,64 +2955,24 @@ int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
return result;
}
void d_genocide(struct dentry *root)
static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
{
struct dentry *this_parent;
struct list_head *next;
unsigned seq;
int locked = 0;
struct dentry *root = data;
if (dentry != root) {
if (d_unhashed(dentry) || !dentry->d_inode)
return D_WALK_SKIP;
seq = read_seqbegin(&rename_lock);
again:
this_parent = root;
spin_lock(&this_parent->d_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
if (d_unhashed(dentry) || !dentry->d_inode) {
spin_unlock(&dentry->d_lock);
continue;
}
if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
dentry->d_flags |= DCACHE_GENOCIDE;
dentry->d_lockref.count--;
}
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&this_parent->d_lock);
spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
this_parent = dentry;
spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
goto repeat;
}
spin_unlock(&dentry->d_lock);
}
if (this_parent != root) {
struct dentry *child = this_parent;
this_parent = try_to_ascend(this_parent, locked, seq);
if (!this_parent)
goto rename_retry;
next = child->d_u.d_child.next;
goto resume;
}
spin_unlock(&this_parent->d_lock);
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return;
return D_WALK_CONTINUE;
}
rename_retry:
if (locked)
goto again;
locked = 1;
write_seqlock(&rename_lock);
goto again;
void d_genocide(struct dentry *parent)
{
d_walk(parent, parent, d_genocide_kill, NULL);
}
void d_tmpfile(struct dentry *dentry, struct inode *inode)