2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-11-27 12:04:22 +08:00

blk-crypto: rename blk_keyslot_manager to blk_crypto_profile

blk_keyslot_manager is misnamed because it doesn't necessarily manage
keyslots.  It actually does several different things:

  - Contains the crypto capabilities of the device.

  - Provides functions to control the inline encryption hardware.
    Originally these were just for programming/evicting keyslots;
    however, new functionality (hardware-wrapped keys) will require new
    functions here which are unrelated to keyslots.  Moreover,
    device-mapper devices already (ab)use "keyslot_evict" to pass key
    eviction requests to their underlying devices even though
    device-mapper devices don't have any keyslots themselves (so it
    really should be "evict_key", not "keyslot_evict").

  - Sometimes (but not always!) it manages keyslots.  Originally it
    always did, but device-mapper devices don't have keyslots
    themselves, so they use a "passthrough keyslot manager" which
    doesn't actually manage keyslots.  This hack works, but the
    terminology is unnatural.  Also, some hardware doesn't have keyslots
    and thus also uses a "passthrough keyslot manager" (support for such
    hardware is yet to be upstreamed, but it will happen eventually).

Let's stop having keyslot managers which don't actually manage keyslots.
Instead, rename blk_keyslot_manager to blk_crypto_profile.

This is a fairly big change, since for consistency it also has to update
keyslot manager-related function names, variable names, and comments --
not just the actual struct name.  However it's still a fairly
straightforward change, as it doesn't change any actual functionality.

Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # For MMC
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20211018180453.40441-4-ebiggers@kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This commit is contained in:
Eric Biggers 2021-10-18 11:04:52 -07:00 committed by Jens Axboe
parent 1e8d44bddf
commit cb77cb5abe
18 changed files with 556 additions and 523 deletions

View File

@ -78,7 +78,7 @@ static struct blk_crypto_fallback_keyslot {
struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
} *blk_crypto_keyslots;
static struct blk_keyslot_manager blk_crypto_ksm;
static struct blk_crypto_profile blk_crypto_fallback_profile;
static struct workqueue_struct *blk_crypto_wq;
static mempool_t *blk_crypto_bounce_page_pool;
static struct bio_set crypto_bio_split;
@ -104,9 +104,10 @@ static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
}
static int blk_crypto_fallback_keyslot_program(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key,
unsigned int slot)
static int
blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
const enum blk_crypto_mode_num crypto_mode =
@ -127,7 +128,7 @@ static int blk_crypto_fallback_keyslot_program(struct blk_keyslot_manager *ksm,
return 0;
}
static int blk_crypto_fallback_keyslot_evict(struct blk_keyslot_manager *ksm,
static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
@ -135,14 +136,9 @@ static int blk_crypto_fallback_keyslot_evict(struct blk_keyslot_manager *ksm,
return 0;
}
/*
* The crypto API fallback KSM ops - only used for a bio when it specifies a
* blk_crypto_key that was not supported by the device's inline encryption
* hardware.
*/
static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = {
.keyslot_program = blk_crypto_fallback_keyslot_program,
.keyslot_evict = blk_crypto_fallback_keyslot_evict,
static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
.keyslot_program = blk_crypto_fallback_keyslot_program,
.keyslot_evict = blk_crypto_fallback_keyslot_evict,
};
static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
@ -188,13 +184,13 @@ static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
}
static bool
blk_crypto_fallback_alloc_cipher_req(struct blk_ksm_keyslot *slot,
blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
struct skcipher_request **ciph_req_ret,
struct crypto_wait *wait)
{
struct skcipher_request *ciph_req;
const struct blk_crypto_fallback_keyslot *slotp;
int keyslot_idx = blk_ksm_get_slot_idx(slot);
int keyslot_idx = blk_crypto_keyslot_index(slot);
slotp = &blk_crypto_keyslots[keyslot_idx];
ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
@ -266,7 +262,7 @@ static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
{
struct bio *src_bio, *enc_bio;
struct bio_crypt_ctx *bc;
struct blk_ksm_keyslot *slot;
struct blk_crypto_keyslot *slot;
int data_unit_size;
struct skcipher_request *ciph_req = NULL;
DECLARE_CRYPTO_WAIT(wait);
@ -293,10 +289,11 @@ static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
}
/*
* Use the crypto API fallback keyslot manager to get a crypto_skcipher
* for the algorithm and key specified for this bio.
* Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
* this bio's algorithm and key.
*/
blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile,
bc->bc_key, &slot);
if (blk_st != BLK_STS_OK) {
src_bio->bi_status = blk_st;
goto out_put_enc_bio;
@ -364,7 +361,7 @@ out_free_bounce_pages:
out_free_ciph_req:
skcipher_request_free(ciph_req);
out_release_keyslot:
blk_ksm_put_slot(slot);
blk_crypto_put_keyslot(slot);
out_put_enc_bio:
if (enc_bio)
bio_put(enc_bio);
@ -382,7 +379,7 @@ static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
container_of(work, struct bio_fallback_crypt_ctx, work);
struct bio *bio = f_ctx->bio;
struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
struct blk_ksm_keyslot *slot;
struct blk_crypto_keyslot *slot;
struct skcipher_request *ciph_req = NULL;
DECLARE_CRYPTO_WAIT(wait);
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
@ -395,10 +392,11 @@ static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
blk_status_t blk_st;
/*
* Use the crypto API fallback keyslot manager to get a crypto_skcipher
* for the algorithm and key specified for this bio.
* Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
* this bio's algorithm and key.
*/
blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile,
bc->bc_key, &slot);
if (blk_st != BLK_STS_OK) {
bio->bi_status = blk_st;
goto out_no_keyslot;
@ -436,7 +434,7 @@ static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
out:
skcipher_request_free(ciph_req);
blk_ksm_put_slot(slot);
blk_crypto_put_keyslot(slot);
out_no_keyslot:
mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
bio_endio(bio);
@ -501,8 +499,8 @@ bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
return false;
}
if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm,
&bc->bc_key->crypto_cfg)) {
if (!__blk_crypto_cfg_supported(&blk_crypto_fallback_profile,
&bc->bc_key->crypto_cfg)) {
bio->bi_status = BLK_STS_NOTSUPP;
return false;
}
@ -528,7 +526,7 @@ bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
{
return blk_ksm_evict_key(&blk_crypto_ksm, key);
return __blk_crypto_evict_key(&blk_crypto_fallback_profile, key);
}
static bool blk_crypto_fallback_inited;
@ -536,6 +534,7 @@ static int blk_crypto_fallback_init(void)
{
int i;
int err;
struct blk_crypto_profile *profile = &blk_crypto_fallback_profile;
if (blk_crypto_fallback_inited)
return 0;
@ -546,24 +545,24 @@ static int blk_crypto_fallback_init(void)
if (err)
goto out;
err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots);
err = blk_crypto_profile_init(profile, blk_crypto_num_keyslots);
if (err)
goto fail_free_bioset;
err = -ENOMEM;
blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops;
blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
profile->ll_ops = blk_crypto_fallback_ll_ops;
profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
/* All blk-crypto modes have a crypto API fallback. */
for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF;
blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
profile->modes_supported[i] = 0xFFFFFFFF;
profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
WQ_UNBOUND | WQ_HIGHPRI |
WQ_MEM_RECLAIM, num_online_cpus());
if (!blk_crypto_wq)
goto fail_free_ksm;
goto fail_destroy_profile;
blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
sizeof(blk_crypto_keyslots[0]),
@ -597,8 +596,8 @@ fail_free_keyslots:
kfree(blk_crypto_keyslots);
fail_free_wq:
destroy_workqueue(blk_crypto_wq);
fail_free_ksm:
blk_ksm_destroy(&blk_crypto_ksm);
fail_destroy_profile:
blk_crypto_profile_destroy(profile);
fail_free_bioset:
bioset_exit(&crypto_bio_split);
out:

View File

@ -4,26 +4,22 @@
*/
/**
* DOC: The Keyslot Manager
* DOC: blk-crypto profiles
*
* Many devices with inline encryption support have a limited number of "slots"
* into which encryption contexts may be programmed, and requests can be tagged
* with a slot number to specify the key to use for en/decryption.
* 'struct blk_crypto_profile' contains all generic inline encryption-related
* state for a particular inline encryption device. blk_crypto_profile serves
* as the way that drivers for inline encryption hardware expose their crypto
* capabilities and certain functions (e.g., functions to program and evict
* keys) to upper layers. Device drivers that want to support inline encryption
* construct a crypto profile, then associate it with the disk's request_queue.
*
* As the number of slots is limited, and programming keys is expensive on
* many inline encryption hardware, we don't want to program the same key into
* multiple slots - if multiple requests are using the same key, we want to
* program just one slot with that key and use that slot for all requests.
* If the device has keyslots, then its blk_crypto_profile also handles managing
* these keyslots in a device-independent way, using the driver-provided
* functions to program and evict keys as needed. This includes keeping track
* of which key and how many I/O requests are using each keyslot, getting
* keyslots for I/O requests, and handling key eviction requests.
*
* The keyslot manager manages these keyslots appropriately, and also acts as
* an abstraction between the inline encryption hardware and the upper layers.
*
* Lower layer devices will set up a keyslot manager in their request queue
* and tell it how to perform device specific operations like programming/
* evicting keys from keyslots.
*
* Upper layers will call blk_ksm_get_slot_for_key() to program a
* key into some slot in the inline encryption hardware.
* For more information, see Documentation/block/inline-encryption.rst.
*/
#define pr_fmt(fmt) "blk-crypto: " fmt
@ -37,77 +33,75 @@
#include <linux/blkdev.h>
#include <linux/blk-integrity.h>
struct blk_ksm_keyslot {
struct blk_crypto_keyslot {
atomic_t slot_refs;
struct list_head idle_slot_node;
struct hlist_node hash_node;
const struct blk_crypto_key *key;
struct blk_keyslot_manager *ksm;
struct blk_crypto_profile *profile;
};
static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
static inline void blk_crypto_hw_enter(struct blk_crypto_profile *profile)
{
/*
* Calling into the driver requires ksm->lock held and the device
* Calling into the driver requires profile->lock held and the device
* resumed. But we must resume the device first, since that can acquire
* and release ksm->lock via blk_ksm_reprogram_all_keys().
* and release profile->lock via blk_crypto_reprogram_all_keys().
*/
if (ksm->dev)
pm_runtime_get_sync(ksm->dev);
down_write(&ksm->lock);
if (profile->dev)
pm_runtime_get_sync(profile->dev);
down_write(&profile->lock);
}
static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
static inline void blk_crypto_hw_exit(struct blk_crypto_profile *profile)
{
up_write(&ksm->lock);
if (ksm->dev)
pm_runtime_put_sync(ksm->dev);
}
static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
{
return ksm->num_slots == 0;
up_write(&profile->lock);
if (profile->dev)
pm_runtime_put_sync(profile->dev);
}
/**
* blk_ksm_init() - Initialize a keyslot manager
* @ksm: The keyslot_manager to initialize.
* @num_slots: The number of key slots to manage.
* blk_crypto_profile_init() - Initialize a blk_crypto_profile
* @profile: the blk_crypto_profile to initialize
* @num_slots: the number of keyslots
*
* Allocate memory for keyslots and initialize a keyslot manager. Called by
* e.g. storage drivers to set up a keyslot manager in their request_queue.
* Storage drivers must call this when starting to set up a blk_crypto_profile,
* before filling in additional fields.
*
* Return: 0 on success, or else a negative error code.
*/
int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
int blk_crypto_profile_init(struct blk_crypto_profile *profile,
unsigned int num_slots)
{
unsigned int slot;
unsigned int i;
unsigned int slot_hashtable_size;
memset(ksm, 0, sizeof(*ksm));
memset(profile, 0, sizeof(*profile));
init_rwsem(&profile->lock);
if (num_slots == 0)
return -EINVAL;
return 0;
ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
if (!ksm->slots)
/* Initialize keyslot management data. */
profile->slots = kvcalloc(num_slots, sizeof(profile->slots[0]),
GFP_KERNEL);
if (!profile->slots)
return -ENOMEM;
ksm->num_slots = num_slots;
profile->num_slots = num_slots;
init_rwsem(&ksm->lock);
init_waitqueue_head(&ksm->idle_slots_wait_queue);
INIT_LIST_HEAD(&ksm->idle_slots);
init_waitqueue_head(&profile->idle_slots_wait_queue);
INIT_LIST_HEAD(&profile->idle_slots);
for (slot = 0; slot < num_slots; slot++) {
ksm->slots[slot].ksm = ksm;
list_add_tail(&ksm->slots[slot].idle_slot_node,
&ksm->idle_slots);
profile->slots[slot].profile = profile;
list_add_tail(&profile->slots[slot].idle_slot_node,
&profile->idle_slots);
}
spin_lock_init(&ksm->idle_slots_lock);
spin_lock_init(&profile->idle_slots_lock);
slot_hashtable_size = roundup_pow_of_two(num_slots);
/*
@ -117,74 +111,80 @@ int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
if (slot_hashtable_size < 2)
slot_hashtable_size = 2;
ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
sizeof(ksm->slot_hashtable[0]),
GFP_KERNEL);
if (!ksm->slot_hashtable)
goto err_destroy_ksm;
profile->log_slot_ht_size = ilog2(slot_hashtable_size);
profile->slot_hashtable =
kvmalloc_array(slot_hashtable_size,
sizeof(profile->slot_hashtable[0]), GFP_KERNEL);
if (!profile->slot_hashtable)
goto err_destroy;
for (i = 0; i < slot_hashtable_size; i++)
INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
INIT_HLIST_HEAD(&profile->slot_hashtable[i]);
return 0;
err_destroy_ksm:
blk_ksm_destroy(ksm);
err_destroy:
blk_crypto_profile_destroy(profile);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_ksm_init);
EXPORT_SYMBOL_GPL(blk_crypto_profile_init);
static void blk_ksm_destroy_callback(void *ksm)
static void blk_crypto_profile_destroy_callback(void *profile)
{
blk_ksm_destroy(ksm);
blk_crypto_profile_destroy(profile);
}
/**
* devm_blk_ksm_init() - Resource-managed blk_ksm_init()
* @dev: The device which owns the blk_keyslot_manager.
* @ksm: The blk_keyslot_manager to initialize.
* @num_slots: The number of key slots to manage.
* devm_blk_crypto_profile_init() - Resource-managed blk_crypto_profile_init()
* @dev: the device which owns the blk_crypto_profile
* @profile: the blk_crypto_profile to initialize
* @num_slots: the number of keyslots
*
* Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically
* on driver detach.
* Like blk_crypto_profile_init(), but causes blk_crypto_profile_destroy() to be
* called automatically on driver detach.
*
* Return: 0 on success, or else a negative error code.
*/
int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
unsigned int num_slots)
int devm_blk_crypto_profile_init(struct device *dev,
struct blk_crypto_profile *profile,
unsigned int num_slots)
{
int err = blk_ksm_init(ksm, num_slots);
int err = blk_crypto_profile_init(profile, num_slots);
if (err)
return err;
return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm);
return devm_add_action_or_reset(dev,
blk_crypto_profile_destroy_callback,
profile);
}
EXPORT_SYMBOL_GPL(devm_blk_ksm_init);
EXPORT_SYMBOL_GPL(devm_blk_crypto_profile_init);
static inline struct hlist_head *
blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
blk_crypto_hash_bucket_for_key(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key)
{
return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
return &profile->slot_hashtable[
hash_ptr(key, profile->log_slot_ht_size)];
}
static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
static void
blk_crypto_remove_slot_from_lru_list(struct blk_crypto_keyslot *slot)
{
struct blk_keyslot_manager *ksm = slot->ksm;
struct blk_crypto_profile *profile = slot->profile;
unsigned long flags;
spin_lock_irqsave(&ksm->idle_slots_lock, flags);
spin_lock_irqsave(&profile->idle_slots_lock, flags);
list_del(&slot->idle_slot_node);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
spin_unlock_irqrestore(&profile->idle_slots_lock, flags);
}
static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
static struct blk_crypto_keyslot *
blk_crypto_find_keyslot(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key)
{
const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
struct blk_ksm_keyslot *slotp;
const struct hlist_head *head =
blk_crypto_hash_bucket_for_key(profile, key);
struct blk_crypto_keyslot *slotp;
hlist_for_each_entry(slotp, head, hash_node) {
if (slotp->key == key)
@ -193,68 +193,79 @@ static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
return NULL;
}
static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
static struct blk_crypto_keyslot *
blk_crypto_find_and_grab_keyslot(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key)
{
struct blk_ksm_keyslot *slot;
struct blk_crypto_keyslot *slot;
slot = blk_ksm_find_keyslot(ksm, key);
slot = blk_crypto_find_keyslot(profile, key);
if (!slot)
return NULL;
if (atomic_inc_return(&slot->slot_refs) == 1) {
/* Took first reference to this slot; remove it from LRU list */
blk_ksm_remove_slot_from_lru_list(slot);
blk_crypto_remove_slot_from_lru_list(slot);
}
return slot;
}
unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
/**
* blk_crypto_keyslot_index() - Get the index of a keyslot
* @slot: a keyslot that blk_crypto_get_keyslot() returned
*
* Return: the 0-based index of the keyslot within the device's keyslots.
*/
unsigned int blk_crypto_keyslot_index(struct blk_crypto_keyslot *slot)
{
return slot - slot->ksm->slots;
return slot - slot->profile->slots;
}
EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);
EXPORT_SYMBOL_GPL(blk_crypto_keyslot_index);
/**
* blk_ksm_get_slot_for_key() - Program a key into a keyslot.
* @ksm: The keyslot manager to program the key into.
* @key: Pointer to the key object to program, including the raw key, crypto
* mode, and data unit size.
* @slot_ptr: A pointer to return the pointer of the allocated keyslot.
* blk_crypto_get_keyslot() - Get a keyslot for a key, if needed.
* @profile: the crypto profile of the device the key will be used on
* @key: the key that will be used
* @slot_ptr: If a keyslot is allocated, an opaque pointer to the keyslot struct
* will be stored here; otherwise NULL will be stored here.
*
* Get a keyslot that's been programmed with the specified key. If one already
* exists, return it with incremented refcount. Otherwise, wait for a keyslot
* to become idle and program it.
* If the device has keyslots, this gets a keyslot that's been programmed with
* the specified key. If the key is already in a slot, this reuses it;
* otherwise this waits for a slot to become idle and programs the key into it.
*
* Context: Process context. Takes and releases ksm->lock.
* Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
* allocated keyslot), or some other blk_status_t otherwise (and
* keyslot is set to NULL).
* This must be paired with a call to blk_crypto_put_keyslot().
*
* Context: Process context. Takes and releases profile->lock.
* Return: BLK_STS_OK on success, meaning that either a keyslot was allocated or
* one wasn't needed; or a blk_status_t error on failure.
*/
blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key,
struct blk_ksm_keyslot **slot_ptr)
blk_status_t blk_crypto_get_keyslot(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
struct blk_crypto_keyslot **slot_ptr)
{
struct blk_ksm_keyslot *slot;
struct blk_crypto_keyslot *slot;
int slot_idx;
int err;
*slot_ptr = NULL;
if (blk_ksm_is_passthrough(ksm))
/*
* If the device has no concept of "keyslots", then there is no need to
* get one.
*/
if (profile->num_slots == 0)
return BLK_STS_OK;
down_read(&ksm->lock);
slot = blk_ksm_find_and_grab_keyslot(ksm, key);
up_read(&ksm->lock);
down_read(&profile->lock);
slot = blk_crypto_find_and_grab_keyslot(profile, key);
up_read(&profile->lock);
if (slot)
goto success;
for (;;) {
blk_ksm_hw_enter(ksm);
slot = blk_ksm_find_and_grab_keyslot(ksm, key);
blk_crypto_hw_enter(profile);
slot = blk_crypto_find_and_grab_keyslot(profile, key);
if (slot) {
blk_ksm_hw_exit(ksm);
blk_crypto_hw_exit(profile);
goto success;
}
@ -262,22 +273,22 @@ blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
* If we're here, that means there wasn't a slot that was
* already programmed with the key. So try to program it.
*/
if (!list_empty(&ksm->idle_slots))
if (!list_empty(&profile->idle_slots))
break;
blk_ksm_hw_exit(ksm);
wait_event(ksm->idle_slots_wait_queue,
!list_empty(&ksm->idle_slots));
blk_crypto_hw_exit(profile);
wait_event(profile->idle_slots_wait_queue,
!list_empty(&profile->idle_slots));
}
slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
slot = list_first_entry(&profile->idle_slots, struct blk_crypto_keyslot,
idle_slot_node);
slot_idx = blk_ksm_get_slot_idx(slot);
slot_idx = blk_crypto_keyslot_index(slot);
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
err = profile->ll_ops.keyslot_program(profile, key, slot_idx);
if (err) {
wake_up(&ksm->idle_slots_wait_queue);
blk_ksm_hw_exit(ksm);
wake_up(&profile->idle_slots_wait_queue);
blk_crypto_hw_exit(profile);
return errno_to_blk_status(err);
}
@ -285,97 +296,98 @@ blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
if (slot->key)
hlist_del(&slot->hash_node);
slot->key = key;
hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));
hlist_add_head(&slot->hash_node,
blk_crypto_hash_bucket_for_key(profile, key));
atomic_set(&slot->slot_refs, 1);
blk_ksm_remove_slot_from_lru_list(slot);
blk_crypto_remove_slot_from_lru_list(slot);
blk_ksm_hw_exit(ksm);
blk_crypto_hw_exit(profile);
success:
*slot_ptr = slot;
return BLK_STS_OK;
}
/**
* blk_ksm_put_slot() - Release a reference to a slot
* @slot: The keyslot to release the reference of.
* blk_crypto_put_keyslot() - Release a reference to a keyslot
* @slot: The keyslot to release the reference of (may be NULL).
*
* Context: Any context.
*/
void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
void blk_crypto_put_keyslot(struct blk_crypto_keyslot *slot)
{
struct blk_keyslot_manager *ksm;
struct blk_crypto_profile *profile;
unsigned long flags;
if (!slot)
return;
ksm = slot->ksm;
profile = slot->profile;
if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
&ksm->idle_slots_lock, flags)) {
list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
wake_up(&ksm->idle_slots_wait_queue);
&profile->idle_slots_lock, flags)) {
list_add_tail(&slot->idle_slot_node, &profile->idle_slots);
spin_unlock_irqrestore(&profile->idle_slots_lock, flags);
wake_up(&profile->idle_slots_wait_queue);
}
}
/**
* blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
* supported by a ksm.
* @ksm: The keyslot manager to check
* @cfg: The crypto configuration to check for.
* __blk_crypto_cfg_supported() - Check whether the given crypto profile
* supports the given crypto configuration.
* @profile: the crypto profile to check
* @cfg: the crypto configuration to check for
*
* Checks for crypto_mode/data unit size/dun bytes support.
*
* Return: Whether or not this ksm supports the specified crypto config.
* Return: %true if @profile supports the given @cfg.
*/
bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
const struct blk_crypto_config *cfg)
bool __blk_crypto_cfg_supported(struct blk_crypto_profile *profile,
const struct blk_crypto_config *cfg)
{
if (!ksm)
if (!profile)
return false;
if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
cfg->data_unit_size))
if (!(profile->modes_supported[cfg->crypto_mode] & cfg->data_unit_size))
return false;
if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
if (profile->max_dun_bytes_supported < cfg->dun_bytes)
return false;
return true;
}
/**
* blk_ksm_evict_key() - Evict a key from the lower layer device.
* @ksm: The keyslot manager to evict from
* @key: The key to evict
* __blk_crypto_evict_key() - Evict a key from a device.
* @profile: the crypto profile of the device
* @key: the key to evict. It must not still be used in any I/O.
*
* Find the keyslot that the specified key was programmed into, and evict that
* slot from the lower layer device. The slot must not be in use by any
* in-flight IO when this function is called.
* If the device has keyslots, this finds the keyslot (if any) that contains the
* specified key and calls the driver's keyslot_evict function to evict it.
*
* Context: Process context. Takes and releases ksm->lock.
* Otherwise, this just calls the driver's keyslot_evict function if it is
* implemented, passing just the key (without any particular keyslot). This
* allows layered devices to evict the key from their underlying devices.
*
* Context: Process context. Takes and releases profile->lock.
* Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
* if the keyslot is still in use, or another -errno value on other
* error.
*/
int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
int __blk_crypto_evict_key(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key)
{
struct blk_ksm_keyslot *slot;
struct blk_crypto_keyslot *slot;
int err = 0;
if (blk_ksm_is_passthrough(ksm)) {
if (ksm->ksm_ll_ops.keyslot_evict) {
blk_ksm_hw_enter(ksm);
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
blk_ksm_hw_exit(ksm);
if (profile->num_slots == 0) {
if (profile->ll_ops.keyslot_evict) {
blk_crypto_hw_enter(profile);
err = profile->ll_ops.keyslot_evict(profile, key, -1);
blk_crypto_hw_exit(profile);
return err;
}
return 0;
}
blk_ksm_hw_enter(ksm);
slot = blk_ksm_find_keyslot(ksm, key);
blk_crypto_hw_enter(profile);
slot = blk_crypto_find_keyslot(profile, key);
if (!slot)
goto out_unlock;
@ -383,8 +395,8 @@ int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
err = -EBUSY;
goto out_unlock;
}
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
blk_ksm_get_slot_idx(slot));
err = profile->ll_ops.keyslot_evict(profile, key,
blk_crypto_keyslot_index(slot));
if (err)
goto out_unlock;
@ -392,81 +404,84 @@ int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
slot->key = NULL;
err = 0;
out_unlock:
blk_ksm_hw_exit(ksm);
blk_crypto_hw_exit(profile);
return err;
}
/**
* blk_ksm_reprogram_all_keys() - Re-program all keyslots.
* @ksm: The keyslot manager
* blk_crypto_reprogram_all_keys() - Re-program all keyslots.
* @profile: The crypto profile
*
* Re-program all keyslots that are supposed to have a key programmed. This is
* intended only for use by drivers for hardware that loses its keys on reset.
*
* Context: Process context. Takes and releases ksm->lock.
* Context: Process context. Takes and releases profile->lock.
*/
void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
void blk_crypto_reprogram_all_keys(struct blk_crypto_profile *profile)
{
unsigned int slot;
if (blk_ksm_is_passthrough(ksm))
if (profile->num_slots == 0)
return;
/* This is for device initialization, so don't resume the device */
down_write(&ksm->lock);
for (slot = 0; slot < ksm->num_slots; slot++) {
const struct blk_crypto_key *key = ksm->slots[slot].key;
down_write(&profile->lock);
for (slot = 0; slot < profile->num_slots; slot++) {
const struct blk_crypto_key *key = profile->slots[slot].key;
int err;
if (!key)
continue;
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
err = profile->ll_ops.keyslot_program(profile, key, slot);
WARN_ON(err);
}
up_write(&ksm->lock);
up_write(&profile->lock);
}
EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);
EXPORT_SYMBOL_GPL(blk_crypto_reprogram_all_keys);
void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
void blk_crypto_profile_destroy(struct blk_crypto_profile *profile)
{
if (!ksm)
if (!profile)
return;
kvfree(ksm->slot_hashtable);
kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
memzero_explicit(ksm, sizeof(*ksm));
kvfree(profile->slot_hashtable);
kvfree_sensitive(profile->slots,
sizeof(profile->slots[0]) * profile->num_slots);
memzero_explicit(profile, sizeof(*profile));
}
EXPORT_SYMBOL_GPL(blk_ksm_destroy);
EXPORT_SYMBOL_GPL(blk_crypto_profile_destroy);
bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q)
bool blk_crypto_register(struct blk_crypto_profile *profile,
struct request_queue *q)
{
if (blk_integrity_queue_supports_integrity(q)) {
pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
return false;
}
q->ksm = ksm;
q->crypto_profile = profile;
return true;
}
EXPORT_SYMBOL_GPL(blk_ksm_register);
EXPORT_SYMBOL_GPL(blk_crypto_register);
void blk_ksm_unregister(struct request_queue *q)
void blk_crypto_unregister(struct request_queue *q)
{
q->ksm = NULL;
q->crypto_profile = NULL;
}
/**
* blk_ksm_intersect_modes() - restrict supported modes by child device
* @parent: The keyslot manager for parent device
* @child: The keyslot manager for child device, or NULL
* blk_crypto_intersect_capabilities() - restrict supported crypto capabilities
* by child device
* @parent: the crypto profile for the parent device
* @child: the crypto profile for the child device, or NULL
*
* Clear any crypto mode support bits in @parent that aren't set in @child.
* If @child is NULL, then all parent bits are cleared.
* This clears all crypto capabilities in @parent that aren't set in @child. If
* @child is NULL, then this clears all parent capabilities.
*
* Only use this when setting up the keyslot manager for a layered device,
* before it's been exposed yet.
* Only use this when setting up the crypto profile for a layered device, before
* it's been exposed yet.
*/
void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
const struct blk_keyslot_manager *child)
void blk_crypto_intersect_capabilities(struct blk_crypto_profile *parent,
const struct blk_crypto_profile *child)
{
if (child) {
unsigned int i;
@ -474,73 +489,63 @@ void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
parent->max_dun_bytes_supported =
min(parent->max_dun_bytes_supported,
child->max_dun_bytes_supported);
for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
i++) {
parent->crypto_modes_supported[i] &=
child->crypto_modes_supported[i];
}
for (i = 0; i < ARRAY_SIZE(child->modes_supported); i++)
parent->modes_supported[i] &= child->modes_supported[i];
} else {
parent->max_dun_bytes_supported = 0;
memset(parent->crypto_modes_supported, 0,
sizeof(parent->crypto_modes_supported));
memset(parent->modes_supported, 0,
sizeof(parent->modes_supported));
}
}
EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);
EXPORT_SYMBOL_GPL(blk_crypto_intersect_capabilities);
/**
* blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
* and DUN bytes that another KSM supports. Here,
* "superset" refers to the mathematical meaning of the
* word - i.e. if two KSMs have the *same* capabilities,
* they *are* considered supersets of each other.
* @ksm_superset: The KSM that we want to verify is a superset
* @ksm_subset: The KSM that we want to verify is a subset
* blk_crypto_has_capabilities() - Check whether @target supports at least all
* the crypto capabilities that @reference does.
* @target: the target profile
* @reference: the reference profile
*
* Return: True if @ksm_superset supports a superset of the crypto modes and DUN
* bytes that @ksm_subset supports.
* Return: %true if @target supports all the crypto capabilities of @reference.
*/
bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
struct blk_keyslot_manager *ksm_subset)
bool blk_crypto_has_capabilities(const struct blk_crypto_profile *target,
const struct blk_crypto_profile *reference)
{
int i;
if (!ksm_subset)
if (!reference)
return true;
if (!ksm_superset)
if (!target)
return false;
for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
if (ksm_subset->crypto_modes_supported[i] &
(~ksm_superset->crypto_modes_supported[i])) {
for (i = 0; i < ARRAY_SIZE(target->modes_supported); i++) {
if (reference->modes_supported[i] & ~target->modes_supported[i])
return false;
}
}
if (ksm_subset->max_dun_bytes_supported >
ksm_superset->max_dun_bytes_supported) {
if (reference->max_dun_bytes_supported >
target->max_dun_bytes_supported)
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
EXPORT_SYMBOL_GPL(blk_crypto_has_capabilities);
/**
* blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
* another KSM
* @target_ksm: The KSM whose restrictions to update.
* @reference_ksm: The KSM to whose restrictions this function will update
* @target_ksm's restrictions to.
* blk_crypto_update_capabilities() - Update the capabilities of a crypto
* profile to match those of another crypto
* profile.
* @dst: The crypto profile whose capabilities to update.
* @src: The crypto profile whose capabilities this function will update @dst's
* capabilities to.
*
* Blk-crypto requires that crypto capabilities that were
* advertised when a bio was created continue to be supported by the
* device until that bio is ended. This is turn means that a device cannot
* shrink its advertised crypto capabilities without any explicit
* synchronization with upper layers. So if there's no such explicit
* synchronization, @reference_ksm must support all the crypto capabilities that
* @target_ksm does
* (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
* synchronization, @src must support all the crypto capabilities that
* @dst does (i.e. we need blk_crypto_has_capabilities(@src, @dst)).
*
* Note also that as long as the crypto capabilities are being expanded, the
* order of updates becoming visible is not important because it's alright
@ -549,31 +554,12 @@ EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
* might result in blk-crypto-fallback being used if available, or the bio being
* failed).
*/
void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
struct blk_keyslot_manager *reference_ksm)
void blk_crypto_update_capabilities(struct blk_crypto_profile *dst,
const struct blk_crypto_profile *src)
{
memcpy(target_ksm->crypto_modes_supported,
reference_ksm->crypto_modes_supported,
sizeof(target_ksm->crypto_modes_supported));
memcpy(dst->modes_supported, src->modes_supported,
sizeof(dst->modes_supported));
target_ksm->max_dun_bytes_supported =
reference_ksm->max_dun_bytes_supported;
dst->max_dun_bytes_supported = src->max_dun_bytes_supported;
}
EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);
/**
* blk_ksm_init_passthrough() - Init a passthrough keyslot manager
* @ksm: The keyslot manager to init
*
* Initialize a passthrough keyslot manager.
* Called by e.g. storage drivers to set up a keyslot manager in their
* request_queue, when the storage driver wants to manage its keys by itself.
* This is useful for inline encryption hardware that doesn't have the concept
* of keyslots, and for layered devices.
*/
void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
{
memset(ksm, 0, sizeof(*ksm));
init_rwsem(&ksm->lock);
}
EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);
EXPORT_SYMBOL_GPL(blk_crypto_update_capabilities);

View File

@ -218,8 +218,9 @@ static bool bio_crypt_check_alignment(struct bio *bio)
blk_status_t __blk_crypto_init_request(struct request *rq)
{
return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
&rq->crypt_keyslot);
return blk_crypto_get_keyslot(rq->q->crypto_profile,
rq->crypt_ctx->bc_key,
&rq->crypt_keyslot);
}
/**
@ -233,7 +234,7 @@ blk_status_t __blk_crypto_init_request(struct request *rq)
*/
void __blk_crypto_free_request(struct request *rq)
{
blk_ksm_put_slot(rq->crypt_keyslot);
blk_crypto_put_keyslot(rq->crypt_keyslot);
mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
blk_crypto_rq_set_defaults(rq);
}
@ -264,6 +265,7 @@ bool __blk_crypto_bio_prep(struct bio **bio_ptr)
{
struct bio *bio = *bio_ptr;
const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
struct blk_crypto_profile *profile;
/* Error if bio has no data. */
if (WARN_ON_ONCE(!bio_has_data(bio))) {
@ -280,8 +282,8 @@ bool __blk_crypto_bio_prep(struct bio **bio_ptr)
* Success if device supports the encryption context, or if we succeeded
* in falling back to the crypto API.
*/
if (blk_ksm_crypto_cfg_supported(bdev_get_queue(bio->bi_bdev)->ksm,
&bc_key->crypto_cfg))
profile = bdev_get_queue(bio->bi_bdev)->crypto_profile;
if (__blk_crypto_cfg_supported(profile, &bc_key->crypto_cfg))
return true;
if (blk_crypto_fallback_bio_prep(bio_ptr))
@ -357,7 +359,7 @@ bool blk_crypto_config_supported(struct request_queue *q,
const struct blk_crypto_config *cfg)
{
return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
blk_ksm_crypto_cfg_supported(q->ksm, cfg);
__blk_crypto_cfg_supported(q->crypto_profile, cfg);
}
/**
@ -378,7 +380,7 @@ bool blk_crypto_config_supported(struct request_queue *q,
int blk_crypto_start_using_key(const struct blk_crypto_key *key,
struct request_queue *q)
{
if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
if (__blk_crypto_cfg_supported(q->crypto_profile, &key->crypto_cfg))
return 0;
return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
}
@ -394,18 +396,17 @@ int blk_crypto_start_using_key(const struct blk_crypto_key *key,
* evicted from any hardware that it might have been programmed into. The key
* must not be in use by any in-flight IO when this function is called.
*
* Return: 0 on success or if key is not present in the q's ksm, -err on error.
* Return: 0 on success or if the key wasn't in any keyslot; -errno on error.
*/
int blk_crypto_evict_key(struct request_queue *q,
const struct blk_crypto_key *key)
{
if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
return blk_ksm_evict_key(q->ksm, key);
if (__blk_crypto_cfg_supported(q->crypto_profile, &key->crypto_cfg))
return __blk_crypto_evict_key(q->crypto_profile, key);
/*
* If the request queue's associated inline encryption hardware didn't
* have support for the key, then the key might have been programmed
* into the fallback keyslot manager, so try to evict from there.
* If the request_queue didn't support the key, then blk-crypto-fallback
* may have been used, so try to evict the key from blk-crypto-fallback.
*/
return blk_crypto_fallback_evict_key(key);
}

View File

@ -409,9 +409,9 @@ void blk_integrity_register(struct gendisk *disk, struct blk_integrity *template
blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue);
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
if (disk->queue->ksm) {
if (disk->queue->crypto_profile) {
pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
blk_ksm_unregister(disk->queue);
blk_crypto_unregister(disk->queue);
}
#endif
}

View File

@ -200,7 +200,7 @@ struct dm_table {
struct dm_md_mempools *mempools;
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
struct blk_keyslot_manager *ksm;
struct blk_crypto_profile *crypto_profile;
#endif
};

View File

@ -170,7 +170,7 @@ static void free_devices(struct list_head *devices, struct mapped_device *md)
}
}
static void dm_table_destroy_keyslot_manager(struct dm_table *t);
static void dm_table_destroy_crypto_profile(struct dm_table *t);
void dm_table_destroy(struct dm_table *t)
{
@ -200,7 +200,7 @@ void dm_table_destroy(struct dm_table *t)
dm_free_md_mempools(t->mempools);
dm_table_destroy_keyslot_manager(t);
dm_table_destroy_crypto_profile(t);
kfree(t);
}
@ -1187,8 +1187,8 @@ static int dm_table_register_integrity(struct dm_table *t)
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
struct dm_keyslot_manager {
struct blk_keyslot_manager ksm;
struct dm_crypto_profile {
struct blk_crypto_profile profile;
struct mapped_device *md;
};
@ -1214,13 +1214,11 @@ static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
* When an inline encryption key is evicted from a device-mapper device, evict
* it from all the underlying devices.
*/
static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
static int dm_keyslot_evict(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key, unsigned int slot)
{
struct dm_keyslot_manager *dksm = container_of(ksm,
struct dm_keyslot_manager,
ksm);
struct mapped_device *md = dksm->md;
struct mapped_device *md =
container_of(profile, struct dm_crypto_profile, profile)->md;
struct dm_keyslot_evict_args args = { key };
struct dm_table *t;
int srcu_idx;
@ -1240,150 +1238,148 @@ static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
return args.err;
}
static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
.keyslot_evict = dm_keyslot_evict,
};
static int device_intersect_crypto_modes(struct dm_target *ti,
struct dm_dev *dev, sector_t start,
sector_t len, void *data)
static int
device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
sector_t start, sector_t len, void *data)
{
struct blk_keyslot_manager *parent = data;
struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
struct blk_crypto_profile *parent = data;
struct blk_crypto_profile *child =
bdev_get_queue(dev->bdev)->crypto_profile;
blk_ksm_intersect_modes(parent, child);
blk_crypto_intersect_capabilities(parent, child);
return 0;
}
void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
{
struct dm_keyslot_manager *dksm = container_of(ksm,
struct dm_keyslot_manager,
ksm);
struct dm_crypto_profile *dmcp = container_of(profile,
struct dm_crypto_profile,
profile);
if (!ksm)
if (!profile)
return;
blk_ksm_destroy(ksm);
kfree(dksm);
blk_crypto_profile_destroy(profile);
kfree(dmcp);
}
static void dm_table_destroy_keyslot_manager(struct dm_table *t)
static void dm_table_destroy_crypto_profile(struct dm_table *t)
{
dm_destroy_keyslot_manager(t->ksm);
t->ksm = NULL;
dm_destroy_crypto_profile(t->crypto_profile);
t->crypto_profile = NULL;
}
/*
* Constructs and initializes t->ksm with a keyslot manager that
* represents the common set of crypto capabilities of the devices
* described by the dm_table. However, if the constructed keyslot
* manager does not support a superset of the crypto capabilities
* supported by the current keyslot manager of the mapped_device,
* it returns an error instead, since we don't support restricting
* crypto capabilities on table changes. Finally, if the constructed
* keyslot manager doesn't actually support any crypto modes at all,
* it just returns NULL.
* Constructs and initializes t->crypto_profile with a crypto profile that
* represents the common set of crypto capabilities of the devices described by
* the dm_table. However, if the constructed crypto profile doesn't support all
* crypto capabilities that are supported by the current mapped_device, it
* returns an error instead, since we don't support removing crypto capabilities
* on table changes. Finally, if the constructed crypto profile is "empty" (has
* no crypto capabilities at all), it just sets t->crypto_profile to NULL.
*/
static int dm_table_construct_keyslot_manager(struct dm_table *t)
static int dm_table_construct_crypto_profile(struct dm_table *t)
{
struct dm_keyslot_manager *dksm;
struct blk_keyslot_manager *ksm;
struct dm_crypto_profile *dmcp;
struct blk_crypto_profile *profile;
struct dm_target *ti;
unsigned int i;
bool ksm_is_empty = true;
bool empty_profile = true;
dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
if (!dksm)
dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
if (!dmcp)
return -ENOMEM;
dksm->md = t->md;
dmcp->md = t->md;
ksm = &dksm->ksm;
blk_ksm_init_passthrough(ksm);
ksm->ksm_ll_ops = dm_ksm_ll_ops;
ksm->max_dun_bytes_supported = UINT_MAX;
memset(ksm->crypto_modes_supported, 0xFF,
sizeof(ksm->crypto_modes_supported));
profile = &dmcp->profile;
blk_crypto_profile_init(profile, 0);
profile->ll_ops.keyslot_evict = dm_keyslot_evict;
profile->max_dun_bytes_supported = UINT_MAX;
memset(profile->modes_supported, 0xFF,
sizeof(profile->modes_supported));
for (i = 0; i < dm_table_get_num_targets(t); i++) {
ti = dm_table_get_target(t, i);
if (!dm_target_passes_crypto(ti->type)) {
blk_ksm_intersect_modes(ksm, NULL);
blk_crypto_intersect_capabilities(profile, NULL);
break;
}
if (!ti->type->iterate_devices)
continue;
ti->type->iterate_devices(ti, device_intersect_crypto_modes,
ksm);
ti->type->iterate_devices(ti,
device_intersect_crypto_capabilities,
profile);
}
if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
if (t->md->queue &&
!blk_crypto_has_capabilities(profile,
t->md->queue->crypto_profile)) {
DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
dm_destroy_keyslot_manager(ksm);
dm_destroy_crypto_profile(profile);
return -EINVAL;
}
/*
* If the new KSM doesn't actually support any crypto modes, we may as
* well represent it with a NULL ksm.
* If the new profile doesn't actually support any crypto capabilities,
* we may as well represent it with a NULL profile.
*/
ksm_is_empty = true;
for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
if (ksm->crypto_modes_supported[i]) {
ksm_is_empty = false;
for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
if (profile->modes_supported[i]) {
empty_profile = false;
break;
}
}
if (ksm_is_empty) {
dm_destroy_keyslot_manager(ksm);
ksm = NULL;
if (empty_profile) {
dm_destroy_crypto_profile(profile);
profile = NULL;
}
/*
* t->ksm is only set temporarily while the table is being set
* up, and it gets set to NULL after the capabilities have
* been transferred to the request_queue.
* t->crypto_profile is only set temporarily while the table is being
* set up, and it gets set to NULL after the profile has been
* transferred to the request_queue.
*/
t->ksm = ksm;
t->crypto_profile = profile;
return 0;
}
static void dm_update_keyslot_manager(struct request_queue *q,
struct dm_table *t)
static void dm_update_crypto_profile(struct request_queue *q,
struct dm_table *t)
{
if (!t->ksm)
if (!t->crypto_profile)
return;
/* Make the ksm less restrictive */
if (!q->ksm) {
blk_ksm_register(t->ksm, q);
/* Make the crypto profile less restrictive. */
if (!q->crypto_profile) {
blk_crypto_register(t->crypto_profile, q);
} else {
blk_ksm_update_capabilities(q->ksm, t->ksm);
dm_destroy_keyslot_manager(t->ksm);
blk_crypto_update_capabilities(q->crypto_profile,
t->crypto_profile);
dm_destroy_crypto_profile(t->crypto_profile);
}
t->ksm = NULL;
t->crypto_profile = NULL;
}
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
static int dm_table_construct_keyslot_manager(struct dm_table *t)
static int dm_table_construct_crypto_profile(struct dm_table *t)
{
return 0;
}
void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
{
}
static void dm_table_destroy_keyslot_manager(struct dm_table *t)
static void dm_table_destroy_crypto_profile(struct dm_table *t)
{
}
static void dm_update_keyslot_manager(struct request_queue *q,
struct dm_table *t)
static void dm_update_crypto_profile(struct request_queue *q,
struct dm_table *t)
{
}
@ -1415,9 +1411,9 @@ int dm_table_complete(struct dm_table *t)
return r;
}
r = dm_table_construct_keyslot_manager(t);
r = dm_table_construct_crypto_profile(t);
if (r) {
DMERR("could not construct keyslot manager.");
DMERR("could not construct crypto profile.");
return r;
}
@ -2071,7 +2067,7 @@ int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
return r;
}
dm_update_keyslot_manager(q, t);
dm_update_crypto_profile(q, t);
disk_update_readahead(t->md->disk);
return 0;

View File

@ -1663,14 +1663,14 @@ static const struct dax_operations dm_dax_ops;
static void dm_wq_work(struct work_struct *work);
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
static void dm_queue_destroy_crypto_profile(struct request_queue *q)
{
dm_destroy_keyslot_manager(q->ksm);
dm_destroy_crypto_profile(q->crypto_profile);
}
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
{
}
#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
@ -1696,7 +1696,7 @@ static void cleanup_mapped_device(struct mapped_device *md)
dm_sysfs_exit(md);
del_gendisk(md->disk);
}
dm_queue_destroy_keyslot_manager(md->queue);
dm_queue_destroy_crypto_profile(md->queue);
blk_cleanup_disk(md->disk);
}

View File

@ -16,13 +16,13 @@ void mmc_crypto_set_initial_state(struct mmc_host *host)
{
/* Reset might clear all keys, so reprogram all the keys. */
if (host->caps2 & MMC_CAP2_CRYPTO)
blk_ksm_reprogram_all_keys(&host->ksm);
blk_crypto_reprogram_all_keys(&host->crypto_profile);
}
void mmc_crypto_setup_queue(struct request_queue *q, struct mmc_host *host)
{
if (host->caps2 & MMC_CAP2_CRYPTO)
blk_ksm_register(&host->ksm, q);
blk_crypto_register(&host->crypto_profile, q);
}
EXPORT_SYMBOL_GPL(mmc_crypto_setup_queue);
@ -30,12 +30,15 @@ void mmc_crypto_prepare_req(struct mmc_queue_req *mqrq)
{
struct request *req = mmc_queue_req_to_req(mqrq);
struct mmc_request *mrq = &mqrq->brq.mrq;
struct blk_crypto_keyslot *keyslot;
if (!req->crypt_ctx)
return;
mrq->crypto_ctx = req->crypt_ctx;
if (req->crypt_keyslot)
mrq->crypto_key_slot = blk_ksm_get_slot_idx(req->crypt_keyslot);
keyslot = req->crypt_keyslot;
if (keyslot)
mrq->crypto_key_slot = blk_crypto_keyslot_index(keyslot);
}
EXPORT_SYMBOL_GPL(mmc_crypto_prepare_req);

View File

@ -23,9 +23,10 @@ static const struct cqhci_crypto_alg_entry {
};
static inline struct cqhci_host *
cqhci_host_from_ksm(struct blk_keyslot_manager *ksm)
cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile)
{
struct mmc_host *mmc = container_of(ksm, struct mmc_host, ksm);
struct mmc_host *mmc =
container_of(profile, struct mmc_host, crypto_profile);
return mmc->cqe_private;
}
@ -57,12 +58,12 @@ static int cqhci_crypto_program_key(struct cqhci_host *cq_host,
return 0;
}
static int cqhci_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct cqhci_host *cq_host = cqhci_host_from_ksm(ksm);
struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
const union cqhci_crypto_cap_entry *ccap_array =
cq_host->crypto_cap_array;
const struct cqhci_crypto_alg_entry *alg =
@ -115,11 +116,11 @@ static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot)
return cqhci_crypto_program_key(cq_host, &cfg, slot);
}
static int cqhci_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct cqhci_host *cq_host = cqhci_host_from_ksm(ksm);
struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
return cqhci_crypto_clear_keyslot(cq_host, slot);
}
@ -132,7 +133,7 @@ static int cqhci_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
* "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the
* CQHCI_CFG register. But the hardware allows that.
*/
static const struct blk_ksm_ll_ops cqhci_ksm_ops = {
static const struct blk_crypto_ll_ops cqhci_crypto_ops = {
.keyslot_program = cqhci_crypto_keyslot_program,
.keyslot_evict = cqhci_crypto_keyslot_evict,
};
@ -157,8 +158,8 @@ cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap)
*
* If the driver previously set MMC_CAP2_CRYPTO and the CQE declares
* CQHCI_CAP_CS, initialize the crypto support. This involves reading the
* crypto capability registers, initializing the keyslot manager, clearing all
* keyslots, and enabling 128-bit task descriptors.
* crypto capability registers, initializing the blk_crypto_profile, clearing
* all keyslots, and enabling 128-bit task descriptors.
*
* Return: 0 if crypto was initialized or isn't supported; whether
* MMC_CAP2_CRYPTO remains set indicates which one of those cases it is.
@ -168,7 +169,7 @@ int cqhci_crypto_init(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
struct device *dev = mmc_dev(mmc);
struct blk_keyslot_manager *ksm = &mmc->ksm;
struct blk_crypto_profile *profile = &mmc->crypto_profile;
unsigned int num_keyslots;
unsigned int cap_idx;
enum blk_crypto_mode_num blk_mode_num;
@ -199,15 +200,15 @@ int cqhci_crypto_init(struct cqhci_host *cq_host)
*/
num_keyslots = cq_host->crypto_capabilities.config_count + 1;
err = devm_blk_ksm_init(dev, ksm, num_keyslots);
err = devm_blk_crypto_profile_init(dev, profile, num_keyslots);
if (err)
goto out;
ksm->ksm_ll_ops = cqhci_ksm_ops;
ksm->dev = dev;
profile->ll_ops = cqhci_crypto_ops;
profile->dev = dev;
/* Unfortunately, CQHCI crypto only supports 32 DUN bits. */
ksm->max_dun_bytes_supported = 4;
profile->max_dun_bytes_supported = 4;
/*
* Cache all the crypto capabilities and advertise the supported crypto
@ -223,7 +224,7 @@ int cqhci_crypto_init(struct cqhci_host *cq_host)
cq_host->crypto_cap_array[cap_idx]);
if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
continue;
ksm->crypto_modes_supported[blk_mode_num] |=
profile->modes_supported[blk_mode_num] |=
cq_host->crypto_cap_array[cap_idx].sdus_mask * 512;
}

View File

@ -48,11 +48,12 @@ out:
return err;
}
static int ufshcd_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
static int ufshcd_crypto_keyslot_program(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm);
struct ufs_hba *hba =
container_of(profile, struct ufs_hba, crypto_profile);
const union ufs_crypto_cap_entry *ccap_array = hba->crypto_cap_array;
const struct ufs_crypto_alg_entry *alg =
&ufs_crypto_algs[key->crypto_cfg.crypto_mode];
@ -105,11 +106,12 @@ static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
return ufshcd_program_key(hba, &cfg, slot);
}
static int ufshcd_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
static int ufshcd_crypto_keyslot_evict(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm);
struct ufs_hba *hba =
container_of(profile, struct ufs_hba, crypto_profile);
return ufshcd_clear_keyslot(hba, slot);
}
@ -120,11 +122,11 @@ bool ufshcd_crypto_enable(struct ufs_hba *hba)
return false;
/* Reset might clear all keys, so reprogram all the keys. */
blk_ksm_reprogram_all_keys(&hba->ksm);
blk_crypto_reprogram_all_keys(&hba->crypto_profile);
return true;
}
static const struct blk_ksm_ll_ops ufshcd_ksm_ops = {
static const struct blk_crypto_ll_ops ufshcd_crypto_ops = {
.keyslot_program = ufshcd_crypto_keyslot_program,
.keyslot_evict = ufshcd_crypto_keyslot_evict,
};
@ -179,15 +181,16 @@ int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba)
}
/* The actual number of configurations supported is (CFGC+1) */
err = devm_blk_ksm_init(hba->dev, &hba->ksm,
hba->crypto_capabilities.config_count + 1);
err = devm_blk_crypto_profile_init(
hba->dev, &hba->crypto_profile,
hba->crypto_capabilities.config_count + 1);
if (err)
goto out;
hba->ksm.ksm_ll_ops = ufshcd_ksm_ops;
hba->crypto_profile.ll_ops = ufshcd_crypto_ops;
/* UFS only supports 8 bytes for any DUN */
hba->ksm.max_dun_bytes_supported = 8;
hba->ksm.dev = hba->dev;
hba->crypto_profile.max_dun_bytes_supported = 8;
hba->crypto_profile.dev = hba->dev;
/*
* Cache all the UFS crypto capabilities and advertise the supported
@ -202,7 +205,7 @@ int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba)
blk_mode_num = ufshcd_find_blk_crypto_mode(
hba->crypto_cap_array[cap_idx]);
if (blk_mode_num != BLK_ENCRYPTION_MODE_INVALID)
hba->ksm.crypto_modes_supported[blk_mode_num] |=
hba->crypto_profile.modes_supported[blk_mode_num] |=
hba->crypto_cap_array[cap_idx].sdus_mask * 512;
}
@ -230,9 +233,8 @@ void ufshcd_init_crypto(struct ufs_hba *hba)
ufshcd_clear_keyslot(hba, slot);
}
void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba,
struct request_queue *q)
void ufshcd_crypto_register(struct ufs_hba *hba, struct request_queue *q)
{
if (hba->caps & UFSHCD_CAP_CRYPTO)
blk_ksm_register(&hba->ksm, q);
blk_crypto_register(&hba->crypto_profile, q);
}

View File

@ -18,7 +18,7 @@ static inline void ufshcd_prepare_lrbp_crypto(struct request *rq,
return;
}
lrbp->crypto_key_slot = blk_ksm_get_slot_idx(rq->crypt_keyslot);
lrbp->crypto_key_slot = blk_crypto_keyslot_index(rq->crypt_keyslot);
lrbp->data_unit_num = rq->crypt_ctx->bc_dun[0];
}
@ -40,8 +40,7 @@ int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba);
void ufshcd_init_crypto(struct ufs_hba *hba);
void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba,
struct request_queue *q);
void ufshcd_crypto_register(struct ufs_hba *hba, struct request_queue *q);
#else /* CONFIG_SCSI_UFS_CRYPTO */
@ -64,8 +63,8 @@ static inline int ufshcd_hba_init_crypto_capabilities(struct ufs_hba *hba)
static inline void ufshcd_init_crypto(struct ufs_hba *hba) { }
static inline void ufshcd_crypto_setup_rq_keyslot_manager(struct ufs_hba *hba,
struct request_queue *q) { }
static inline void ufshcd_crypto_register(struct ufs_hba *hba,
struct request_queue *q) { }
#endif /* CONFIG_SCSI_UFS_CRYPTO */

View File

@ -4986,7 +4986,7 @@ static int ufshcd_slave_configure(struct scsi_device *sdev)
else if (ufshcd_is_rpm_autosuspend_allowed(hba))
sdev->rpm_autosuspend = 1;
ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
ufshcd_crypto_register(hba, q);
return 0;
}

View File

@ -766,7 +766,7 @@ struct ufs_hba_monitor {
* @crypto_capabilities: Content of crypto capabilities register (0x100)
* @crypto_cap_array: Array of crypto capabilities
* @crypto_cfg_register: Start of the crypto cfg array
* @ksm: the keyslot manager tied to this hba
* @crypto_profile: the crypto profile of this hba (if applicable)
*/
struct ufs_hba {
void __iomem *mmio_base;
@ -911,7 +911,7 @@ struct ufs_hba {
union ufs_crypto_capabilities crypto_capabilities;
union ufs_crypto_cap_entry *crypto_cap_array;
u32 crypto_cfg_register;
struct blk_keyslot_manager ksm;
struct blk_crypto_profile crypto_profile;
#endif
#ifdef CONFIG_DEBUG_FS
struct dentry *debugfs_root;

View File

@ -3,67 +3,113 @@
* Copyright 2019 Google LLC
*/
#ifndef __LINUX_KEYSLOT_MANAGER_H
#define __LINUX_KEYSLOT_MANAGER_H
#ifndef __LINUX_BLK_CRYPTO_PROFILE_H
#define __LINUX_BLK_CRYPTO_PROFILE_H
#include <linux/bio.h>
#include <linux/blk-crypto.h>
struct blk_keyslot_manager;
struct blk_crypto_profile;
/**
* struct blk_ksm_ll_ops - functions to manage keyslots in hardware
* @keyslot_program: Program the specified key into the specified slot in the
* inline encryption hardware.
* @keyslot_evict: Evict key from the specified keyslot in the hardware.
* The key is provided so that e.g. dm layers can evict
* keys from the devices that they map over.
* Returns 0 on success, -errno otherwise.
* struct blk_crypto_ll_ops - functions to control inline encryption hardware
*
* This structure should be provided by storage device drivers when they set up
* a keyslot manager - this structure holds the function ptrs that the keyslot
* manager will use to manipulate keyslots in the hardware.
* Low-level operations for controlling inline encryption hardware. This
* interface must be implemented by storage drivers that support inline
* encryption. All functions may sleep, are serialized by profile->lock, and
* are never called while profile->dev (if set) is runtime-suspended.
*/
struct blk_ksm_ll_ops {
int (*keyslot_program)(struct blk_keyslot_manager *ksm,
struct blk_crypto_ll_ops {
/**
* @keyslot_program: Program a key into the inline encryption hardware.
*
* Program @key into the specified @slot in the inline encryption
* hardware, overwriting any key that the keyslot may already contain.
* The keyslot is guaranteed to not be in-use by any I/O.
*
* This is required if the device has keyslots. Otherwise (i.e. if the
* device is a layered device, or if the device is real hardware that
* simply doesn't have the concept of keyslots) it is never called.
*
* Must return 0 on success, or -errno on failure.
*/
int (*keyslot_program)(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot);
int (*keyslot_evict)(struct blk_keyslot_manager *ksm,
/**
* @keyslot_evict: Evict a key from the inline encryption hardware.
*
* If the device has keyslots, this function must evict the key from the
* specified @slot. The slot will contain @key, but there should be no
* need for the @key argument to be used as @slot should be sufficient.
* The keyslot is guaranteed to not be in-use by any I/O.
*
* If the device doesn't have keyslots itself, this function must evict
* @key from any underlying devices. @slot won't be valid in this case.
*
* If there are no keyslots and no underlying devices, this function
* isn't required.
*
* Must return 0 on success, or -errno on failure.
*/
int (*keyslot_evict)(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot);
};
struct blk_keyslot_manager {
/*
* The struct blk_ksm_ll_ops that this keyslot manager will use
* to perform operations like programming and evicting keys on the
* device
*/
struct blk_ksm_ll_ops ksm_ll_ops;
/**
* struct blk_crypto_profile - inline encryption profile for a device
*
* This struct contains a storage device's inline encryption capabilities (e.g.
* the supported crypto algorithms), driver-provided functions to control the
* inline encryption hardware (e.g. programming and evicting keys), and optional
* device-independent keyslot management data.
*/
struct blk_crypto_profile {
/*
* The maximum number of bytes supported for specifying the data unit
* number.
/* public: Drivers must initialize the following fields. */
/**
* @ll_ops: Driver-provided functions to control the inline encryption
* hardware, e.g. program and evict keys.
*/
struct blk_crypto_ll_ops ll_ops;
/**
* @max_dun_bytes_supported: The maximum number of bytes supported for
* specifying the data unit number (DUN). Specifically, the range of
* supported DUNs is 0 through (1 << (8 * max_dun_bytes_supported)) - 1.
*/
unsigned int max_dun_bytes_supported;
/*
* Array of size BLK_ENCRYPTION_MODE_MAX of bitmasks that represents
* whether a crypto mode and data unit size are supported. The i'th
* bit of crypto_mode_supported[crypto_mode] is set iff a data unit
* size of (1 << i) is supported. We only support data unit sizes
* that are powers of 2.
/**
* @modes_supported: Array of bitmasks that specifies whether each
* combination of crypto mode and data unit size is supported.
* Specifically, the i'th bit of modes_supported[crypto_mode] is set if
* crypto_mode can be used with a data unit size of (1 << i). Note that
* only data unit sizes that are powers of 2 can be supported.
*/
unsigned int crypto_modes_supported[BLK_ENCRYPTION_MODE_MAX];
unsigned int modes_supported[BLK_ENCRYPTION_MODE_MAX];
/* Device for runtime power management (NULL if none) */
/**
* @dev: An optional device for runtime power management. If the driver
* provides this device, it will be runtime-resumed before any function
* in @ll_ops is called and will remain resumed during the call.
*/
struct device *dev;
/* Here onwards are *private* fields for internal keyslot manager use */
/* private: The following fields shouldn't be accessed by drivers. */
/* Number of keyslots, or 0 if not applicable */
unsigned int num_slots;
/* Protects programming and evicting keys from the device */
/*
* Serializes all calls to functions in @ll_ops as well as all changes
* to @slot_hashtable. This can also be taken in read mode to look up
* keyslots while ensuring that they can't be changed concurrently.
*/
struct rw_semaphore lock;
/* List of idle slots, with least recently used slot at front */
@ -80,41 +126,41 @@ struct blk_keyslot_manager {
unsigned int log_slot_ht_size;
/* Per-keyslot data */
struct blk_ksm_keyslot *slots;
struct blk_crypto_keyslot *slots;
};
int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots);
int blk_crypto_profile_init(struct blk_crypto_profile *profile,
unsigned int num_slots);
int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
unsigned int num_slots);
int devm_blk_crypto_profile_init(struct device *dev,
struct blk_crypto_profile *profile,
unsigned int num_slots);
blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key,
struct blk_ksm_keyslot **slot_ptr);
unsigned int blk_crypto_keyslot_index(struct blk_crypto_keyslot *slot);
unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot);
blk_status_t blk_crypto_get_keyslot(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
struct blk_crypto_keyslot **slot_ptr);
void blk_ksm_put_slot(struct blk_ksm_keyslot *slot);
void blk_crypto_put_keyslot(struct blk_crypto_keyslot *slot);
bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
const struct blk_crypto_config *cfg);
bool __blk_crypto_cfg_supported(struct blk_crypto_profile *profile,
const struct blk_crypto_config *cfg);
int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key);
int __blk_crypto_evict_key(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key);
void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm);
void blk_crypto_reprogram_all_keys(struct blk_crypto_profile *profile);
void blk_ksm_destroy(struct blk_keyslot_manager *ksm);
void blk_crypto_profile_destroy(struct blk_crypto_profile *profile);
void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
const struct blk_keyslot_manager *child);
void blk_crypto_intersect_capabilities(struct blk_crypto_profile *parent,
const struct blk_crypto_profile *child);
void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm);
bool blk_crypto_has_capabilities(const struct blk_crypto_profile *target,
const struct blk_crypto_profile *reference);
bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
struct blk_keyslot_manager *ksm_subset);
void blk_crypto_update_capabilities(struct blk_crypto_profile *dst,
const struct blk_crypto_profile *src);
void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
struct blk_keyslot_manager *reference_ksm);
#endif /* __LINUX_KEYSLOT_MANAGER_H */
#endif /* __LINUX_BLK_CRYPTO_PROFILE_H */

View File

@ -133,7 +133,7 @@ struct request {
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
struct bio_crypt_ctx *crypt_ctx;
struct blk_ksm_keyslot *crypt_keyslot;
struct blk_crypto_keyslot *crypt_keyslot;
#endif
unsigned short write_hint;

View File

@ -30,7 +30,7 @@ struct pr_ops;
struct rq_qos;
struct blk_queue_stats;
struct blk_stat_callback;
struct blk_keyslot_manager;
struct blk_crypto_profile;
/* Must be consistent with blk_mq_poll_stats_bkt() */
#define BLK_MQ_POLL_STATS_BKTS 16
@ -224,8 +224,7 @@ struct request_queue {
unsigned int dma_alignment;
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
/* Inline crypto capabilities */
struct blk_keyslot_manager *ksm;
struct blk_crypto_profile *crypto_profile;
#endif
unsigned int rq_timeout;
@ -1142,19 +1141,20 @@ int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned lo
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
bool blk_crypto_register(struct blk_crypto_profile *profile,
struct request_queue *q);
void blk_ksm_unregister(struct request_queue *q);
void blk_crypto_unregister(struct request_queue *q);
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
struct request_queue *q)
static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
struct request_queue *q)
{
return true;
}
static inline void blk_ksm_unregister(struct request_queue *q) { }
static inline void blk_crypto_unregister(struct request_queue *q) { }
#endif /* CONFIG_BLK_INLINE_ENCRYPTION */

View File

@ -576,9 +576,9 @@ struct dm_table *dm_swap_table(struct mapped_device *md,
struct dm_table *t);
/*
* Table keyslot manager functions
* Table blk_crypto_profile functions
*/
void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm);
void dm_destroy_crypto_profile(struct blk_crypto_profile *profile);
/*-----------------------------------------------------------------
* Macros.

View File

@ -492,7 +492,7 @@ struct mmc_host {
/* Inline encryption support */
#ifdef CONFIG_MMC_CRYPTO
struct blk_keyslot_manager ksm;
struct blk_crypto_profile crypto_profile;
#endif
/* Host Software Queue support */