2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-16 17:23:55 +08:00

[media] e4000: implement V4L2 subdevice tuner and core ops

Implement V4L2 subdevice tuner and core ops. After that this driver
is hybrid driver implementing both V4L2 and DVB ops.

Signed-off-by: Antti Palosaari <crope@iki.fi>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
This commit is contained in:
Antti Palosaari 2015-05-12 14:26:07 -03:00 committed by Mauro Carvalho Chehab
parent f8b9b871f8
commit c7861bb048
2 changed files with 183 additions and 37 deletions

View File

@ -20,9 +20,8 @@
#include "e4000_priv.h"
static int e4000_init(struct dvb_frontend *fe)
static int e4000_init(struct e4000_dev *dev)
{
struct e4000_dev *dev = fe->tuner_priv;
struct i2c_client *client = dev->client;
int ret;
@ -89,9 +88,8 @@ err:
return ret;
}
static int e4000_sleep(struct dvb_frontend *fe)
static int e4000_sleep(struct e4000_dev *dev)
{
struct e4000_dev *dev = fe->tuner_priv;
struct i2c_client *client = dev->client;
int ret;
@ -109,19 +107,18 @@ err:
return ret;
}
static int e4000_set_params(struct dvb_frontend *fe)
static int e4000_set_params(struct e4000_dev *dev)
{
struct e4000_dev *dev = fe->tuner_priv;
struct i2c_client *client = dev->client;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret, i;
unsigned int div_n, k, k_cw, div_out;
u64 f_vco;
u8 buf[5], i_data[4], q_data[4];
dev_dbg(&client->dev,
"delivery_system=%d frequency=%u bandwidth_hz=%u\n",
c->delivery_system, c->frequency, c->bandwidth_hz);
if (!dev->active) {
dev_dbg(&client->dev, "tuner is sleeping\n");
return 0;
}
/* gain control manual */
ret = regmap_write(dev->regmap, 0x1a, 0x00);
@ -144,7 +141,7 @@ static int e4000_set_params(struct dvb_frontend *fe)
* +-------+
*/
for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
if (c->frequency <= e4000_pll_lut[i].freq)
if (dev->f_frequency <= e4000_pll_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_pll_lut)) {
@ -154,14 +151,15 @@ static int e4000_set_params(struct dvb_frontend *fe)
#define F_REF dev->clk
div_out = e4000_pll_lut[i].div_out;
f_vco = (u64) c->frequency * div_out;
f_vco = (u64) dev->f_frequency * div_out;
/* calculate PLL integer and fractional control word */
div_n = div_u64_rem(f_vco, F_REF, &k);
k_cw = div_u64((u64) k * 0x10000, F_REF);
dev_dbg(&client->dev,
"frequency=%u f_vco=%llu F_REF=%u div_n=%u k=%u k_cw=%04x div_out=%u\n",
c->frequency, f_vco, F_REF, div_n, k, k_cw, div_out);
"frequency=%u bandwidth=%u f_vco=%llu F_REF=%u div_n=%u k=%u k_cw=%04x div_out=%u\n",
dev->f_frequency, dev->f_bandwidth, f_vco, F_REF, div_n, k,
k_cw, div_out);
buf[0] = div_n;
buf[1] = (k_cw >> 0) & 0xff;
@ -174,7 +172,7 @@ static int e4000_set_params(struct dvb_frontend *fe)
/* LNA filter (RF filter) */
for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
if (c->frequency <= e400_lna_filter_lut[i].freq)
if (dev->f_frequency <= e400_lna_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e400_lna_filter_lut)) {
@ -188,7 +186,7 @@ static int e4000_set_params(struct dvb_frontend *fe)
/* IF filters */
for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
if (dev->f_bandwidth <= e4000_if_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_if_filter_lut)) {
@ -205,7 +203,7 @@ static int e4000_set_params(struct dvb_frontend *fe)
/* frequency band */
for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
if (c->frequency <= e4000_band_lut[i].freq)
if (dev->f_frequency <= e4000_band_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_band_lut)) {
@ -269,19 +267,133 @@ err:
return ret;
}
static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
/*
* V4L2 API
*/
#if IS_ENABLED(CONFIG_VIDEO_V4L2)
static const struct v4l2_frequency_band bands[] = {
{
.type = V4L2_TUNER_RF,
.index = 0,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 59000000,
.rangehigh = 1105000000,
},
{
.type = V4L2_TUNER_RF,
.index = 1,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 1249000000,
.rangehigh = 2208000000,
},
};
static inline struct e4000_dev *e4000_subdev_to_dev(struct v4l2_subdev *sd)
{
struct e4000_dev *dev = fe->tuner_priv;
return container_of(sd, struct e4000_dev, sd);
}
static int e4000_s_power(struct v4l2_subdev *sd, int on)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
int ret;
dev_dbg(&client->dev, "on=%d\n", on);
if (on)
ret = e4000_init(dev);
else
ret = e4000_sleep(dev);
if (ret)
return ret;
return e4000_set_params(dev);
}
static const struct v4l2_subdev_core_ops e4000_subdev_core_ops = {
.s_power = e4000_s_power,
};
static int e4000_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "\n");
*frequency = 0; /* Zero-IF */
dev_dbg(&client->dev, "index=%d\n", v->index);
strlcpy(v->name, "Elonics E4000", sizeof(v->name));
v->type = V4L2_TUNER_RF;
v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
v->rangelow = bands[0].rangelow;
v->rangehigh = bands[1].rangehigh;
return 0;
}
#if IS_ENABLED(CONFIG_VIDEO_V4L2)
static int e4000_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "index=%d\n", v->index);
return 0;
}
static int e4000_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "tuner=%d\n", f->tuner);
f->frequency = dev->f_frequency;
return 0;
}
static int e4000_s_frequency(struct v4l2_subdev *sd,
const struct v4l2_frequency *f)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "tuner=%d type=%d frequency=%u\n",
f->tuner, f->type, f->frequency);
dev->f_frequency = clamp_t(unsigned int, f->frequency,
bands[0].rangelow, bands[1].rangehigh);
return e4000_set_params(dev);
}
static int e4000_enum_freq_bands(struct v4l2_subdev *sd,
struct v4l2_frequency_band *band)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "tuner=%d type=%d index=%d\n",
band->tuner, band->type, band->index);
if (band->index >= ARRAY_SIZE(bands))
return -EINVAL;
band->capability = bands[band->index].capability;
band->rangelow = bands[band->index].rangelow;
band->rangehigh = bands[band->index].rangehigh;
return 0;
}
static const struct v4l2_subdev_tuner_ops e4000_subdev_tuner_ops = {
.g_tuner = e4000_g_tuner,
.s_tuner = e4000_s_tuner,
.g_frequency = e4000_g_frequency,
.s_frequency = e4000_s_frequency,
.enum_freq_bands = e4000_enum_freq_bands,
};
static const struct v4l2_subdev_ops e4000_subdev_ops = {
.core = &e4000_subdev_core_ops,
.tuner = &e4000_subdev_tuner_ops,
};
static int e4000_set_lna_gain(struct dvb_frontend *fe)
{
struct e4000_dev *dev = fe->tuner_priv;
@ -434,7 +546,6 @@ static int e4000_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl);
struct i2c_client *client = dev->client;
struct dtv_frontend_properties *c = &dev->fe->dtv_property_cache;
int ret;
if (!dev->active)
@ -443,8 +554,13 @@ static int e4000_s_ctrl(struct v4l2_ctrl *ctrl)
switch (ctrl->id) {
case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
case V4L2_CID_RF_TUNER_BANDWIDTH:
c->bandwidth_hz = dev->bandwidth->val;
ret = e4000_set_params(dev->fe);
/*
* TODO: Auto logic does not work 100% correctly as tuner driver
* do not have information to calculate maximum suitable
* bandwidth. Calculating it is responsible of master driver.
*/
dev->f_bandwidth = dev->bandwidth->val;
ret = e4000_set_params(dev);
break;
case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO:
case V4L2_CID_RF_TUNER_LNA_GAIN:
@ -473,24 +589,49 @@ static const struct v4l2_ctrl_ops e4000_ctrl_ops = {
};
#endif
static const struct dvb_tuner_ops e4000_tuner_ops = {
/*
* DVB API
*/
static int e4000_dvb_set_params(struct dvb_frontend *fe)
{
struct e4000_dev *dev = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
dev->f_frequency = c->frequency;
dev->f_bandwidth = c->bandwidth_hz;
return e4000_set_params(dev);
}
static int e4000_dvb_init(struct dvb_frontend *fe)
{
return e4000_init(fe->tuner_priv);
}
static int e4000_dvb_sleep(struct dvb_frontend *fe)
{
return e4000_sleep(fe->tuner_priv);
}
static int e4000_dvb_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
*frequency = 0; /* Zero-IF */
return 0;
}
static const struct dvb_tuner_ops e4000_dvb_tuner_ops = {
.info = {
.name = "Elonics E4000",
.frequency_min = 174000000,
.frequency_max = 862000000,
},
.init = e4000_init,
.sleep = e4000_sleep,
.set_params = e4000_set_params,
.init = e4000_dvb_init,
.sleep = e4000_dvb_sleep,
.set_params = e4000_dvb_set_params,
.get_if_frequency = e4000_get_if_frequency,
.get_if_frequency = e4000_dvb_get_if_frequency,
};
/*
* Use V4L2 subdev to carry V4L2 control handler, even we don't implement
* subdev itself, just to avoid reinventing the wheel.
*/
static int e4000_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
@ -569,10 +710,13 @@ static int e4000_probe(struct i2c_client *client,
}
dev->sd.ctrl_handler = &dev->hdl;
dev->f_frequency = bands[0].rangelow;
dev->f_bandwidth = dev->bandwidth->val;
v4l2_i2c_subdev_init(&dev->sd, client, &e4000_subdev_ops);
#endif
fe->tuner_priv = dev;
memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
sizeof(struct dvb_tuner_ops));
memcpy(&fe->ops.tuner_ops, &e4000_dvb_tuner_ops,
sizeof(fe->ops.tuner_ops));
v4l2_set_subdevdata(&dev->sd, client);
i2c_set_clientdata(client, &dev->sd);

View File

@ -34,6 +34,8 @@ struct e4000_dev {
struct dvb_frontend *fe;
struct v4l2_subdev sd;
bool active;
unsigned int f_frequency;
unsigned int f_bandwidth;
/* Controls */
struct v4l2_ctrl_handler hdl;