2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 10:34:24 +08:00

Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (22 commits)
  x86: Fix code patching for paravirt-alternatives on 486
  x86, msr: change msr-reg.o to obj-y, and export its symbols
  x86: Use hard_smp_processor_id() to get apic id for AMD K8 cpus
  x86, sched: Workaround broken sched domain creation for AMD Magny-Cours
  x86, mcheck: Use correct cpumask for shared bank4
  x86, cacheinfo: Fixup L3 cache information for AMD multi-node processors
  x86: Fix CPU llc_shared_map information for AMD Magny-Cours
  x86, msr: Fix msr-reg.S compilation with gas 2.16.1, on 32-bit too
  x86: Move kernel_fpu_using to irq_fpu_usable in asm/i387.h
  x86, msr: fix msr-reg.S compilation with gas 2.16.1
  x86, msr: Export the register-setting MSR functions via /dev/*/msr
  x86, msr: Create _on_cpu helpers for {rw,wr}msr_safe_regs()
  x86, msr: Have the _safe MSR functions return -EIO, not -EFAULT
  x86, msr: CFI annotations, cleanups for msr-reg.S
  x86, asm: Make _ASM_EXTABLE() usable from assembly code
  x86, asm: Add 32-bit versions of the combined CFI macros
  x86, AMD: Disable wrongly set X86_FEATURE_LAHF_LM CPUID bit
  x86, msr: Rewrite AMD rd/wrmsr variants
  x86, msr: Add rd/wrmsr interfaces with preset registers
  x86: add specific support for Intel Atom architecture
  ...
This commit is contained in:
Linus Torvalds 2009-09-14 07:57:32 -07:00
commit c7208de304
27 changed files with 1203 additions and 786 deletions

View File

@ -121,6 +121,7 @@ Code Seq# Include File Comments
'c' 00-7F linux/comstats.h conflict!
'c' 00-7F linux/coda.h conflict!
'c' 80-9F arch/s390/include/asm/chsc.h
'c' A0-AF arch/x86/include/asm/msr.h
'd' 00-FF linux/char/drm/drm/h conflict!
'd' F0-FF linux/digi1.h
'e' all linux/digi1.h conflict!

View File

@ -262,6 +262,15 @@ config MCORE2
family in /proc/cpuinfo. Newer ones have 6 and older ones 15
(not a typo)
config MATOM
bool "Intel Atom"
---help---
Select this for the Intel Atom platform. Intel Atom CPUs have an
in-order pipelining architecture and thus can benefit from
accordingly optimized code. Use a recent GCC with specific Atom
support in order to fully benefit from selecting this option.
config GENERIC_CPU
bool "Generic-x86-64"
depends on X86_64
@ -295,7 +304,7 @@ config X86_CPU
config X86_L1_CACHE_BYTES
int
default "128" if MPSC
default "64" if GENERIC_CPU || MK8 || MCORE2 || X86_32
default "64" if GENERIC_CPU || MK8 || MCORE2 || MATOM || X86_32
config X86_INTERNODE_CACHE_BYTES
int
@ -310,7 +319,7 @@ config X86_L1_CACHE_SHIFT
default "7" if MPENTIUM4 || MPSC
default "4" if X86_ELAN || M486 || M386 || MGEODEGX1
default "5" if MWINCHIP3D || MWINCHIPC6 || MCRUSOE || MEFFICEON || MCYRIXIII || MK6 || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || M586 || MVIAC3_2 || MGEODE_LX
default "6" if MK7 || MK8 || MPENTIUMM || MCORE2 || MVIAC7 || X86_GENERIC || GENERIC_CPU
default "6" if MK7 || MK8 || MPENTIUMM || MCORE2 || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
config X86_XADD
def_bool y
@ -359,7 +368,7 @@ config X86_INTEL_USERCOPY
config X86_USE_PPRO_CHECKSUM
def_bool y
depends on MWINCHIP3D || MWINCHIPC6 || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MK8 || MVIAC3_2 || MEFFICEON || MGEODE_LX || MCORE2
depends on MWINCHIP3D || MWINCHIPC6 || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MK8 || MVIAC3_2 || MEFFICEON || MGEODE_LX || MCORE2 || MATOM
config X86_USE_3DNOW
def_bool y
@ -387,7 +396,7 @@ config X86_P6_NOP
config X86_TSC
def_bool y
depends on ((MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2) && !X86_NUMAQ) || X86_64
depends on ((MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MATOM) && !X86_NUMAQ) || X86_64
config X86_CMPXCHG64
def_bool y
@ -397,7 +406,7 @@ config X86_CMPXCHG64
# generates cmov.
config X86_CMOV
def_bool y
depends on (MK8 || MK7 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64)
depends on (MK8 || MK7 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MATOM)
config X86_MINIMUM_CPU_FAMILY
int

View File

@ -55,6 +55,8 @@ else
cflags-$(CONFIG_MCORE2) += \
$(call cc-option,-march=core2,$(call cc-option,-mtune=generic))
cflags-$(CONFIG_MATOM) += $(call cc-option,-march=atom) \
$(call cc-option,-mtune=atom,$(call cc-option,-mtune=generic))
cflags-$(CONFIG_GENERIC_CPU) += $(call cc-option,-mtune=generic)
KBUILD_CFLAGS += $(cflags-y)

View File

@ -33,6 +33,8 @@ cflags-$(CONFIG_MCYRIXIII) += $(call cc-option,-march=c3,-march=i486) $(align)-f
cflags-$(CONFIG_MVIAC3_2) += $(call cc-option,-march=c3-2,-march=i686)
cflags-$(CONFIG_MVIAC7) += -march=i686
cflags-$(CONFIG_MCORE2) += -march=i686 $(call tune,core2)
cflags-$(CONFIG_MATOM) += $(call cc-option,-march=atom,$(call cc-option,-march=core2,-march=i686)) \
$(call cc-option,-mtune=atom,$(call cc-option,-mtune=generic))
# AMD Elan support
cflags-$(CONFIG_X86_ELAN) += -march=i486

View File

@ -59,13 +59,6 @@ asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
static inline int kernel_fpu_using(void)
{
if (in_interrupt() && !(read_cr0() & X86_CR0_TS))
return 1;
return 0;
}
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
unsigned long addr = (unsigned long)raw_ctx;
@ -89,7 +82,7 @@ static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
return -EINVAL;
}
if (kernel_fpu_using())
if (irq_fpu_usable())
err = crypto_aes_expand_key(ctx, in_key, key_len);
else {
kernel_fpu_begin();
@ -110,7 +103,7 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (kernel_fpu_using())
if (irq_fpu_usable())
crypto_aes_encrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
@ -123,7 +116,7 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (kernel_fpu_using())
if (irq_fpu_usable())
crypto_aes_decrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
@ -349,7 +342,7 @@ static int ablk_encrypt(struct ablkcipher_request *req)
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (kernel_fpu_using()) {
if (irq_fpu_usable()) {
struct ablkcipher_request *cryptd_req =
ablkcipher_request_ctx(req);
memcpy(cryptd_req, req, sizeof(*req));
@ -370,7 +363,7 @@ static int ablk_decrypt(struct ablkcipher_request *req)
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct async_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (kernel_fpu_using()) {
if (irq_fpu_usable()) {
struct ablkcipher_request *cryptd_req =
ablkcipher_request_ctx(req);
memcpy(cryptd_req, req, sizeof(*req));

View File

@ -3,7 +3,7 @@
#ifdef __ASSEMBLY__
# define __ASM_FORM(x) x
# define __ASM_EX_SEC .section __ex_table
# define __ASM_EX_SEC .section __ex_table, "a"
#else
# define __ASM_FORM(x) " " #x " "
# define __ASM_EX_SEC " .section __ex_table,\"a\"\n"
@ -38,10 +38,18 @@
#define _ASM_DI __ASM_REG(di)
/* Exception table entry */
#ifdef __ASSEMBLY__
# define _ASM_EXTABLE(from,to) \
__ASM_EX_SEC ; \
_ASM_ALIGN ; \
_ASM_PTR from , to ; \
.previous
#else
# define _ASM_EXTABLE(from,to) \
__ASM_EX_SEC \
_ASM_ALIGN "\n" \
_ASM_PTR #from "," #to "\n" \
" .previous\n"
#endif
#endif /* _ASM_X86_ASM_H */

View File

@ -95,6 +95,7 @@
#define X86_FEATURE_NONSTOP_TSC (3*32+24) /* TSC does not stop in C states */
#define X86_FEATURE_CLFLUSH_MONITOR (3*32+25) /* "" clflush reqd with monitor */
#define X86_FEATURE_EXTD_APICID (3*32+26) /* has extended APICID (8 bits) */
#define X86_FEATURE_AMD_DCM (3*32+27) /* multi-node processor */
/* Intel-defined CPU features, CPUID level 0x00000001 (ecx), word 4 */
#define X86_FEATURE_XMM3 (4*32+ 0) /* "pni" SSE-3 */

View File

@ -87,9 +87,25 @@
CFI_RESTORE \reg
.endm
#else /*!CONFIG_X86_64*/
.macro pushl_cfi reg
pushl \reg
CFI_ADJUST_CFA_OFFSET 4
.endm
/* 32bit defenitions are missed yet */
.macro popl_cfi reg
popl \reg
CFI_ADJUST_CFA_OFFSET -4
.endm
.macro movl_cfi reg offset=0
movl %\reg, \offset(%esp)
CFI_REL_OFFSET \reg, \offset
.endm
.macro movl_cfi_restore offset reg
movl \offset(%esp), %\reg
CFI_RESTORE \reg
.endm
#endif /*!CONFIG_X86_64*/
#endif /*__ASSEMBLY__*/

View File

@ -301,6 +301,14 @@ static inline void kernel_fpu_end(void)
preempt_enable();
}
static inline bool irq_fpu_usable(void)
{
struct pt_regs *regs;
return !in_interrupt() || !(regs = get_irq_regs()) || \
user_mode(regs) || (read_cr0() & X86_CR0_TS);
}
/*
* Some instructions like VIA's padlock instructions generate a spurious
* DNA fault but don't modify SSE registers. And these instructions

View File

@ -17,6 +17,8 @@
#define MODULE_PROC_FAMILY "586MMX "
#elif defined CONFIG_MCORE2
#define MODULE_PROC_FAMILY "CORE2 "
#elif defined CONFIG_MATOM
#define MODULE_PROC_FAMILY "ATOM "
#elif defined CONFIG_M686
#define MODULE_PROC_FAMILY "686 "
#elif defined CONFIG_MPENTIUMII

View File

@ -3,10 +3,16 @@
#include <asm/msr-index.h>
#ifdef __KERNEL__
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/ioctl.h>
#define X86_IOC_RDMSR_REGS _IOWR('c', 0xA0, __u32[8])
#define X86_IOC_WRMSR_REGS _IOWR('c', 0xA1, __u32[8])
#ifdef __KERNEL__
#include <asm/asm.h>
#include <asm/errno.h>
#include <asm/cpumask.h>
@ -67,23 +73,7 @@ static inline unsigned long long native_read_msr_safe(unsigned int msr,
".previous\n\t"
_ASM_EXTABLE(2b, 3b)
: [err] "=r" (*err), EAX_EDX_RET(val, low, high)
: "c" (msr), [fault] "i" (-EFAULT));
return EAX_EDX_VAL(val, low, high);
}
static inline unsigned long long native_read_msr_amd_safe(unsigned int msr,
int *err)
{
DECLARE_ARGS(val, low, high);
asm volatile("2: rdmsr ; xor %0,%0\n"
"1:\n\t"
".section .fixup,\"ax\"\n\t"
"3: mov %3,%0 ; jmp 1b\n\t"
".previous\n\t"
_ASM_EXTABLE(2b, 3b)
: "=r" (*err), EAX_EDX_RET(val, low, high)
: "c" (msr), "D" (0x9c5a203a), "i" (-EFAULT));
: "c" (msr), [fault] "i" (-EIO));
return EAX_EDX_VAL(val, low, high);
}
@ -106,13 +96,16 @@ notrace static inline int native_write_msr_safe(unsigned int msr,
_ASM_EXTABLE(2b, 3b)
: [err] "=a" (err)
: "c" (msr), "0" (low), "d" (high),
[fault] "i" (-EFAULT)
[fault] "i" (-EIO)
: "memory");
return err;
}
extern unsigned long long native_read_tsc(void);
extern int native_rdmsr_safe_regs(u32 regs[8]);
extern int native_wrmsr_safe_regs(u32 regs[8]);
static __always_inline unsigned long long __native_read_tsc(void)
{
DECLARE_ARGS(val, low, high);
@ -181,14 +174,44 @@ static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
*p = native_read_msr_safe(msr, &err);
return err;
}
static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
{
u32 gprs[8] = { 0 };
int err;
*p = native_read_msr_amd_safe(msr, &err);
gprs[1] = msr;
gprs[7] = 0x9c5a203a;
err = native_rdmsr_safe_regs(gprs);
*p = gprs[0] | ((u64)gprs[2] << 32);
return err;
}
static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
{
u32 gprs[8] = { 0 };
gprs[0] = (u32)val;
gprs[1] = msr;
gprs[2] = val >> 32;
gprs[7] = 0x9c5a203a;
return native_wrmsr_safe_regs(gprs);
}
static inline int rdmsr_safe_regs(u32 regs[8])
{
return native_rdmsr_safe_regs(regs);
}
static inline int wrmsr_safe_regs(u32 regs[8])
{
return native_wrmsr_safe_regs(regs);
}
#define rdtscl(low) \
((low) = (u32)__native_read_tsc())
@ -228,6 +251,8 @@ void rdmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs);
void wrmsr_on_cpus(const cpumask_t *mask, u32 msr_no, struct msr *msrs);
int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h);
int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h);
int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8]);
#else /* CONFIG_SMP */
static inline int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)
{
@ -258,7 +283,15 @@ static inline int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
{
return wrmsr_safe(msr_no, l, h);
}
static inline int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
{
return rdmsr_safe_regs(regs);
}
static inline int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 regs[8])
{
return wrmsr_safe_regs(regs);
}
#endif /* CONFIG_SMP */
#endif /* __ASSEMBLY__ */
#endif /* __KERNEL__ */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_MSR_H */

View File

@ -7,689 +7,11 @@
#include <asm/pgtable_types.h>
#include <asm/asm.h>
/* Bitmask of what can be clobbered: usually at least eax. */
#define CLBR_NONE 0
#define CLBR_EAX (1 << 0)
#define CLBR_ECX (1 << 1)
#define CLBR_EDX (1 << 2)
#define CLBR_EDI (1 << 3)
#ifdef CONFIG_X86_32
/* CLBR_ANY should match all regs platform has. For i386, that's just it */
#define CLBR_ANY ((1 << 4) - 1)
#define CLBR_ARG_REGS (CLBR_EAX | CLBR_EDX | CLBR_ECX)
#define CLBR_RET_REG (CLBR_EAX | CLBR_EDX)
#define CLBR_SCRATCH (0)
#else
#define CLBR_RAX CLBR_EAX
#define CLBR_RCX CLBR_ECX
#define CLBR_RDX CLBR_EDX
#define CLBR_RDI CLBR_EDI
#define CLBR_RSI (1 << 4)
#define CLBR_R8 (1 << 5)
#define CLBR_R9 (1 << 6)
#define CLBR_R10 (1 << 7)
#define CLBR_R11 (1 << 8)
#define CLBR_ANY ((1 << 9) - 1)
#define CLBR_ARG_REGS (CLBR_RDI | CLBR_RSI | CLBR_RDX | \
CLBR_RCX | CLBR_R8 | CLBR_R9)
#define CLBR_RET_REG (CLBR_RAX)
#define CLBR_SCRATCH (CLBR_R10 | CLBR_R11)
#include <asm/desc_defs.h>
#endif /* X86_64 */
#define CLBR_CALLEE_SAVE ((CLBR_ARG_REGS | CLBR_SCRATCH) & ~CLBR_RET_REG)
#include <asm/paravirt_types.h>
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/cpumask.h>
#include <asm/kmap_types.h>
#include <asm/desc_defs.h>
struct page;
struct thread_struct;
struct desc_ptr;
struct tss_struct;
struct mm_struct;
struct desc_struct;
struct task_struct;
/*
* Wrapper type for pointers to code which uses the non-standard
* calling convention. See PV_CALL_SAVE_REGS_THUNK below.
*/
struct paravirt_callee_save {
void *func;
};
/* general info */
struct pv_info {
unsigned int kernel_rpl;
int shared_kernel_pmd;
int paravirt_enabled;
const char *name;
};
struct pv_init_ops {
/*
* Patch may replace one of the defined code sequences with
* arbitrary code, subject to the same register constraints.
* This generally means the code is not free to clobber any
* registers other than EAX. The patch function should return
* the number of bytes of code generated, as we nop pad the
* rest in generic code.
*/
unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
unsigned long addr, unsigned len);
/* Basic arch-specific setup */
void (*arch_setup)(void);
char *(*memory_setup)(void);
void (*post_allocator_init)(void);
/* Print a banner to identify the environment */
void (*banner)(void);
};
struct pv_lazy_ops {
/* Set deferred update mode, used for batching operations. */
void (*enter)(void);
void (*leave)(void);
};
struct pv_time_ops {
void (*time_init)(void);
/* Set and set time of day */
unsigned long (*get_wallclock)(void);
int (*set_wallclock)(unsigned long);
unsigned long long (*sched_clock)(void);
unsigned long (*get_tsc_khz)(void);
};
struct pv_cpu_ops {
/* hooks for various privileged instructions */
unsigned long (*get_debugreg)(int regno);
void (*set_debugreg)(int regno, unsigned long value);
void (*clts)(void);
unsigned long (*read_cr0)(void);
void (*write_cr0)(unsigned long);
unsigned long (*read_cr4_safe)(void);
unsigned long (*read_cr4)(void);
void (*write_cr4)(unsigned long);
#ifdef CONFIG_X86_64
unsigned long (*read_cr8)(void);
void (*write_cr8)(unsigned long);
#endif
/* Segment descriptor handling */
void (*load_tr_desc)(void);
void (*load_gdt)(const struct desc_ptr *);
void (*load_idt)(const struct desc_ptr *);
void (*store_gdt)(struct desc_ptr *);
void (*store_idt)(struct desc_ptr *);
void (*set_ldt)(const void *desc, unsigned entries);
unsigned long (*store_tr)(void);
void (*load_tls)(struct thread_struct *t, unsigned int cpu);
#ifdef CONFIG_X86_64
void (*load_gs_index)(unsigned int idx);
#endif
void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
const void *desc);
void (*write_gdt_entry)(struct desc_struct *,
int entrynum, const void *desc, int size);
void (*write_idt_entry)(gate_desc *,
int entrynum, const gate_desc *gate);
void (*alloc_ldt)(struct desc_struct *ldt, unsigned entries);
void (*free_ldt)(struct desc_struct *ldt, unsigned entries);
void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
void (*set_iopl_mask)(unsigned mask);
void (*wbinvd)(void);
void (*io_delay)(void);
/* cpuid emulation, mostly so that caps bits can be disabled */
void (*cpuid)(unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx);
/* MSR, PMC and TSR operations.
err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
u64 (*read_msr_amd)(unsigned int msr, int *err);
u64 (*read_msr)(unsigned int msr, int *err);
int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
u64 (*read_tsc)(void);
u64 (*read_pmc)(int counter);
unsigned long long (*read_tscp)(unsigned int *aux);
/*
* Atomically enable interrupts and return to userspace. This
* is only ever used to return to 32-bit processes; in a
* 64-bit kernel, it's used for 32-on-64 compat processes, but
* never native 64-bit processes. (Jump, not call.)
*/
void (*irq_enable_sysexit)(void);
/*
* Switch to usermode gs and return to 64-bit usermode using
* sysret. Only used in 64-bit kernels to return to 64-bit
* processes. Usermode register state, including %rsp, must
* already be restored.
*/
void (*usergs_sysret64)(void);
/*
* Switch to usermode gs and return to 32-bit usermode using
* sysret. Used to return to 32-on-64 compat processes.
* Other usermode register state, including %esp, must already
* be restored.
*/
void (*usergs_sysret32)(void);
/* Normal iret. Jump to this with the standard iret stack
frame set up. */
void (*iret)(void);
void (*swapgs)(void);
void (*start_context_switch)(struct task_struct *prev);
void (*end_context_switch)(struct task_struct *next);
};
struct pv_irq_ops {
void (*init_IRQ)(void);
/*
* Get/set interrupt state. save_fl and restore_fl are only
* expected to use X86_EFLAGS_IF; all other bits
* returned from save_fl are undefined, and may be ignored by
* restore_fl.
*
* NOTE: These functions callers expect the callee to preserve
* more registers than the standard C calling convention.
*/
struct paravirt_callee_save save_fl;
struct paravirt_callee_save restore_fl;
struct paravirt_callee_save irq_disable;
struct paravirt_callee_save irq_enable;
void (*safe_halt)(void);
void (*halt)(void);
#ifdef CONFIG_X86_64
void (*adjust_exception_frame)(void);
#endif
};
struct pv_apic_ops {
#ifdef CONFIG_X86_LOCAL_APIC
void (*setup_boot_clock)(void);
void (*setup_secondary_clock)(void);
void (*startup_ipi_hook)(int phys_apicid,
unsigned long start_eip,
unsigned long start_esp);
#endif
};
struct pv_mmu_ops {
/*
* Called before/after init_mm pagetable setup. setup_start
* may reset %cr3, and may pre-install parts of the pagetable;
* pagetable setup is expected to preserve any existing
* mapping.
*/
void (*pagetable_setup_start)(pgd_t *pgd_base);
void (*pagetable_setup_done)(pgd_t *pgd_base);
unsigned long (*read_cr2)(void);
void (*write_cr2)(unsigned long);
unsigned long (*read_cr3)(void);
void (*write_cr3)(unsigned long);
/*
* Hooks for intercepting the creation/use/destruction of an
* mm_struct.
*/
void (*activate_mm)(struct mm_struct *prev,
struct mm_struct *next);
void (*dup_mmap)(struct mm_struct *oldmm,
struct mm_struct *mm);
void (*exit_mmap)(struct mm_struct *mm);
/* TLB operations */
void (*flush_tlb_user)(void);
void (*flush_tlb_kernel)(void);
void (*flush_tlb_single)(unsigned long addr);
void (*flush_tlb_others)(const struct cpumask *cpus,
struct mm_struct *mm,
unsigned long va);
/* Hooks for allocating and freeing a pagetable top-level */
int (*pgd_alloc)(struct mm_struct *mm);
void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd);
/*
* Hooks for allocating/releasing pagetable pages when they're
* attached to a pagetable
*/
void (*alloc_pte)(struct mm_struct *mm, unsigned long pfn);
void (*alloc_pmd)(struct mm_struct *mm, unsigned long pfn);
void (*alloc_pmd_clone)(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count);
void (*alloc_pud)(struct mm_struct *mm, unsigned long pfn);
void (*release_pte)(unsigned long pfn);
void (*release_pmd)(unsigned long pfn);
void (*release_pud)(unsigned long pfn);
/* Pagetable manipulation functions */
void (*set_pte)(pte_t *ptep, pte_t pteval);
void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval);
void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
void (*pte_update)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*pte_update_defer)(struct mm_struct *mm,
unsigned long addr, pte_t *ptep);
pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte);
struct paravirt_callee_save pte_val;
struct paravirt_callee_save make_pte;
struct paravirt_callee_save pgd_val;
struct paravirt_callee_save make_pgd;
#if PAGETABLE_LEVELS >= 3
#ifdef CONFIG_X86_PAE
void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*pmd_clear)(pmd_t *pmdp);
#endif /* CONFIG_X86_PAE */
void (*set_pud)(pud_t *pudp, pud_t pudval);
struct paravirt_callee_save pmd_val;
struct paravirt_callee_save make_pmd;
#if PAGETABLE_LEVELS == 4
struct paravirt_callee_save pud_val;
struct paravirt_callee_save make_pud;
void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
#endif /* PAGETABLE_LEVELS == 4 */
#endif /* PAGETABLE_LEVELS >= 3 */
#ifdef CONFIG_HIGHPTE
void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
#endif
struct pv_lazy_ops lazy_mode;
/* dom0 ops */
/* Sometimes the physical address is a pfn, and sometimes its
an mfn. We can tell which is which from the index. */
void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx,
phys_addr_t phys, pgprot_t flags);
};
struct raw_spinlock;
struct pv_lock_ops {
int (*spin_is_locked)(struct raw_spinlock *lock);
int (*spin_is_contended)(struct raw_spinlock *lock);
void (*spin_lock)(struct raw_spinlock *lock);
void (*spin_lock_flags)(struct raw_spinlock *lock, unsigned long flags);
int (*spin_trylock)(struct raw_spinlock *lock);
void (*spin_unlock)(struct raw_spinlock *lock);
};
/* This contains all the paravirt structures: we get a convenient
* number for each function using the offset which we use to indicate
* what to patch. */
struct paravirt_patch_template {
struct pv_init_ops pv_init_ops;
struct pv_time_ops pv_time_ops;
struct pv_cpu_ops pv_cpu_ops;
struct pv_irq_ops pv_irq_ops;
struct pv_apic_ops pv_apic_ops;
struct pv_mmu_ops pv_mmu_ops;
struct pv_lock_ops pv_lock_ops;
};
extern struct pv_info pv_info;
extern struct pv_init_ops pv_init_ops;
extern struct pv_time_ops pv_time_ops;
extern struct pv_cpu_ops pv_cpu_ops;
extern struct pv_irq_ops pv_irq_ops;
extern struct pv_apic_ops pv_apic_ops;
extern struct pv_mmu_ops pv_mmu_ops;
extern struct pv_lock_ops pv_lock_ops;
#define PARAVIRT_PATCH(x) \
(offsetof(struct paravirt_patch_template, x) / sizeof(void *))
#define paravirt_type(op) \
[paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
[paravirt_opptr] "i" (&(op))
#define paravirt_clobber(clobber) \
[paravirt_clobber] "i" (clobber)
/*
* Generate some code, and mark it as patchable by the
* apply_paravirt() alternate instruction patcher.
*/
#define _paravirt_alt(insn_string, type, clobber) \
"771:\n\t" insn_string "\n" "772:\n" \
".pushsection .parainstructions,\"a\"\n" \
_ASM_ALIGN "\n" \
_ASM_PTR " 771b\n" \
" .byte " type "\n" \
" .byte 772b-771b\n" \
" .short " clobber "\n" \
".popsection\n"
/* Generate patchable code, with the default asm parameters. */
#define paravirt_alt(insn_string) \
_paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
/* Simple instruction patching code. */
#define DEF_NATIVE(ops, name, code) \
extern const char start_##ops##_##name[], end_##ops##_##name[]; \
asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
unsigned paravirt_patch_nop(void);
unsigned paravirt_patch_ident_32(void *insnbuf, unsigned len);
unsigned paravirt_patch_ident_64(void *insnbuf, unsigned len);
unsigned paravirt_patch_ignore(unsigned len);
unsigned paravirt_patch_call(void *insnbuf,
const void *target, u16 tgt_clobbers,
unsigned long addr, u16 site_clobbers,
unsigned len);
unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
unsigned long addr, unsigned len);
unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
unsigned long addr, unsigned len);
unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
const char *start, const char *end);
unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
unsigned long addr, unsigned len);
int paravirt_disable_iospace(void);
/*
* This generates an indirect call based on the operation type number.
* The type number, computed in PARAVIRT_PATCH, is derived from the
* offset into the paravirt_patch_template structure, and can therefore be
* freely converted back into a structure offset.
*/
#define PARAVIRT_CALL "call *%c[paravirt_opptr];"
/*
* These macros are intended to wrap calls through one of the paravirt
* ops structs, so that they can be later identified and patched at
* runtime.
*
* Normally, a call to a pv_op function is a simple indirect call:
* (pv_op_struct.operations)(args...).
*
* Unfortunately, this is a relatively slow operation for modern CPUs,
* because it cannot necessarily determine what the destination
* address is. In this case, the address is a runtime constant, so at
* the very least we can patch the call to e a simple direct call, or
* ideally, patch an inline implementation into the callsite. (Direct
* calls are essentially free, because the call and return addresses
* are completely predictable.)
*
* For i386, these macros rely on the standard gcc "regparm(3)" calling
* convention, in which the first three arguments are placed in %eax,
* %edx, %ecx (in that order), and the remaining arguments are placed
* on the stack. All caller-save registers (eax,edx,ecx) are expected
* to be modified (either clobbered or used for return values).
* X86_64, on the other hand, already specifies a register-based calling
* conventions, returning at %rax, with parameteres going on %rdi, %rsi,
* %rdx, and %rcx. Note that for this reason, x86_64 does not need any
* special handling for dealing with 4 arguments, unlike i386.
* However, x86_64 also have to clobber all caller saved registers, which
* unfortunately, are quite a bit (r8 - r11)
*
* The call instruction itself is marked by placing its start address
* and size into the .parainstructions section, so that
* apply_paravirt() in arch/i386/kernel/alternative.c can do the
* appropriate patching under the control of the backend pv_init_ops
* implementation.
*
* Unfortunately there's no way to get gcc to generate the args setup
* for the call, and then allow the call itself to be generated by an
* inline asm. Because of this, we must do the complete arg setup and
* return value handling from within these macros. This is fairly
* cumbersome.
*
* There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
* It could be extended to more arguments, but there would be little
* to be gained from that. For each number of arguments, there are
* the two VCALL and CALL variants for void and non-void functions.
*
* When there is a return value, the invoker of the macro must specify
* the return type. The macro then uses sizeof() on that type to
* determine whether its a 32 or 64 bit value, and places the return
* in the right register(s) (just %eax for 32-bit, and %edx:%eax for
* 64-bit). For x86_64 machines, it just returns at %rax regardless of
* the return value size.
*
* 64-bit arguments are passed as a pair of adjacent 32-bit arguments
* i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
* in low,high order
*
* Small structures are passed and returned in registers. The macro
* calling convention can't directly deal with this, so the wrapper
* functions must do this.
*
* These PVOP_* macros are only defined within this header. This
* means that all uses must be wrapped in inline functions. This also
* makes sure the incoming and outgoing types are always correct.
*/
#ifdef CONFIG_X86_32
#define PVOP_VCALL_ARGS \
unsigned long __eax = __eax, __edx = __edx, __ecx = __ecx
#define PVOP_CALL_ARGS PVOP_VCALL_ARGS
#define PVOP_CALL_ARG1(x) "a" ((unsigned long)(x))
#define PVOP_CALL_ARG2(x) "d" ((unsigned long)(x))
#define PVOP_CALL_ARG3(x) "c" ((unsigned long)(x))
#define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
"=c" (__ecx)
#define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
#define PVOP_VCALLEE_CLOBBERS "=a" (__eax), "=d" (__edx)
#define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS
#define EXTRA_CLOBBERS
#define VEXTRA_CLOBBERS
#else /* CONFIG_X86_64 */
#define PVOP_VCALL_ARGS \
unsigned long __edi = __edi, __esi = __esi, \
__edx = __edx, __ecx = __ecx
#define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
#define PVOP_CALL_ARG1(x) "D" ((unsigned long)(x))
#define PVOP_CALL_ARG2(x) "S" ((unsigned long)(x))
#define PVOP_CALL_ARG3(x) "d" ((unsigned long)(x))
#define PVOP_CALL_ARG4(x) "c" ((unsigned long)(x))
#define PVOP_VCALL_CLOBBERS "=D" (__edi), \
"=S" (__esi), "=d" (__edx), \
"=c" (__ecx)
#define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
#define PVOP_VCALLEE_CLOBBERS "=a" (__eax)
#define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS
#define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
#define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
#endif /* CONFIG_X86_32 */
#ifdef CONFIG_PARAVIRT_DEBUG
#define PVOP_TEST_NULL(op) BUG_ON(op == NULL)
#else
#define PVOP_TEST_NULL(op) ((void)op)
#endif
#define ____PVOP_CALL(rettype, op, clbr, call_clbr, extra_clbr, \
pre, post, ...) \
({ \
rettype __ret; \
PVOP_CALL_ARGS; \
PVOP_TEST_NULL(op); \
/* This is 32-bit specific, but is okay in 64-bit */ \
/* since this condition will never hold */ \
if (sizeof(rettype) > sizeof(unsigned long)) { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: call_clbr \
: paravirt_type(op), \
paravirt_clobber(clbr), \
##__VA_ARGS__ \
: "memory", "cc" extra_clbr); \
__ret = (rettype)((((u64)__edx) << 32) | __eax); \
} else { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: call_clbr \
: paravirt_type(op), \
paravirt_clobber(clbr), \
##__VA_ARGS__ \
: "memory", "cc" extra_clbr); \
__ret = (rettype)__eax; \
} \
__ret; \
})
#define __PVOP_CALL(rettype, op, pre, post, ...) \
____PVOP_CALL(rettype, op, CLBR_ANY, PVOP_CALL_CLOBBERS, \
EXTRA_CLOBBERS, pre, post, ##__VA_ARGS__)
#define __PVOP_CALLEESAVE(rettype, op, pre, post, ...) \
____PVOP_CALL(rettype, op.func, CLBR_RET_REG, \
PVOP_CALLEE_CLOBBERS, , \
pre, post, ##__VA_ARGS__)
#define ____PVOP_VCALL(op, clbr, call_clbr, extra_clbr, pre, post, ...) \
({ \
PVOP_VCALL_ARGS; \
PVOP_TEST_NULL(op); \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: call_clbr \
: paravirt_type(op), \
paravirt_clobber(clbr), \
##__VA_ARGS__ \
: "memory", "cc" extra_clbr); \
})
#define __PVOP_VCALL(op, pre, post, ...) \
____PVOP_VCALL(op, CLBR_ANY, PVOP_VCALL_CLOBBERS, \
VEXTRA_CLOBBERS, \
pre, post, ##__VA_ARGS__)
#define __PVOP_VCALLEESAVE(rettype, op, pre, post, ...) \
____PVOP_CALL(rettype, op.func, CLBR_RET_REG, \
PVOP_VCALLEE_CLOBBERS, , \
pre, post, ##__VA_ARGS__)
#define PVOP_CALL0(rettype, op) \
__PVOP_CALL(rettype, op, "", "")
#define PVOP_VCALL0(op) \
__PVOP_VCALL(op, "", "")
#define PVOP_CALLEE0(rettype, op) \
__PVOP_CALLEESAVE(rettype, op, "", "")
#define PVOP_VCALLEE0(op) \
__PVOP_VCALLEESAVE(op, "", "")
#define PVOP_CALL1(rettype, op, arg1) \
__PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_VCALL1(op, arg1) \
__PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_CALLEE1(rettype, op, arg1) \
__PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_VCALLEE1(op, arg1) \
__PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_CALL2(rettype, op, arg1, arg2) \
__PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_VCALL2(op, arg1, arg2) \
__PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_CALLEE2(rettype, op, arg1, arg2) \
__PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_VCALLEE2(op, arg1, arg2) \
__PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
__PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3))
#define PVOP_VCALL3(op, arg1, arg2, arg3) \
__PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3))
/* This is the only difference in x86_64. We can make it much simpler */
#ifdef CONFIG_X86_32
#define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
__PVOP_CALL(rettype, op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \
PVOP_CALL_ARG3(arg3), [_arg4] "mr" ((u32)(arg4)))
#define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
__PVOP_VCALL(op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
"0" ((u32)(arg1)), "1" ((u32)(arg2)), \
"2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
#else
#define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
__PVOP_CALL(rettype, op, "", "", \
PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \
PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4))
#define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
__PVOP_VCALL(op, "", "", \
PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \
PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4))
#endif
static inline int paravirt_enabled(void)
{
@ -820,15 +142,22 @@ static inline u64 paravirt_read_msr(unsigned msr, int *err)
{
return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err);
}
static inline u64 paravirt_read_msr_amd(unsigned msr, int *err)
static inline int paravirt_rdmsr_regs(u32 *regs)
{
return PVOP_CALL2(u64, pv_cpu_ops.read_msr_amd, msr, err);
return PVOP_CALL1(int, pv_cpu_ops.rdmsr_regs, regs);
}
static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
{
return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high);
}
static inline int paravirt_wrmsr_regs(u32 *regs)
{
return PVOP_CALL1(int, pv_cpu_ops.wrmsr_regs, regs);
}
/* These should all do BUG_ON(_err), but our headers are too tangled. */
#define rdmsr(msr, val1, val2) \
do { \
@ -862,6 +191,9 @@ do { \
_err; \
})
#define rdmsr_safe_regs(regs) paravirt_rdmsr_regs(regs)
#define wrmsr_safe_regs(regs) paravirt_wrmsr_regs(regs)
static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
{
int err;
@ -871,12 +203,31 @@ static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
}
static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
{
u32 gprs[8] = { 0 };
int err;
*p = paravirt_read_msr_amd(msr, &err);
gprs[1] = msr;
gprs[7] = 0x9c5a203a;
err = paravirt_rdmsr_regs(gprs);
*p = gprs[0] | ((u64)gprs[2] << 32);
return err;
}
static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
{
u32 gprs[8] = { 0 };
gprs[0] = (u32)val;
gprs[1] = msr;
gprs[2] = val >> 32;
gprs[7] = 0x9c5a203a;
return paravirt_wrmsr_regs(gprs);
}
static inline u64 paravirt_read_tsc(void)
{
return PVOP_CALL0(u64, pv_cpu_ops.read_tsc);
@ -1393,20 +744,6 @@ static inline void pmd_clear(pmd_t *pmdp)
}
#endif /* CONFIG_X86_PAE */
/* Lazy mode for batching updates / context switch */
enum paravirt_lazy_mode {
PARAVIRT_LAZY_NONE,
PARAVIRT_LAZY_MMU,
PARAVIRT_LAZY_CPU,
};
enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
void paravirt_start_context_switch(struct task_struct *prev);
void paravirt_end_context_switch(struct task_struct *next);
void paravirt_enter_lazy_mmu(void);
void paravirt_leave_lazy_mmu(void);
#define __HAVE_ARCH_START_CONTEXT_SWITCH
static inline void arch_start_context_switch(struct task_struct *prev)
{
@ -1437,12 +774,6 @@ static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx,
pv_mmu_ops.set_fixmap(idx, phys, flags);
}
void _paravirt_nop(void);
u32 _paravirt_ident_32(u32);
u64 _paravirt_ident_64(u64);
#define paravirt_nop ((void *)_paravirt_nop)
#if defined(CONFIG_SMP) && defined(CONFIG_PARAVIRT_SPINLOCKS)
static inline int __raw_spin_is_locked(struct raw_spinlock *lock)
@ -1479,17 +810,6 @@ static __always_inline void __raw_spin_unlock(struct raw_spinlock *lock)
#endif
/* These all sit in the .parainstructions section to tell us what to patch. */
struct paravirt_patch_site {
u8 *instr; /* original instructions */
u8 instrtype; /* type of this instruction */
u8 len; /* length of original instruction */
u16 clobbers; /* what registers you may clobber */
};
extern struct paravirt_patch_site __parainstructions[],
__parainstructions_end[];
#ifdef CONFIG_X86_32
#define PV_SAVE_REGS "pushl %ecx; pushl %edx;"
#define PV_RESTORE_REGS "popl %edx; popl %ecx;"

View File

@ -0,0 +1,721 @@
#ifndef _ASM_X86_PARAVIRT_TYPES_H
#define _ASM_X86_PARAVIRT_TYPES_H
/* Bitmask of what can be clobbered: usually at least eax. */
#define CLBR_NONE 0
#define CLBR_EAX (1 << 0)
#define CLBR_ECX (1 << 1)
#define CLBR_EDX (1 << 2)
#define CLBR_EDI (1 << 3)
#ifdef CONFIG_X86_32
/* CLBR_ANY should match all regs platform has. For i386, that's just it */
#define CLBR_ANY ((1 << 4) - 1)
#define CLBR_ARG_REGS (CLBR_EAX | CLBR_EDX | CLBR_ECX)
#define CLBR_RET_REG (CLBR_EAX | CLBR_EDX)
#define CLBR_SCRATCH (0)
#else
#define CLBR_RAX CLBR_EAX
#define CLBR_RCX CLBR_ECX
#define CLBR_RDX CLBR_EDX
#define CLBR_RDI CLBR_EDI
#define CLBR_RSI (1 << 4)
#define CLBR_R8 (1 << 5)
#define CLBR_R9 (1 << 6)
#define CLBR_R10 (1 << 7)
#define CLBR_R11 (1 << 8)
#define CLBR_ANY ((1 << 9) - 1)
#define CLBR_ARG_REGS (CLBR_RDI | CLBR_RSI | CLBR_RDX | \
CLBR_RCX | CLBR_R8 | CLBR_R9)
#define CLBR_RET_REG (CLBR_RAX)
#define CLBR_SCRATCH (CLBR_R10 | CLBR_R11)
#endif /* X86_64 */
#define CLBR_CALLEE_SAVE ((CLBR_ARG_REGS | CLBR_SCRATCH) & ~CLBR_RET_REG)
#ifndef __ASSEMBLY__
#include <asm/desc_defs.h>
#include <asm/kmap_types.h>
struct page;
struct thread_struct;
struct desc_ptr;
struct tss_struct;
struct mm_struct;
struct desc_struct;
struct task_struct;
struct cpumask;
/*
* Wrapper type for pointers to code which uses the non-standard
* calling convention. See PV_CALL_SAVE_REGS_THUNK below.
*/
struct paravirt_callee_save {
void *func;
};
/* general info */
struct pv_info {
unsigned int kernel_rpl;
int shared_kernel_pmd;
int paravirt_enabled;
const char *name;
};
struct pv_init_ops {
/*
* Patch may replace one of the defined code sequences with
* arbitrary code, subject to the same register constraints.
* This generally means the code is not free to clobber any
* registers other than EAX. The patch function should return
* the number of bytes of code generated, as we nop pad the
* rest in generic code.
*/
unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
unsigned long addr, unsigned len);
/* Basic arch-specific setup */
void (*arch_setup)(void);
char *(*memory_setup)(void);
void (*post_allocator_init)(void);
/* Print a banner to identify the environment */
void (*banner)(void);
};
struct pv_lazy_ops {
/* Set deferred update mode, used for batching operations. */
void (*enter)(void);
void (*leave)(void);
};
struct pv_time_ops {
void (*time_init)(void);
/* Set and set time of day */
unsigned long (*get_wallclock)(void);
int (*set_wallclock)(unsigned long);
unsigned long long (*sched_clock)(void);
unsigned long (*get_tsc_khz)(void);
};
struct pv_cpu_ops {
/* hooks for various privileged instructions */
unsigned long (*get_debugreg)(int regno);
void (*set_debugreg)(int regno, unsigned long value);
void (*clts)(void);
unsigned long (*read_cr0)(void);
void (*write_cr0)(unsigned long);
unsigned long (*read_cr4_safe)(void);
unsigned long (*read_cr4)(void);
void (*write_cr4)(unsigned long);
#ifdef CONFIG_X86_64
unsigned long (*read_cr8)(void);
void (*write_cr8)(unsigned long);
#endif
/* Segment descriptor handling */
void (*load_tr_desc)(void);
void (*load_gdt)(const struct desc_ptr *);
void (*load_idt)(const struct desc_ptr *);
void (*store_gdt)(struct desc_ptr *);
void (*store_idt)(struct desc_ptr *);
void (*set_ldt)(const void *desc, unsigned entries);
unsigned long (*store_tr)(void);
void (*load_tls)(struct thread_struct *t, unsigned int cpu);
#ifdef CONFIG_X86_64
void (*load_gs_index)(unsigned int idx);
#endif
void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
const void *desc);
void (*write_gdt_entry)(struct desc_struct *,
int entrynum, const void *desc, int size);
void (*write_idt_entry)(gate_desc *,
int entrynum, const gate_desc *gate);
void (*alloc_ldt)(struct desc_struct *ldt, unsigned entries);
void (*free_ldt)(struct desc_struct *ldt, unsigned entries);
void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
void (*set_iopl_mask)(unsigned mask);
void (*wbinvd)(void);
void (*io_delay)(void);
/* cpuid emulation, mostly so that caps bits can be disabled */
void (*cpuid)(unsigned int *eax, unsigned int *ebx,
unsigned int *ecx, unsigned int *edx);
/* MSR, PMC and TSR operations.
err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
u64 (*read_msr)(unsigned int msr, int *err);
int (*rdmsr_regs)(u32 *regs);
int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
int (*wrmsr_regs)(u32 *regs);
u64 (*read_tsc)(void);
u64 (*read_pmc)(int counter);
unsigned long long (*read_tscp)(unsigned int *aux);
/*
* Atomically enable interrupts and return to userspace. This
* is only ever used to return to 32-bit processes; in a
* 64-bit kernel, it's used for 32-on-64 compat processes, but
* never native 64-bit processes. (Jump, not call.)
*/
void (*irq_enable_sysexit)(void);
/*
* Switch to usermode gs and return to 64-bit usermode using
* sysret. Only used in 64-bit kernels to return to 64-bit
* processes. Usermode register state, including %rsp, must
* already be restored.
*/
void (*usergs_sysret64)(void);
/*
* Switch to usermode gs and return to 32-bit usermode using
* sysret. Used to return to 32-on-64 compat processes.
* Other usermode register state, including %esp, must already
* be restored.
*/
void (*usergs_sysret32)(void);
/* Normal iret. Jump to this with the standard iret stack
frame set up. */
void (*iret)(void);
void (*swapgs)(void);
void (*start_context_switch)(struct task_struct *prev);
void (*end_context_switch)(struct task_struct *next);
};
struct pv_irq_ops {
void (*init_IRQ)(void);
/*
* Get/set interrupt state. save_fl and restore_fl are only
* expected to use X86_EFLAGS_IF; all other bits
* returned from save_fl are undefined, and may be ignored by
* restore_fl.
*
* NOTE: These functions callers expect the callee to preserve
* more registers than the standard C calling convention.
*/
struct paravirt_callee_save save_fl;
struct paravirt_callee_save restore_fl;
struct paravirt_callee_save irq_disable;
struct paravirt_callee_save irq_enable;
void (*safe_halt)(void);
void (*halt)(void);
#ifdef CONFIG_X86_64
void (*adjust_exception_frame)(void);
#endif
};
struct pv_apic_ops {
#ifdef CONFIG_X86_LOCAL_APIC
void (*setup_boot_clock)(void);
void (*setup_secondary_clock)(void);
void (*startup_ipi_hook)(int phys_apicid,
unsigned long start_eip,
unsigned long start_esp);
#endif
};
struct pv_mmu_ops {
/*
* Called before/after init_mm pagetable setup. setup_start
* may reset %cr3, and may pre-install parts of the pagetable;
* pagetable setup is expected to preserve any existing
* mapping.
*/
void (*pagetable_setup_start)(pgd_t *pgd_base);
void (*pagetable_setup_done)(pgd_t *pgd_base);
unsigned long (*read_cr2)(void);
void (*write_cr2)(unsigned long);
unsigned long (*read_cr3)(void);
void (*write_cr3)(unsigned long);
/*
* Hooks for intercepting the creation/use/destruction of an
* mm_struct.
*/
void (*activate_mm)(struct mm_struct *prev,
struct mm_struct *next);
void (*dup_mmap)(struct mm_struct *oldmm,
struct mm_struct *mm);
void (*exit_mmap)(struct mm_struct *mm);
/* TLB operations */
void (*flush_tlb_user)(void);
void (*flush_tlb_kernel)(void);
void (*flush_tlb_single)(unsigned long addr);
void (*flush_tlb_others)(const struct cpumask *cpus,
struct mm_struct *mm,
unsigned long va);
/* Hooks for allocating and freeing a pagetable top-level */
int (*pgd_alloc)(struct mm_struct *mm);
void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd);
/*
* Hooks for allocating/releasing pagetable pages when they're
* attached to a pagetable
*/
void (*alloc_pte)(struct mm_struct *mm, unsigned long pfn);
void (*alloc_pmd)(struct mm_struct *mm, unsigned long pfn);
void (*alloc_pmd_clone)(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count);
void (*alloc_pud)(struct mm_struct *mm, unsigned long pfn);
void (*release_pte)(unsigned long pfn);
void (*release_pmd)(unsigned long pfn);
void (*release_pud)(unsigned long pfn);
/* Pagetable manipulation functions */
void (*set_pte)(pte_t *ptep, pte_t pteval);
void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pteval);
void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
void (*pte_update)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*pte_update_defer)(struct mm_struct *mm,
unsigned long addr, pte_t *ptep);
pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte);
struct paravirt_callee_save pte_val;
struct paravirt_callee_save make_pte;
struct paravirt_callee_save pgd_val;
struct paravirt_callee_save make_pgd;
#if PAGETABLE_LEVELS >= 3
#ifdef CONFIG_X86_PAE
void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void (*pmd_clear)(pmd_t *pmdp);
#endif /* CONFIG_X86_PAE */
void (*set_pud)(pud_t *pudp, pud_t pudval);
struct paravirt_callee_save pmd_val;
struct paravirt_callee_save make_pmd;
#if PAGETABLE_LEVELS == 4
struct paravirt_callee_save pud_val;
struct paravirt_callee_save make_pud;
void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
#endif /* PAGETABLE_LEVELS == 4 */
#endif /* PAGETABLE_LEVELS >= 3 */
#ifdef CONFIG_HIGHPTE
void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
#endif
struct pv_lazy_ops lazy_mode;
/* dom0 ops */
/* Sometimes the physical address is a pfn, and sometimes its
an mfn. We can tell which is which from the index. */
void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx,
phys_addr_t phys, pgprot_t flags);
};
struct raw_spinlock;
struct pv_lock_ops {
int (*spin_is_locked)(struct raw_spinlock *lock);
int (*spin_is_contended)(struct raw_spinlock *lock);
void (*spin_lock)(struct raw_spinlock *lock);
void (*spin_lock_flags)(struct raw_spinlock *lock, unsigned long flags);
int (*spin_trylock)(struct raw_spinlock *lock);
void (*spin_unlock)(struct raw_spinlock *lock);
};
/* This contains all the paravirt structures: we get a convenient
* number for each function using the offset which we use to indicate
* what to patch. */
struct paravirt_patch_template {
struct pv_init_ops pv_init_ops;
struct pv_time_ops pv_time_ops;
struct pv_cpu_ops pv_cpu_ops;
struct pv_irq_ops pv_irq_ops;
struct pv_apic_ops pv_apic_ops;
struct pv_mmu_ops pv_mmu_ops;
struct pv_lock_ops pv_lock_ops;
};
extern struct pv_info pv_info;
extern struct pv_init_ops pv_init_ops;
extern struct pv_time_ops pv_time_ops;
extern struct pv_cpu_ops pv_cpu_ops;
extern struct pv_irq_ops pv_irq_ops;
extern struct pv_apic_ops pv_apic_ops;
extern struct pv_mmu_ops pv_mmu_ops;
extern struct pv_lock_ops pv_lock_ops;
#define PARAVIRT_PATCH(x) \
(offsetof(struct paravirt_patch_template, x) / sizeof(void *))
#define paravirt_type(op) \
[paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
[paravirt_opptr] "i" (&(op))
#define paravirt_clobber(clobber) \
[paravirt_clobber] "i" (clobber)
/*
* Generate some code, and mark it as patchable by the
* apply_paravirt() alternate instruction patcher.
*/
#define _paravirt_alt(insn_string, type, clobber) \
"771:\n\t" insn_string "\n" "772:\n" \
".pushsection .parainstructions,\"a\"\n" \
_ASM_ALIGN "\n" \
_ASM_PTR " 771b\n" \
" .byte " type "\n" \
" .byte 772b-771b\n" \
" .short " clobber "\n" \
".popsection\n"
/* Generate patchable code, with the default asm parameters. */
#define paravirt_alt(insn_string) \
_paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
/* Simple instruction patching code. */
#define DEF_NATIVE(ops, name, code) \
extern const char start_##ops##_##name[], end_##ops##_##name[]; \
asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
unsigned paravirt_patch_nop(void);
unsigned paravirt_patch_ident_32(void *insnbuf, unsigned len);
unsigned paravirt_patch_ident_64(void *insnbuf, unsigned len);
unsigned paravirt_patch_ignore(unsigned len);
unsigned paravirt_patch_call(void *insnbuf,
const void *target, u16 tgt_clobbers,
unsigned long addr, u16 site_clobbers,
unsigned len);
unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
unsigned long addr, unsigned len);
unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
unsigned long addr, unsigned len);
unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
const char *start, const char *end);
unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
unsigned long addr, unsigned len);
int paravirt_disable_iospace(void);
/*
* This generates an indirect call based on the operation type number.
* The type number, computed in PARAVIRT_PATCH, is derived from the
* offset into the paravirt_patch_template structure, and can therefore be
* freely converted back into a structure offset.
*/
#define PARAVIRT_CALL "call *%c[paravirt_opptr];"
/*
* These macros are intended to wrap calls through one of the paravirt
* ops structs, so that they can be later identified and patched at
* runtime.
*
* Normally, a call to a pv_op function is a simple indirect call:
* (pv_op_struct.operations)(args...).
*
* Unfortunately, this is a relatively slow operation for modern CPUs,
* because it cannot necessarily determine what the destination
* address is. In this case, the address is a runtime constant, so at
* the very least we can patch the call to e a simple direct call, or
* ideally, patch an inline implementation into the callsite. (Direct
* calls are essentially free, because the call and return addresses
* are completely predictable.)
*
* For i386, these macros rely on the standard gcc "regparm(3)" calling
* convention, in which the first three arguments are placed in %eax,
* %edx, %ecx (in that order), and the remaining arguments are placed
* on the stack. All caller-save registers (eax,edx,ecx) are expected
* to be modified (either clobbered or used for return values).
* X86_64, on the other hand, already specifies a register-based calling
* conventions, returning at %rax, with parameteres going on %rdi, %rsi,
* %rdx, and %rcx. Note that for this reason, x86_64 does not need any
* special handling for dealing with 4 arguments, unlike i386.
* However, x86_64 also have to clobber all caller saved registers, which
* unfortunately, are quite a bit (r8 - r11)
*
* The call instruction itself is marked by placing its start address
* and size into the .parainstructions section, so that
* apply_paravirt() in arch/i386/kernel/alternative.c can do the
* appropriate patching under the control of the backend pv_init_ops
* implementation.
*
* Unfortunately there's no way to get gcc to generate the args setup
* for the call, and then allow the call itself to be generated by an
* inline asm. Because of this, we must do the complete arg setup and
* return value handling from within these macros. This is fairly
* cumbersome.
*
* There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
* It could be extended to more arguments, but there would be little
* to be gained from that. For each number of arguments, there are
* the two VCALL and CALL variants for void and non-void functions.
*
* When there is a return value, the invoker of the macro must specify
* the return type. The macro then uses sizeof() on that type to
* determine whether its a 32 or 64 bit value, and places the return
* in the right register(s) (just %eax for 32-bit, and %edx:%eax for
* 64-bit). For x86_64 machines, it just returns at %rax regardless of
* the return value size.
*
* 64-bit arguments are passed as a pair of adjacent 32-bit arguments
* i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
* in low,high order
*
* Small structures are passed and returned in registers. The macro
* calling convention can't directly deal with this, so the wrapper
* functions must do this.
*
* These PVOP_* macros are only defined within this header. This
* means that all uses must be wrapped in inline functions. This also
* makes sure the incoming and outgoing types are always correct.
*/
#ifdef CONFIG_X86_32
#define PVOP_VCALL_ARGS \
unsigned long __eax = __eax, __edx = __edx, __ecx = __ecx
#define PVOP_CALL_ARGS PVOP_VCALL_ARGS
#define PVOP_CALL_ARG1(x) "a" ((unsigned long)(x))
#define PVOP_CALL_ARG2(x) "d" ((unsigned long)(x))
#define PVOP_CALL_ARG3(x) "c" ((unsigned long)(x))
#define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
"=c" (__ecx)
#define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
#define PVOP_VCALLEE_CLOBBERS "=a" (__eax), "=d" (__edx)
#define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS
#define EXTRA_CLOBBERS
#define VEXTRA_CLOBBERS
#else /* CONFIG_X86_64 */
#define PVOP_VCALL_ARGS \
unsigned long __edi = __edi, __esi = __esi, \
__edx = __edx, __ecx = __ecx
#define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
#define PVOP_CALL_ARG1(x) "D" ((unsigned long)(x))
#define PVOP_CALL_ARG2(x) "S" ((unsigned long)(x))
#define PVOP_CALL_ARG3(x) "d" ((unsigned long)(x))
#define PVOP_CALL_ARG4(x) "c" ((unsigned long)(x))
#define PVOP_VCALL_CLOBBERS "=D" (__edi), \
"=S" (__esi), "=d" (__edx), \
"=c" (__ecx)
#define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
#define PVOP_VCALLEE_CLOBBERS "=a" (__eax)
#define PVOP_CALLEE_CLOBBERS PVOP_VCALLEE_CLOBBERS
#define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
#define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
#endif /* CONFIG_X86_32 */
#ifdef CONFIG_PARAVIRT_DEBUG
#define PVOP_TEST_NULL(op) BUG_ON(op == NULL)
#else
#define PVOP_TEST_NULL(op) ((void)op)
#endif
#define ____PVOP_CALL(rettype, op, clbr, call_clbr, extra_clbr, \
pre, post, ...) \
({ \
rettype __ret; \
PVOP_CALL_ARGS; \
PVOP_TEST_NULL(op); \
/* This is 32-bit specific, but is okay in 64-bit */ \
/* since this condition will never hold */ \
if (sizeof(rettype) > sizeof(unsigned long)) { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: call_clbr \
: paravirt_type(op), \
paravirt_clobber(clbr), \
##__VA_ARGS__ \
: "memory", "cc" extra_clbr); \
__ret = (rettype)((((u64)__edx) << 32) | __eax); \
} else { \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: call_clbr \
: paravirt_type(op), \
paravirt_clobber(clbr), \
##__VA_ARGS__ \
: "memory", "cc" extra_clbr); \
__ret = (rettype)__eax; \
} \
__ret; \
})
#define __PVOP_CALL(rettype, op, pre, post, ...) \
____PVOP_CALL(rettype, op, CLBR_ANY, PVOP_CALL_CLOBBERS, \
EXTRA_CLOBBERS, pre, post, ##__VA_ARGS__)
#define __PVOP_CALLEESAVE(rettype, op, pre, post, ...) \
____PVOP_CALL(rettype, op.func, CLBR_RET_REG, \
PVOP_CALLEE_CLOBBERS, , \
pre, post, ##__VA_ARGS__)
#define ____PVOP_VCALL(op, clbr, call_clbr, extra_clbr, pre, post, ...) \
({ \
PVOP_VCALL_ARGS; \
PVOP_TEST_NULL(op); \
asm volatile(pre \
paravirt_alt(PARAVIRT_CALL) \
post \
: call_clbr \
: paravirt_type(op), \
paravirt_clobber(clbr), \
##__VA_ARGS__ \
: "memory", "cc" extra_clbr); \
})
#define __PVOP_VCALL(op, pre, post, ...) \
____PVOP_VCALL(op, CLBR_ANY, PVOP_VCALL_CLOBBERS, \
VEXTRA_CLOBBERS, \
pre, post, ##__VA_ARGS__)
#define __PVOP_VCALLEESAVE(rettype, op, pre, post, ...) \
____PVOP_CALL(rettype, op.func, CLBR_RET_REG, \
PVOP_VCALLEE_CLOBBERS, , \
pre, post, ##__VA_ARGS__)
#define PVOP_CALL0(rettype, op) \
__PVOP_CALL(rettype, op, "", "")
#define PVOP_VCALL0(op) \
__PVOP_VCALL(op, "", "")
#define PVOP_CALLEE0(rettype, op) \
__PVOP_CALLEESAVE(rettype, op, "", "")
#define PVOP_VCALLEE0(op) \
__PVOP_VCALLEESAVE(op, "", "")
#define PVOP_CALL1(rettype, op, arg1) \
__PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_VCALL1(op, arg1) \
__PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_CALLEE1(rettype, op, arg1) \
__PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_VCALLEE1(op, arg1) \
__PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1))
#define PVOP_CALL2(rettype, op, arg1, arg2) \
__PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_VCALL2(op, arg1, arg2) \
__PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_CALLEE2(rettype, op, arg1, arg2) \
__PVOP_CALLEESAVE(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_VCALLEE2(op, arg1, arg2) \
__PVOP_VCALLEESAVE(op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2))
#define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
__PVOP_CALL(rettype, op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3))
#define PVOP_VCALL3(op, arg1, arg2, arg3) \
__PVOP_VCALL(op, "", "", PVOP_CALL_ARG1(arg1), \
PVOP_CALL_ARG2(arg2), PVOP_CALL_ARG3(arg3))
/* This is the only difference in x86_64. We can make it much simpler */
#ifdef CONFIG_X86_32
#define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
__PVOP_CALL(rettype, op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \
PVOP_CALL_ARG3(arg3), [_arg4] "mr" ((u32)(arg4)))
#define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
__PVOP_VCALL(op, \
"push %[_arg4];", "lea 4(%%esp),%%esp;", \
"0" ((u32)(arg1)), "1" ((u32)(arg2)), \
"2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
#else
#define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
__PVOP_CALL(rettype, op, "", "", \
PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \
PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4))
#define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
__PVOP_VCALL(op, "", "", \
PVOP_CALL_ARG1(arg1), PVOP_CALL_ARG2(arg2), \
PVOP_CALL_ARG3(arg3), PVOP_CALL_ARG4(arg4))
#endif
/* Lazy mode for batching updates / context switch */
enum paravirt_lazy_mode {
PARAVIRT_LAZY_NONE,
PARAVIRT_LAZY_MMU,
PARAVIRT_LAZY_CPU,
};
enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
void paravirt_start_context_switch(struct task_struct *prev);
void paravirt_end_context_switch(struct task_struct *next);
void paravirt_enter_lazy_mmu(void);
void paravirt_leave_lazy_mmu(void);
void _paravirt_nop(void);
u32 _paravirt_ident_32(u32);
u64 _paravirt_ident_64(u64);
#define paravirt_nop ((void *)_paravirt_nop)
/* These all sit in the .parainstructions section to tell us what to patch. */
struct paravirt_patch_site {
u8 *instr; /* original instructions */
u8 instrtype; /* type of this instruction */
u8 len; /* length of original instruction */
u16 clobbers; /* what registers you may clobber */
};
extern struct paravirt_patch_site __parainstructions[],
__parainstructions_end[];
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_PARAVIRT_TYPES_H */

View File

@ -713,13 +713,23 @@ static inline void cpu_relax(void)
rep_nop();
}
/* Stop speculative execution: */
/* Stop speculative execution and prefetching of modified code. */
static inline void sync_core(void)
{
int tmp;
asm volatile("cpuid" : "=a" (tmp) : "0" (1)
: "ebx", "ecx", "edx", "memory");
#if defined(CONFIG_M386) || defined(CONFIG_M486)
if (boot_cpu_data.x86 < 5)
/* There is no speculative execution.
* jmp is a barrier to prefetching. */
asm volatile("jmp 1f\n1:\n" ::: "memory");
else
#endif
/* cpuid is a barrier to speculative execution.
* Prefetched instructions are automatically
* invalidated when modified. */
asm volatile("cpuid" : "=a" (tmp) : "0" (1)
: "ebx", "ecx", "edx", "memory");
}
static inline void __monitor(const void *eax, unsigned long ecx,

View File

@ -498,8 +498,8 @@ static void *__init_or_module text_poke_early(void *addr, const void *opcode,
unsigned long flags;
local_irq_save(flags);
memcpy(addr, opcode, len);
local_irq_restore(flags);
sync_core();
local_irq_restore(flags);
/* Could also do a CLFLUSH here to speed up CPU recovery; but
that causes hangs on some VIA CPUs. */
return addr;

View File

@ -252,6 +252,64 @@ static int __cpuinit nearby_node(int apicid)
}
#endif
/*
* Fixup core topology information for AMD multi-node processors.
* Assumption 1: Number of cores in each internal node is the same.
* Assumption 2: Mixed systems with both single-node and dual-node
* processors are not supported.
*/
#ifdef CONFIG_X86_HT
static void __cpuinit amd_fixup_dcm(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_PCI
u32 t, cpn;
u8 n, n_id;
int cpu = smp_processor_id();
/* fixup topology information only once for a core */
if (cpu_has(c, X86_FEATURE_AMD_DCM))
return;
/* check for multi-node processor on boot cpu */
t = read_pci_config(0, 24, 3, 0xe8);
if (!(t & (1 << 29)))
return;
set_cpu_cap(c, X86_FEATURE_AMD_DCM);
/* cores per node: each internal node has half the number of cores */
cpn = c->x86_max_cores >> 1;
/* even-numbered NB_id of this dual-node processor */
n = c->phys_proc_id << 1;
/*
* determine internal node id and assign cores fifty-fifty to
* each node of the dual-node processor
*/
t = read_pci_config(0, 24 + n, 3, 0xe8);
n = (t>>30) & 0x3;
if (n == 0) {
if (c->cpu_core_id < cpn)
n_id = 0;
else
n_id = 1;
} else {
if (c->cpu_core_id < cpn)
n_id = 1;
else
n_id = 0;
}
/* compute entire NodeID, use llc_shared_map to store sibling info */
per_cpu(cpu_llc_id, cpu) = (c->phys_proc_id << 1) + n_id;
/* fixup core id to be in range from 0 to cpn */
c->cpu_core_id = c->cpu_core_id % cpn;
#endif
}
#endif
/*
* On a AMD dual core setup the lower bits of the APIC id distingush the cores.
* Assumes number of cores is a power of two.
@ -269,6 +327,9 @@ static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
c->phys_proc_id = c->initial_apicid >> bits;
/* use socket ID also for last level cache */
per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
/* fixup topology information on multi-node processors */
if ((c->x86 == 0x10) && (c->x86_model == 9))
amd_fixup_dcm(c);
#endif
}
@ -277,9 +338,10 @@ static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
#if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
int cpu = smp_processor_id();
int node;
unsigned apicid = cpu_has_apic ? hard_smp_processor_id() : c->apicid;
unsigned apicid = c->apicid;
node = per_cpu(cpu_llc_id, cpu);
node = c->phys_proc_id;
if (apicid_to_node[apicid] != NUMA_NO_NODE)
node = apicid_to_node[apicid];
if (!node_online(node)) {
@ -406,12 +468,24 @@ static void __cpuinit init_amd(struct cpuinfo_x86 *c)
/*
* Some BIOSes incorrectly force this feature, but only K8
* revision D (model = 0x14) and later actually support it.
* (AMD Erratum #110, docId: 25759).
*/
if (c->x86_model < 0x14)
if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
u64 val;
clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
if (!rdmsrl_amd_safe(0xc001100d, &val)) {
val &= ~(1ULL << 32);
wrmsrl_amd_safe(0xc001100d, val);
}
}
}
if (c->x86 == 0x10 || c->x86 == 0x11)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
/* get apicid instead of initial apic id from cpuid */
c->apicid = hard_smp_processor_id();
#else
/*

View File

@ -241,7 +241,7 @@ amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
case 0:
if (!l1->val)
return;
assoc = l1->assoc;
assoc = assocs[l1->assoc];
line_size = l1->line_size;
lines_per_tag = l1->lines_per_tag;
size_in_kb = l1->size_in_kb;
@ -249,7 +249,7 @@ amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
case 2:
if (!l2.val)
return;
assoc = l2.assoc;
assoc = assocs[l2.assoc];
line_size = l2.line_size;
lines_per_tag = l2.lines_per_tag;
/* cpu_data has errata corrections for K7 applied */
@ -258,10 +258,14 @@ amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
case 3:
if (!l3.val)
return;
assoc = l3.assoc;
assoc = assocs[l3.assoc];
line_size = l3.line_size;
lines_per_tag = l3.lines_per_tag;
size_in_kb = l3.size_encoded * 512;
if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
size_in_kb = size_in_kb >> 1;
assoc = assoc >> 1;
}
break;
default:
return;
@ -270,18 +274,14 @@ amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
eax->split.is_self_initializing = 1;
eax->split.type = types[leaf];
eax->split.level = levels[leaf];
if (leaf == 3)
eax->split.num_threads_sharing =
current_cpu_data.x86_max_cores - 1;
else
eax->split.num_threads_sharing = 0;
eax->split.num_threads_sharing = 0;
eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;
if (assoc == 0xf)
if (assoc == 0xffff)
eax->split.is_fully_associative = 1;
ebx->split.coherency_line_size = line_size - 1;
ebx->split.ways_of_associativity = assocs[assoc] - 1;
ebx->split.ways_of_associativity = assoc - 1;
ebx->split.physical_line_partition = lines_per_tag - 1;
ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
(ebx->split.ways_of_associativity + 1) - 1;
@ -523,6 +523,18 @@ static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
int index_msb, i;
struct cpuinfo_x86 *c = &cpu_data(cpu);
if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) {
struct cpuinfo_x86 *d;
for_each_online_cpu(i) {
if (!per_cpu(cpuid4_info, i))
continue;
d = &cpu_data(i);
this_leaf = CPUID4_INFO_IDX(i, index);
cpumask_copy(to_cpumask(this_leaf->shared_cpu_map),
d->llc_shared_map);
}
return;
}
this_leaf = CPUID4_INFO_IDX(cpu, index);
num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;

View File

@ -489,12 +489,14 @@ static __cpuinit int threshold_create_bank(unsigned int cpu, unsigned int bank)
int i, err = 0;
struct threshold_bank *b = NULL;
char name[32];
struct cpuinfo_x86 *c = &cpu_data(cpu);
sprintf(name, "threshold_bank%i", bank);
#ifdef CONFIG_SMP
if (cpu_data(cpu).cpu_core_id && shared_bank[bank]) { /* symlink */
i = cpumask_first(cpu_core_mask(cpu));
i = cpumask_first(c->llc_shared_map);
/* first core not up yet */
if (cpu_data(i).cpu_core_id)
@ -514,7 +516,7 @@ static __cpuinit int threshold_create_bank(unsigned int cpu, unsigned int bank)
if (err)
goto out;
cpumask_copy(b->cpus, cpu_core_mask(cpu));
cpumask_copy(b->cpus, c->llc_shared_map);
per_cpu(threshold_banks, cpu)[bank] = b;
goto out;
@ -539,7 +541,7 @@ static __cpuinit int threshold_create_bank(unsigned int cpu, unsigned int bank)
#ifndef CONFIG_SMP
cpumask_setall(b->cpus);
#else
cpumask_copy(b->cpus, cpu_core_mask(cpu));
cpumask_copy(b->cpus, c->llc_shared_map);
#endif
per_cpu(threshold_banks, cpu)[bank] = b;

View File

@ -116,11 +116,9 @@ static int show_cpuinfo(struct seq_file *m, void *v)
seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
#endif
seq_printf(m, "clflush size\t: %u\n", c->x86_clflush_size);
#ifdef CONFIG_X86_64
seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
c->x86_phys_bits, c->x86_virt_bits);
#endif
seq_printf(m, "power management:");
for (i = 0; i < 32; i++) {

View File

@ -1,6 +1,7 @@
/* ----------------------------------------------------------------------- *
*
* Copyright 2000-2008 H. Peter Anvin - All Rights Reserved
* Copyright 2009 Intel Corporation; author: H. Peter Anvin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -80,11 +81,8 @@ static ssize_t msr_read(struct file *file, char __user *buf,
for (; count; count -= 8) {
err = rdmsr_safe_on_cpu(cpu, reg, &data[0], &data[1]);
if (err) {
if (err == -EFAULT) /* Fix idiotic error code */
err = -EIO;
if (err)
break;
}
if (copy_to_user(tmp, &data, 8)) {
err = -EFAULT;
break;
@ -115,11 +113,8 @@ static ssize_t msr_write(struct file *file, const char __user *buf,
break;
}
err = wrmsr_safe_on_cpu(cpu, reg, data[0], data[1]);
if (err) {
if (err == -EFAULT) /* Fix idiotic error code */
err = -EIO;
if (err)
break;
}
tmp += 2;
bytes += 8;
}
@ -127,6 +122,54 @@ static ssize_t msr_write(struct file *file, const char __user *buf,
return bytes ? bytes : err;
}
static long msr_ioctl(struct file *file, unsigned int ioc, unsigned long arg)
{
u32 __user *uregs = (u32 __user *)arg;
u32 regs[8];
int cpu = iminor(file->f_path.dentry->d_inode);
int err;
switch (ioc) {
case X86_IOC_RDMSR_REGS:
if (!(file->f_mode & FMODE_READ)) {
err = -EBADF;
break;
}
if (copy_from_user(&regs, uregs, sizeof regs)) {
err = -EFAULT;
break;
}
err = rdmsr_safe_regs_on_cpu(cpu, regs);
if (err)
break;
if (copy_to_user(uregs, &regs, sizeof regs))
err = -EFAULT;
break;
case X86_IOC_WRMSR_REGS:
if (!(file->f_mode & FMODE_WRITE)) {
err = -EBADF;
break;
}
if (copy_from_user(&regs, uregs, sizeof regs)) {
err = -EFAULT;
break;
}
err = wrmsr_safe_regs_on_cpu(cpu, regs);
if (err)
break;
if (copy_to_user(uregs, &regs, sizeof regs))
err = -EFAULT;
break;
default:
err = -ENOTTY;
break;
}
return err;
}
static int msr_open(struct inode *inode, struct file *file)
{
unsigned int cpu = iminor(file->f_path.dentry->d_inode);
@ -157,6 +200,8 @@ static const struct file_operations msr_fops = {
.read = msr_read,
.write = msr_write,
.open = msr_open,
.unlocked_ioctl = msr_ioctl,
.compat_ioctl = msr_ioctl,
};
static int __cpuinit msr_device_create(int cpu)

View File

@ -362,8 +362,9 @@ struct pv_cpu_ops pv_cpu_ops = {
#endif
.wbinvd = native_wbinvd,
.read_msr = native_read_msr_safe,
.read_msr_amd = native_read_msr_amd_safe,
.rdmsr_regs = native_rdmsr_safe_regs,
.write_msr = native_write_msr_safe,
.wrmsr_regs = native_wrmsr_safe_regs,
.read_tsc = native_read_tsc,
.read_pmc = native_read_pmc,
.read_tscp = native_read_tscp,

View File

@ -434,7 +434,8 @@ const struct cpumask *cpu_coregroup_mask(int cpu)
* For perf, we return last level cache shared map.
* And for power savings, we return cpu_core_map
*/
if (sched_mc_power_savings || sched_smt_power_savings)
if ((sched_mc_power_savings || sched_smt_power_savings) &&
!(cpu_has(c, X86_FEATURE_AMD_DCM)))
return cpu_core_mask(cpu);
else
return c->llc_shared_map;

View File

@ -9,6 +9,8 @@ lib-y += thunk_$(BITS).o
lib-y += usercopy_$(BITS).o getuser.o putuser.o
lib-y += memcpy_$(BITS).o
obj-y += msr-reg.o msr-reg-export.o
ifeq ($(CONFIG_X86_32),y)
obj-y += atomic64_32.o
lib-y += checksum_32.o

View File

@ -0,0 +1,5 @@
#include <linux/module.h>
#include <asm/msr.h>
EXPORT_SYMBOL(native_rdmsr_safe_regs);
EXPORT_SYMBOL(native_wrmsr_safe_regs);

102
arch/x86/lib/msr-reg.S Normal file
View File

@ -0,0 +1,102 @@
#include <linux/linkage.h>
#include <linux/errno.h>
#include <asm/dwarf2.h>
#include <asm/asm.h>
#include <asm/msr.h>
#ifdef CONFIG_X86_64
/*
* int native_{rdmsr,wrmsr}_safe_regs(u32 gprs[8]);
*
* reg layout: u32 gprs[eax, ecx, edx, ebx, esp, ebp, esi, edi]
*
*/
.macro op_safe_regs op
ENTRY(native_\op\()_safe_regs)
CFI_STARTPROC
pushq_cfi %rbx
pushq_cfi %rbp
movq %rdi, %r10 /* Save pointer */
xorl %r11d, %r11d /* Return value */
movl (%rdi), %eax
movl 4(%rdi), %ecx
movl 8(%rdi), %edx
movl 12(%rdi), %ebx
movl 20(%rdi), %ebp
movl 24(%rdi), %esi
movl 28(%rdi), %edi
CFI_REMEMBER_STATE
1: \op
2: movl %eax, (%r10)
movl %r11d, %eax /* Return value */
movl %ecx, 4(%r10)
movl %edx, 8(%r10)
movl %ebx, 12(%r10)
movl %ebp, 20(%r10)
movl %esi, 24(%r10)
movl %edi, 28(%r10)
popq_cfi %rbp
popq_cfi %rbx
ret
3:
CFI_RESTORE_STATE
movl $-EIO, %r11d
jmp 2b
_ASM_EXTABLE(1b, 3b)
CFI_ENDPROC
ENDPROC(native_\op\()_safe_regs)
.endm
#else /* X86_32 */
.macro op_safe_regs op
ENTRY(native_\op\()_safe_regs)
CFI_STARTPROC
pushl_cfi %ebx
pushl_cfi %ebp
pushl_cfi %esi
pushl_cfi %edi
pushl_cfi $0 /* Return value */
pushl_cfi %eax
movl 4(%eax), %ecx
movl 8(%eax), %edx
movl 12(%eax), %ebx
movl 20(%eax), %ebp
movl 24(%eax), %esi
movl 28(%eax), %edi
movl (%eax), %eax
CFI_REMEMBER_STATE
1: \op
2: pushl_cfi %eax
movl 4(%esp), %eax
popl_cfi (%eax)
addl $4, %esp
CFI_ADJUST_CFA_OFFSET -4
movl %ecx, 4(%eax)
movl %edx, 8(%eax)
movl %ebx, 12(%eax)
movl %ebp, 20(%eax)
movl %esi, 24(%eax)
movl %edi, 28(%eax)
popl_cfi %eax
popl_cfi %edi
popl_cfi %esi
popl_cfi %ebp
popl_cfi %ebx
ret
3:
CFI_RESTORE_STATE
movl $-EIO, 4(%esp)
jmp 2b
_ASM_EXTABLE(1b, 3b)
CFI_ENDPROC
ENDPROC(native_\op\()_safe_regs)
.endm
#endif
op_safe_regs rdmsr
op_safe_regs wrmsr

View File

@ -175,3 +175,52 @@ int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h)
return err ? err : rv.err;
}
EXPORT_SYMBOL(wrmsr_safe_on_cpu);
/*
* These variants are significantly slower, but allows control over
* the entire 32-bit GPR set.
*/
struct msr_regs_info {
u32 *regs;
int err;
};
static void __rdmsr_safe_regs_on_cpu(void *info)
{
struct msr_regs_info *rv = info;
rv->err = rdmsr_safe_regs(rv->regs);
}
static void __wrmsr_safe_regs_on_cpu(void *info)
{
struct msr_regs_info *rv = info;
rv->err = wrmsr_safe_regs(rv->regs);
}
int rdmsr_safe_regs_on_cpu(unsigned int cpu, u32 *regs)
{
int err;
struct msr_regs_info rv;
rv.regs = regs;
rv.err = -EIO;
err = smp_call_function_single(cpu, __rdmsr_safe_regs_on_cpu, &rv, 1);
return err ? err : rv.err;
}
EXPORT_SYMBOL(rdmsr_safe_regs_on_cpu);
int wrmsr_safe_regs_on_cpu(unsigned int cpu, u32 *regs)
{
int err;
struct msr_regs_info rv;
rv.regs = regs;
rv.err = -EIO;
err = smp_call_function_single(cpu, __wrmsr_safe_regs_on_cpu, &rv, 1);
return err ? err : rv.err;
}
EXPORT_SYMBOL(wrmsr_safe_regs_on_cpu);

View File

@ -714,7 +714,7 @@ static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
set:
base = ((u64)high << 32) | low;
if (HYPERVISOR_set_segment_base(which, base) != 0)
ret = -EFAULT;
ret = -EIO;
break;
#endif