mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-11-30 13:34:44 +08:00
lib: objpool added: ring-array based lockless MPMC
objpool is a scalable implementation of high performance queue for object allocation and reclamation, such as kretprobe instances. With leveraging percpu ring-array to mitigate hot spots of memory contention, it delivers near-linear scalability for high parallel scenarios. The objpool is best suited for the following cases: 1) Memory allocation or reclamation are prohibited or too expensive 2) Consumers are of different priorities, such as irqs and threads Limitations: 1) Maximum objects (capacity) is fixed after objpool creation 2) All pre-allocated objects are managed in percpu ring array, which consumes more memory than linked lists Link: https://lore.kernel.org/all/20231017135654.82270-2-wuqiang.matt@bytedance.com/ Signed-off-by: wuqiang.matt <wuqiang.matt@bytedance.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
This commit is contained in:
parent
f843249cb6
commit
b4edb8d2d4
181
include/linux/objpool.h
Normal file
181
include/linux/objpool.h
Normal file
@ -0,0 +1,181 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
#ifndef _LINUX_OBJPOOL_H
|
||||
#define _LINUX_OBJPOOL_H
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/refcount.h>
|
||||
|
||||
/*
|
||||
* objpool: ring-array based lockless MPMC queue
|
||||
*
|
||||
* Copyright: wuqiang.matt@bytedance.com,mhiramat@kernel.org
|
||||
*
|
||||
* objpool is a scalable implementation of high performance queue for
|
||||
* object allocation and reclamation, such as kretprobe instances.
|
||||
*
|
||||
* With leveraging percpu ring-array to mitigate hot spots of memory
|
||||
* contention, it delivers near-linear scalability for high parallel
|
||||
* scenarios. The objpool is best suited for the following cases:
|
||||
* 1) Memory allocation or reclamation are prohibited or too expensive
|
||||
* 2) Consumers are of different priorities, such as irqs and threads
|
||||
*
|
||||
* Limitations:
|
||||
* 1) Maximum objects (capacity) is fixed after objpool creation
|
||||
* 2) All pre-allocated objects are managed in percpu ring array,
|
||||
* which consumes more memory than linked lists
|
||||
*/
|
||||
|
||||
/**
|
||||
* struct objpool_slot - percpu ring array of objpool
|
||||
* @head: head sequence of the local ring array (to retrieve at)
|
||||
* @tail: tail sequence of the local ring array (to append at)
|
||||
* @last: the last sequence number marked as ready for retrieve
|
||||
* @mask: bits mask for modulo capacity to compute array indexes
|
||||
* @entries: object entries on this slot
|
||||
*
|
||||
* Represents a cpu-local array-based ring buffer, its size is specialized
|
||||
* during initialization of object pool. The percpu objpool node is to be
|
||||
* allocated from local memory for NUMA system, and to be kept compact in
|
||||
* continuous memory: CPU assigned number of objects are stored just after
|
||||
* the body of objpool_node.
|
||||
*
|
||||
* Real size of the ring array is far too smaller than the value range of
|
||||
* head and tail, typed as uint32_t: [0, 2^32), so only lower bits (mask)
|
||||
* of head and tail are used as the actual position in the ring array. In
|
||||
* general the ring array is acting like a small sliding window, which is
|
||||
* always moving forward in the loop of [0, 2^32).
|
||||
*/
|
||||
struct objpool_slot {
|
||||
uint32_t head;
|
||||
uint32_t tail;
|
||||
uint32_t last;
|
||||
uint32_t mask;
|
||||
void *entries[];
|
||||
} __packed;
|
||||
|
||||
struct objpool_head;
|
||||
|
||||
/*
|
||||
* caller-specified callback for object initial setup, it's only called
|
||||
* once for each object (just after the memory allocation of the object)
|
||||
*/
|
||||
typedef int (*objpool_init_obj_cb)(void *obj, void *context);
|
||||
|
||||
/* caller-specified cleanup callback for objpool destruction */
|
||||
typedef int (*objpool_fini_cb)(struct objpool_head *head, void *context);
|
||||
|
||||
/**
|
||||
* struct objpool_head - object pooling metadata
|
||||
* @obj_size: object size, aligned to sizeof(void *)
|
||||
* @nr_objs: total objs (to be pre-allocated with objpool)
|
||||
* @nr_cpus: local copy of nr_cpu_ids
|
||||
* @capacity: max objs can be managed by one objpool_slot
|
||||
* @gfp: gfp flags for kmalloc & vmalloc
|
||||
* @ref: refcount of objpool
|
||||
* @flags: flags for objpool management
|
||||
* @cpu_slots: pointer to the array of objpool_slot
|
||||
* @release: resource cleanup callback
|
||||
* @context: caller-provided context
|
||||
*/
|
||||
struct objpool_head {
|
||||
int obj_size;
|
||||
int nr_objs;
|
||||
int nr_cpus;
|
||||
int capacity;
|
||||
gfp_t gfp;
|
||||
refcount_t ref;
|
||||
unsigned long flags;
|
||||
struct objpool_slot **cpu_slots;
|
||||
objpool_fini_cb release;
|
||||
void *context;
|
||||
};
|
||||
|
||||
#define OBJPOOL_NR_OBJECT_MAX (1UL << 24) /* maximum numbers of total objects */
|
||||
#define OBJPOOL_OBJECT_SIZE_MAX (1UL << 16) /* maximum size of an object */
|
||||
|
||||
/**
|
||||
* objpool_init() - initialize objpool and pre-allocated objects
|
||||
* @pool: the object pool to be initialized, declared by caller
|
||||
* @nr_objs: total objects to be pre-allocated by this object pool
|
||||
* @object_size: size of an object (should be > 0)
|
||||
* @gfp: flags for memory allocation (via kmalloc or vmalloc)
|
||||
* @context: user context for object initialization callback
|
||||
* @objinit: object initialization callback for extra setup
|
||||
* @release: cleanup callback for extra cleanup task
|
||||
*
|
||||
* return value: 0 for success, otherwise error code
|
||||
*
|
||||
* All pre-allocated objects are to be zeroed after memory allocation.
|
||||
* Caller could do extra initialization in objinit callback. objinit()
|
||||
* will be called just after slot allocation and called only once for
|
||||
* each object. After that the objpool won't touch any content of the
|
||||
* objects. It's caller's duty to perform reinitialization after each
|
||||
* pop (object allocation) or do clearance before each push (object
|
||||
* reclamation).
|
||||
*/
|
||||
int objpool_init(struct objpool_head *pool, int nr_objs, int object_size,
|
||||
gfp_t gfp, void *context, objpool_init_obj_cb objinit,
|
||||
objpool_fini_cb release);
|
||||
|
||||
/**
|
||||
* objpool_pop() - allocate an object from objpool
|
||||
* @pool: object pool
|
||||
*
|
||||
* return value: object ptr or NULL if failed
|
||||
*/
|
||||
void *objpool_pop(struct objpool_head *pool);
|
||||
|
||||
/**
|
||||
* objpool_push() - reclaim the object and return back to objpool
|
||||
* @obj: object ptr to be pushed to objpool
|
||||
* @pool: object pool
|
||||
*
|
||||
* return: 0 or error code (it fails only when user tries to push
|
||||
* the same object multiple times or wrong "objects" into objpool)
|
||||
*/
|
||||
int objpool_push(void *obj, struct objpool_head *pool);
|
||||
|
||||
/**
|
||||
* objpool_drop() - discard the object and deref objpool
|
||||
* @obj: object ptr to be discarded
|
||||
* @pool: object pool
|
||||
*
|
||||
* return: 0 if objpool was released; -EAGAIN if there are still
|
||||
* outstanding objects
|
||||
*
|
||||
* objpool_drop is normally for the release of outstanding objects
|
||||
* after objpool cleanup (objpool_fini). Thinking of this example:
|
||||
* kretprobe is unregistered and objpool_fini() is called to release
|
||||
* all remained objects, but there are still objects being used by
|
||||
* unfinished kretprobes (like blockable function: sys_accept). So
|
||||
* only when the last outstanding object is dropped could the whole
|
||||
* objpool be released along with the call of objpool_drop()
|
||||
*/
|
||||
int objpool_drop(void *obj, struct objpool_head *pool);
|
||||
|
||||
/**
|
||||
* objpool_free() - release objpool forcely (all objects to be freed)
|
||||
* @pool: object pool to be released
|
||||
*/
|
||||
void objpool_free(struct objpool_head *pool);
|
||||
|
||||
/**
|
||||
* objpool_fini() - deref object pool (also releasing unused objects)
|
||||
* @pool: object pool to be dereferenced
|
||||
*
|
||||
* objpool_fini() will try to release all remained free objects and
|
||||
* then drop an extra reference of the objpool. If all objects are
|
||||
* already returned to objpool (so called synchronous use cases),
|
||||
* the objpool itself will be freed together. But if there are still
|
||||
* outstanding objects (so called asynchronous use cases, such like
|
||||
* blockable kretprobe), the objpool won't be released until all
|
||||
* the outstanding objects are dropped, but the caller must assure
|
||||
* there are no concurrent objpool_push() on the fly. Normally RCU
|
||||
* is being required to make sure all ongoing objpool_push() must
|
||||
* be finished before calling objpool_fini(), so does test_objpool,
|
||||
* kretprobe or rethook
|
||||
*/
|
||||
void objpool_fini(struct objpool_head *pool);
|
||||
|
||||
#endif /* _LINUX_OBJPOOL_H */
|
@ -34,7 +34,7 @@ lib-y := ctype.o string.o vsprintf.o cmdline.o \
|
||||
is_single_threaded.o plist.o decompress.o kobject_uevent.o \
|
||||
earlycpio.o seq_buf.o siphash.o dec_and_lock.o \
|
||||
nmi_backtrace.o win_minmax.o memcat_p.o \
|
||||
buildid.o
|
||||
buildid.o objpool.o
|
||||
|
||||
lib-$(CONFIG_PRINTK) += dump_stack.o
|
||||
lib-$(CONFIG_SMP) += cpumask.o
|
||||
|
280
lib/objpool.c
Normal file
280
lib/objpool.c
Normal file
@ -0,0 +1,280 @@
|
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
#include <linux/objpool.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/irqflags.h>
|
||||
#include <linux/cpumask.h>
|
||||
#include <linux/log2.h>
|
||||
|
||||
/*
|
||||
* objpool: ring-array based lockless MPMC/FIFO queues
|
||||
*
|
||||
* Copyright: wuqiang.matt@bytedance.com,mhiramat@kernel.org
|
||||
*/
|
||||
|
||||
/* initialize percpu objpool_slot */
|
||||
static int
|
||||
objpool_init_percpu_slot(struct objpool_head *pool,
|
||||
struct objpool_slot *slot,
|
||||
int nodes, void *context,
|
||||
objpool_init_obj_cb objinit)
|
||||
{
|
||||
void *obj = (void *)&slot->entries[pool->capacity];
|
||||
int i;
|
||||
|
||||
/* initialize elements of percpu objpool_slot */
|
||||
slot->mask = pool->capacity - 1;
|
||||
|
||||
for (i = 0; i < nodes; i++) {
|
||||
if (objinit) {
|
||||
int rc = objinit(obj, context);
|
||||
if (rc)
|
||||
return rc;
|
||||
}
|
||||
slot->entries[slot->tail & slot->mask] = obj;
|
||||
obj = obj + pool->obj_size;
|
||||
slot->tail++;
|
||||
slot->last = slot->tail;
|
||||
pool->nr_objs++;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* allocate and initialize percpu slots */
|
||||
static int
|
||||
objpool_init_percpu_slots(struct objpool_head *pool, int nr_objs,
|
||||
void *context, objpool_init_obj_cb objinit)
|
||||
{
|
||||
int i, cpu_count = 0;
|
||||
|
||||
for (i = 0; i < pool->nr_cpus; i++) {
|
||||
|
||||
struct objpool_slot *slot;
|
||||
int nodes, size, rc;
|
||||
|
||||
/* skip the cpu node which could never be present */
|
||||
if (!cpu_possible(i))
|
||||
continue;
|
||||
|
||||
/* compute how many objects to be allocated with this slot */
|
||||
nodes = nr_objs / num_possible_cpus();
|
||||
if (cpu_count < (nr_objs % num_possible_cpus()))
|
||||
nodes++;
|
||||
cpu_count++;
|
||||
|
||||
size = struct_size(slot, entries, pool->capacity) +
|
||||
pool->obj_size * nodes;
|
||||
|
||||
/*
|
||||
* here we allocate percpu-slot & objs together in a single
|
||||
* allocation to make it more compact, taking advantage of
|
||||
* warm caches and TLB hits. in default vmalloc is used to
|
||||
* reduce the pressure of kernel slab system. as we know,
|
||||
* mimimal size of vmalloc is one page since vmalloc would
|
||||
* always align the requested size to page size
|
||||
*/
|
||||
if (pool->gfp & GFP_ATOMIC)
|
||||
slot = kmalloc_node(size, pool->gfp, cpu_to_node(i));
|
||||
else
|
||||
slot = __vmalloc_node(size, sizeof(void *), pool->gfp,
|
||||
cpu_to_node(i), __builtin_return_address(0));
|
||||
if (!slot)
|
||||
return -ENOMEM;
|
||||
memset(slot, 0, size);
|
||||
pool->cpu_slots[i] = slot;
|
||||
|
||||
/* initialize the objpool_slot of cpu node i */
|
||||
rc = objpool_init_percpu_slot(pool, slot, nodes, context, objinit);
|
||||
if (rc)
|
||||
return rc;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* cleanup all percpu slots of the object pool */
|
||||
static void objpool_fini_percpu_slots(struct objpool_head *pool)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (!pool->cpu_slots)
|
||||
return;
|
||||
|
||||
for (i = 0; i < pool->nr_cpus; i++)
|
||||
kvfree(pool->cpu_slots[i]);
|
||||
kfree(pool->cpu_slots);
|
||||
}
|
||||
|
||||
/* initialize object pool and pre-allocate objects */
|
||||
int objpool_init(struct objpool_head *pool, int nr_objs, int object_size,
|
||||
gfp_t gfp, void *context, objpool_init_obj_cb objinit,
|
||||
objpool_fini_cb release)
|
||||
{
|
||||
int rc, capacity, slot_size;
|
||||
|
||||
/* check input parameters */
|
||||
if (nr_objs <= 0 || nr_objs > OBJPOOL_NR_OBJECT_MAX ||
|
||||
object_size <= 0 || object_size > OBJPOOL_OBJECT_SIZE_MAX)
|
||||
return -EINVAL;
|
||||
|
||||
/* align up to unsigned long size */
|
||||
object_size = ALIGN(object_size, sizeof(long));
|
||||
|
||||
/* calculate capacity of percpu objpool_slot */
|
||||
capacity = roundup_pow_of_two(nr_objs);
|
||||
if (!capacity)
|
||||
return -EINVAL;
|
||||
|
||||
/* initialize objpool pool */
|
||||
memset(pool, 0, sizeof(struct objpool_head));
|
||||
pool->nr_cpus = nr_cpu_ids;
|
||||
pool->obj_size = object_size;
|
||||
pool->capacity = capacity;
|
||||
pool->gfp = gfp & ~__GFP_ZERO;
|
||||
pool->context = context;
|
||||
pool->release = release;
|
||||
slot_size = pool->nr_cpus * sizeof(struct objpool_slot);
|
||||
pool->cpu_slots = kzalloc(slot_size, pool->gfp);
|
||||
if (!pool->cpu_slots)
|
||||
return -ENOMEM;
|
||||
|
||||
/* initialize per-cpu slots */
|
||||
rc = objpool_init_percpu_slots(pool, nr_objs, context, objinit);
|
||||
if (rc)
|
||||
objpool_fini_percpu_slots(pool);
|
||||
else
|
||||
refcount_set(&pool->ref, pool->nr_objs + 1);
|
||||
|
||||
return rc;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(objpool_init);
|
||||
|
||||
/* adding object to slot, abort if the slot was already full */
|
||||
static inline int
|
||||
objpool_try_add_slot(void *obj, struct objpool_head *pool, int cpu)
|
||||
{
|
||||
struct objpool_slot *slot = pool->cpu_slots[cpu];
|
||||
uint32_t head, tail;
|
||||
|
||||
/* loading tail and head as a local snapshot, tail first */
|
||||
tail = READ_ONCE(slot->tail);
|
||||
|
||||
do {
|
||||
head = READ_ONCE(slot->head);
|
||||
/* fault caught: something must be wrong */
|
||||
WARN_ON_ONCE(tail - head > pool->nr_objs);
|
||||
} while (!try_cmpxchg_acquire(&slot->tail, &tail, tail + 1));
|
||||
|
||||
/* now the tail position is reserved for the given obj */
|
||||
WRITE_ONCE(slot->entries[tail & slot->mask], obj);
|
||||
/* update sequence to make this obj available for pop() */
|
||||
smp_store_release(&slot->last, tail + 1);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* reclaim an object to object pool */
|
||||
int objpool_push(void *obj, struct objpool_head *pool)
|
||||
{
|
||||
unsigned long flags;
|
||||
int rc;
|
||||
|
||||
/* disable local irq to avoid preemption & interruption */
|
||||
raw_local_irq_save(flags);
|
||||
rc = objpool_try_add_slot(obj, pool, raw_smp_processor_id());
|
||||
raw_local_irq_restore(flags);
|
||||
|
||||
return rc;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(objpool_push);
|
||||
|
||||
/* try to retrieve object from slot */
|
||||
static inline void *objpool_try_get_slot(struct objpool_head *pool, int cpu)
|
||||
{
|
||||
struct objpool_slot *slot = pool->cpu_slots[cpu];
|
||||
/* load head snapshot, other cpus may change it */
|
||||
uint32_t head = smp_load_acquire(&slot->head);
|
||||
|
||||
while (head != READ_ONCE(slot->last)) {
|
||||
void *obj;
|
||||
|
||||
/* obj must be retrieved before moving forward head */
|
||||
obj = READ_ONCE(slot->entries[head & slot->mask]);
|
||||
|
||||
/* move head forward to mark it's consumption */
|
||||
if (try_cmpxchg_release(&slot->head, &head, head + 1))
|
||||
return obj;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* allocate an object from object pool */
|
||||
void *objpool_pop(struct objpool_head *pool)
|
||||
{
|
||||
void *obj = NULL;
|
||||
unsigned long flags;
|
||||
int i, cpu;
|
||||
|
||||
/* disable local irq to avoid preemption & interruption */
|
||||
raw_local_irq_save(flags);
|
||||
|
||||
cpu = raw_smp_processor_id();
|
||||
for (i = 0; i < num_possible_cpus(); i++) {
|
||||
obj = objpool_try_get_slot(pool, cpu);
|
||||
if (obj)
|
||||
break;
|
||||
cpu = cpumask_next_wrap(cpu, cpu_possible_mask, -1, 1);
|
||||
}
|
||||
raw_local_irq_restore(flags);
|
||||
|
||||
return obj;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(objpool_pop);
|
||||
|
||||
/* release whole objpool forcely */
|
||||
void objpool_free(struct objpool_head *pool)
|
||||
{
|
||||
if (!pool->cpu_slots)
|
||||
return;
|
||||
|
||||
/* release percpu slots */
|
||||
objpool_fini_percpu_slots(pool);
|
||||
|
||||
/* call user's cleanup callback if provided */
|
||||
if (pool->release)
|
||||
pool->release(pool, pool->context);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(objpool_free);
|
||||
|
||||
/* drop the allocated object, rather reclaim it to objpool */
|
||||
int objpool_drop(void *obj, struct objpool_head *pool)
|
||||
{
|
||||
if (!obj || !pool)
|
||||
return -EINVAL;
|
||||
|
||||
if (refcount_dec_and_test(&pool->ref)) {
|
||||
objpool_free(pool);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -EAGAIN;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(objpool_drop);
|
||||
|
||||
/* drop unused objects and defref objpool for releasing */
|
||||
void objpool_fini(struct objpool_head *pool)
|
||||
{
|
||||
int count = 1; /* extra ref for objpool itself */
|
||||
|
||||
/* drop all remained objects from objpool */
|
||||
while (objpool_pop(pool))
|
||||
count++;
|
||||
|
||||
if (refcount_sub_and_test(count, &pool->ref))
|
||||
objpool_free(pool);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(objpool_fini);
|
Loading…
Reference in New Issue
Block a user