2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 06:04:05 +08:00

[media] DiBxxxx: Codingstype updates

This patchs fix several conding-style violations.

Signed-off-by: Olivier Grenie <olivier.grenie@dibcom.fr>
Signed-off-by: Patrick Boettcher <patrick.boettcher@dibcom.fr>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
This commit is contained in:
Olivier Grenie 2011-01-04 13:08:14 -03:00 committed by Mauro Carvalho Chehab
parent be9bae10ff
commit b4d6046e84
11 changed files with 590 additions and 660 deletions

View File

@ -347,7 +347,8 @@ int dib0700_set_i2c_speed(struct dvb_usb_device *d, u16 scl_kHz)
b[6] = (u8) (divider >> 8);
b[7] = (u8) (divider & 0xff);
deb_info("setting I2C speed: %04x %04x %04x (%d kHz).", (b[2] << 8) | (b[3]), (b[4] << 8) | b[5], (b[6] << 8) | b[7], scl_kHz);
deb_info("setting I2C speed: %04x %04x %04x (%d kHz).",
(b[2] << 8) | (b[3]), (b[4] << 8) | b[5], (b[6] << 8) | b[7], scl_kHz);
return dib0700_ctrl_wr(d, b, 8);
}
@ -484,14 +485,14 @@ int dib0700_streaming_ctrl(struct dvb_usb_adapter *adap, int onoff)
deb_info("modifying (%d) streaming state for %d\n", onoff, adap->id);
st->channel_state &= ~0x3;
if ((adap->stream.props.endpoint != 2) && (adap->stream.props.endpoint != 3)) {
if ((adap->stream.props.endpoint != 2)
&& (adap->stream.props.endpoint != 3)) {
deb_info("the endpoint number (%i) is not correct, use the adapter id instead", adap->stream.props.endpoint);
if (onoff)
st->channel_state |= 1 << (adap->id);
else
st->channel_state |= 1 << ~(adap->id);
}
else {
} else {
if (onoff)
st->channel_state |= 1 << (adap->stream.props.endpoint-2);
else

View File

@ -1444,7 +1444,7 @@ static struct dib8000_config dib809x_dib8000_config[2] = {
.drives = 0x2d98,
.diversity_delay = 48,
.refclksel = 3,
},{
}, {
.output_mpeg2_in_188_bytes = 1,
.agc_config_count = 2,
@ -1517,27 +1517,26 @@ static int dib8096_set_param_override(struct dvb_frontend *fe,
if (band == BAND_CBAND) {
deb_info("tuning in CBAND - soft-AGC startup\n");
/* TODO specific wbd target for dib0090 - needed for startup ? */
dib0090_set_tune_state(fe, CT_AGC_START);
do {
ret = dib0090_gain_control(fe);
msleep(ret);
tune_state = dib0090_get_tune_state(fe);
if (tune_state == CT_AGC_STEP_0)
dib8000_set_gpio(fe, 6, 0, 1);
else if (tune_state == CT_AGC_STEP_1) {
dib0090_get_current_gain(fe, NULL, NULL, &rf_gain_limit, &ltgain);
if (rf_gain_limit == 0)
dib8000_set_gpio(fe, 6, 0, 0);
}
} while (tune_state < CT_AGC_STOP);
dib0090_pwm_gain_reset(fe);
dib8000_pwm_agc_reset(fe);
dib8000_set_tune_state(fe, CT_DEMOD_START);
deb_info("tuning in CBAND - soft-AGC startup\n");
dib0090_set_tune_state(fe, CT_AGC_START);
do {
ret = dib0090_gain_control(fe);
msleep(ret);
tune_state = dib0090_get_tune_state(fe);
if (tune_state == CT_AGC_STEP_0)
dib8000_set_gpio(fe, 6, 0, 1);
else if (tune_state == CT_AGC_STEP_1) {
dib0090_get_current_gain(fe, NULL, NULL, &rf_gain_limit, &ltgain);
if (rf_gain_limit == 0)
dib8000_set_gpio(fe, 6, 0, 0);
}
} while (tune_state < CT_AGC_STOP);
dib0090_pwm_gain_reset(fe);
dib8000_pwm_agc_reset(fe);
dib8000_set_tune_state(fe, CT_DEMOD_START);
} else {
deb_info("not tuning in CBAND - standard AGC startup\n");
dib0090_pwm_gain_reset(fe);
deb_info("not tuning in CBAND - standard AGC startup\n");
dib0090_pwm_gain_reset(fe);
}
return 0;
@ -1608,7 +1607,7 @@ static int nim8096md_frontend_attach(struct dvb_usb_adapter *adap)
struct dvb_frontend *fe_slave;
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 0);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
msleep(1000);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
@ -1619,9 +1618,9 @@ static int nim8096md_frontend_attach(struct dvb_usb_adapter *adap)
dib0700_ctrl_clock(adap->dev, 72, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
dib8000_i2c_enumeration(&adap->dev->i2c_adap, 2, 18, 0x80);
@ -1662,8 +1661,8 @@ static int dib01x0_pmu_update(struct i2c_adapter *i2c, u16 *data, u8 len)
u8 wb[4] = { 0xc >> 8, 0xc & 0xff, 0, 0 };
u8 rb[2];
struct i2c_msg msg[2] = {
{.addr = 0x1e >> 1,.flags = 0,.buf = wb,.len = 2},
{.addr = 0x1e >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
{.addr = 0x1e >> 1, .flags = 0, .buf = wb, .len = 2},
{.addr = 0x1e >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2},
};
u8 index_data;
@ -1673,19 +1672,19 @@ static int dib01x0_pmu_update(struct i2c_adapter *i2c, u16 *data, u8 len)
return -EIO;
switch (rb[0] << 8 | rb[1]) {
case 0:
case 0:
deb_info("Found DiB0170 rev1: This version of DiB0170 is not supported any longer.\n");
return -EIO;
case 1:
case 1:
deb_info("Found DiB0170 rev2");
break;
case 2:
case 2:
deb_info("Found DiB0190 rev2");
break;
default:
default:
deb_info("DiB01x0 not found");
return -EIO;
}
}
for (index_data = 0; index_data < len; index_data += 2) {
wb[2] = (data[index_data + 1] >> 8) & 0xff;
@ -1701,8 +1700,8 @@ static int dib01x0_pmu_update(struct i2c_adapter *i2c, u16 *data, u8 len)
wb[3] |= rb[1] & ~(3 << 4);
}
wb[0] = (data[index_data ] >> 8)&0xff;
wb[1] = (data[index_data ] )&0xff;
wb[0] = (data[index_data] >> 8)&0xff;
wb[1] = (data[index_data])&0xff;
msg[0].len = 4;
if (i2c_transfer(i2c, &msg[0], 1) != 1)
return -EIO;
@ -1799,7 +1798,7 @@ static struct dib0090_config nim9090md_dib0090_config[2] = {
.clkoutdrive = 0,
.freq_offset_khz_uhf = 0,
.freq_offset_khz_vhf = 0,
},{
}, {
.io.pll_bypass = 0,
.io.pll_range = 1,
.io.pll_prediv = 1,
@ -1832,7 +1831,7 @@ static int stk9090m_frontend_attach(struct dvb_usb_adapter *adap)
dib0700_set_i2c_speed(adap->dev, 340);
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
@ -1840,9 +1839,9 @@ static int stk9090m_frontend_attach(struct dvb_usb_adapter *adap)
dib0700_ctrl_clock(adap->dev, 72, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
dib9000_i2c_enumeration(&adap->dev->i2c_adap, 1, 0x10, 0x80);
@ -1881,7 +1880,7 @@ static int dib9090_tuner_attach(struct dvb_usb_adapter *adap)
dib0700_set_i2c_speed(adap->dev, 2000);
if (dib9000_firmware_post_pll_init(adap->fe) < 0)
return -ENODEV;
release_firmware(state->frontend_firmware);
release_firmware(state->frontend_firmware);
return 0;
}
@ -1900,7 +1899,7 @@ static int nim9090md_frontend_attach(struct dvb_usb_adapter *adap)
dib0700_set_i2c_speed(adap->dev, 340);
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
@ -1908,9 +1907,9 @@ static int nim9090md_frontend_attach(struct dvb_usb_adapter *adap)
dib0700_ctrl_clock(adap->dev, 72, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
if (request_firmware(&state->frontend_firmware, "dib9090.fw", &adap->dev->udev->dev)) {
@ -1974,7 +1973,7 @@ static int nim9090md_tuner_attach(struct dvb_usb_adapter *adap)
if (dib9000_firmware_post_pll_init(fe_slave) < 0)
return -ENODEV;
}
release_firmware(state->frontend_firmware);
release_firmware(state->frontend_firmware);
return 0;
}
@ -2005,43 +2004,43 @@ static int dib7090p_get_best_sampling(struct dvb_frontend *fe , struct dib7090p_
deb_info("bandwidth = %d fdem_min =%d", fe->dtv_property_cache.bandwidth_hz, fdem_min);
/* Find Min and Max prediv */
while((xtal/max_prediv) >= fcp_min)
while ((xtal/max_prediv) >= fcp_min)
max_prediv++;
max_prediv--;
min_prediv = max_prediv;
while((xtal/min_prediv) <= fcp_max) {
while ((xtal/min_prediv) <= fcp_max) {
min_prediv--;
if(min_prediv == 1)
if (min_prediv == 1)
break;
}
deb_info("MIN prediv = %d : MAX prediv = %d", min_prediv, max_prediv);
min_prediv = 2;
for(prediv = min_prediv ; prediv < max_prediv; prediv ++) {
for (prediv = min_prediv ; prediv < max_prediv; prediv++) {
fcp = xtal / prediv;
if(fcp > fcp_min && fcp < fcp_max) {
for(loopdiv = 1 ; loopdiv < 64 ; loopdiv++) {
if (fcp > fcp_min && fcp < fcp_max) {
for (loopdiv = 1 ; loopdiv < 64 ; loopdiv++) {
fdem = ((xtal/prediv) * loopdiv);
fs = fdem / 4;
/* test min/max system restrictions */
if((fdem >= fdem_min) && (fdem <= fdem_max) && (fs >= fe->dtv_property_cache.bandwidth_hz/1000)) {
if ((fdem >= fdem_min) && (fdem <= fdem_max) && (fs >= fe->dtv_property_cache.bandwidth_hz/1000)) {
spur = 0;
/* test fs harmonics positions */
for(harmonic_id = (fe->dtv_property_cache.frequency / (1000*fs)) ; harmonic_id <= ((fe->dtv_property_cache.frequency / (1000*fs))+1) ; harmonic_id++) {
if(((fs*harmonic_id) >= ((fe->dtv_property_cache.frequency/1000) - (fe->dtv_property_cache.bandwidth_hz/2000))) && ((fs*harmonic_id) <= ((fe->dtv_property_cache.frequency/1000) + (fe->dtv_property_cache.bandwidth_hz/2000)))) {
for (harmonic_id = (fe->dtv_property_cache.frequency / (1000*fs)) ; harmonic_id <= ((fe->dtv_property_cache.frequency / (1000*fs))+1) ; harmonic_id++) {
if (((fs*harmonic_id) >= ((fe->dtv_property_cache.frequency/1000) - (fe->dtv_property_cache.bandwidth_hz/2000))) && ((fs*harmonic_id) <= ((fe->dtv_property_cache.frequency/1000) + (fe->dtv_property_cache.bandwidth_hz/2000)))) {
spur = 1;
break;
}
}
if(!spur) {
if (!spur) {
adc->pll_loopdiv = loopdiv;
adc->pll_prediv = prediv;
adc->timf = 2396745143UL/fdem*(1<<9);
adc->timf+= ((2396745143UL%fdem)<< 9)/fdem;
adc->timf = 2396745143UL/fdem*(1 << 9);
adc->timf += ((2396745143UL%fdem) << 9)/fdem;
deb_info("loopdiv=%i prediv=%i timf=%i", loopdiv, prediv, adc->timf);
break;
}
@ -2053,9 +2052,9 @@ static int dib7090p_get_best_sampling(struct dvb_frontend *fe , struct dib7090p_
}
if(adc->pll_loopdiv == 0 && adc->pll_prediv == 0) {
if (adc->pll_loopdiv == 0 && adc->pll_prediv == 0)
return -EINVAL;
} else
else
return 0;
}
@ -2077,7 +2076,7 @@ static int dib7090_agc_startup(struct dvb_frontend *fe, struct dvb_frontend_para
target = (dib0090_get_wbd_offset(fe) * 8 + 1) / 2;
dib7000p_set_wbd_ref(fe, target);
if(dib7090p_get_best_sampling(fe, &adc) == 0) {
if (dib7090p_get_best_sampling(fe, &adc) == 0) {
pll.pll_ratio = adc.pll_loopdiv;
pll.pll_prediv = adc.pll_prediv;
@ -2088,11 +2087,11 @@ static int dib7090_agc_startup(struct dvb_frontend *fe, struct dvb_frontend_para
}
static struct dib0090_wbd_slope dib7090_wbd_table[] = {
{ 380, 81, 850, 64, 540 ,4},
{ 860, 51, 866, 21, 375 ,4},
{1700, 0, 250, 0, 100, 6}, //LBAND Predefinition , NOT tested Yet
{2600, 0, 250, 0, 100, 6}, //SBAND Predefinition , NOT tested Yet
{ 0xFFFF, 0, 0, 0, 0 ,0},
{ 380, 81, 850, 64, 540, 4},
{ 860, 51, 866, 21, 375, 4},
{1700, 0, 250, 0, 100, 6},
{2600, 0, 250, 0, 100, 6},
{ 0xFFFF, 0, 0, 0, 0, 0},
};
struct dibx000_agc_config dib7090_agc_config[2] = {
@ -2100,91 +2099,91 @@ struct dibx000_agc_config dib7090_agc_config[2] = {
.band_caps = BAND_UHF,
/* P_agc_use_sd_mod1=0, P_agc_use_sd_mod2=0, P_agc_freq_pwm_div=1, P_agc_inv_pwm1=0, P_agc_inv_pwm2=0,
* P_agc_inh_dc_rv_est=0, P_agc_time_est=3, P_agc_freeze=0, P_agc_nb_est=5, P_agc_write=0 */
.setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0), // setup
.setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0),
.inv_gain = 687,// inv_gain = 1/ 95.4dB // no boost, lower gain due to ramp quantification
.time_stabiliz = 10, // time_stabiliz
.inv_gain = 687,
.time_stabiliz = 10,
.alpha_level = 0, // alpha_level
.thlock = 118, // thlock
.alpha_level = 0,
.thlock = 118,
.wbd_inv = 0, // wbd_inv
.wbd_ref = 1200, // wbd_ref
.wbd_sel = 3, // wbd_sel
.wbd_alpha = 5, // wbd_alpha
.wbd_inv = 0,
.wbd_ref = 1200,
.wbd_sel = 3,
.wbd_alpha = 5,
.agc1_max = 65535, // agc1_max
.agc1_min = 0, // agc1_min
.agc1_max = 65535,
.agc1_min = 0,
.agc2_max = 65535, // agc2_max
.agc2_min = 0, // agc2_min
.agc2_max = 65535,
.agc2_min = 0,
.agc1_pt1 = 0, // agc1_pt1
.agc1_pt2 = 32, // agc1_pt2
.agc1_pt3 = 114, // agc1_pt3 // 40.4dB
.agc1_slope1 = 143, // agc1_slope1
.agc1_slope2 = 144, // agc1_slope2
.agc2_pt1 = 114, // agc2_pt1
.agc2_pt2 = 227, // agc2_pt2
.agc2_slope1 = 116, // agc2_slope1
.agc2_slope2 = 117, // agc2_slope2
.agc1_pt1 = 0,
.agc1_pt2 = 32,
.agc1_pt3 = 114,
.agc1_slope1 = 143,
.agc1_slope2 = 144,
.agc2_pt1 = 114,
.agc2_pt2 = 227,
.agc2_slope1 = 116,
.agc2_slope2 = 117,
.alpha_mant = 18, // alpha_mant // 5Hz with 95.4dB
.alpha_exp = 0, // alpha_exp
.beta_mant = 20, // beta_mant
.beta_exp = 59, // beta_exp
.alpha_mant = 18,
.alpha_exp = 0,
.beta_mant = 20,
.beta_exp = 59,
.perform_agc_softsplit = 0, // perform_agc_softsplit
.perform_agc_softsplit = 0,
} , {
.band_caps = BAND_FM | BAND_VHF | BAND_CBAND,
/* P_agc_use_sd_mod1=0, P_agc_use_sd_mod2=0, P_agc_freq_pwm_div=1, P_agc_inv_pwm1=0, P_agc_inv_pwm2=0,
* P_agc_inh_dc_rv_est=0, P_agc_time_est=3, P_agc_freeze=0, P_agc_nb_est=5, P_agc_write=0 */
.setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0), // setup
.setup = (0 << 15) | (0 << 14) | (5 << 11) | (0 << 10) | (0 << 9) | (0 << 8) | (3 << 5) | (0 << 4) | (5 << 1) | (0 << 0),
.inv_gain = 732,// inv_gain = 1/ 89.5dB // no boost, lower gain due to ramp quantification
.time_stabiliz = 10, // time_stabiliz
.inv_gain = 732,
.time_stabiliz = 10,
.alpha_level = 0, // alpha_level
.thlock = 118, // thlock
.alpha_level = 0,
.thlock = 118,
.wbd_inv = 0, // wbd_inv
.wbd_ref = 1200, // wbd_ref
.wbd_sel = 3, // wbd_sel
.wbd_alpha = 5, // wbd_alpha
.wbd_inv = 0,
.wbd_ref = 1200,
.wbd_sel = 3,
.wbd_alpha = 5,
.agc1_max = 65535, // agc1_max : 1
.agc1_min = 0, // agc1_min
.agc1_max = 65535,
.agc1_min = 0,
.agc2_max = 65535, // agc2_max
.agc2_min = 0, // agc2_min
.agc2_max = 65535,
.agc2_min = 0,
.agc1_pt1 = 0, // agc1_pt1
.agc1_pt2 = 0, // agc1_pt2
.agc1_pt3 = 98, // agc1_pt3 // 34.5dB CBAND P1G + 55dB BB boost = 89.5dB
.agc1_slope1 = 0, // agc1_slope1
.agc1_slope2 = 167, // agc1_slope2 = Dy/Dx * 2**6 * 2**8 = 1/98 * 2**6 *2**8 : Dy = 1
.agc1_pt1 = 98, // agc2_pt1
.agc2_pt2 = 255, // agc2_pt2
.agc2_slope1 = 104, // agc2_slope1 = Dy/Dx * 2**6 * 2**8 = 1/(255-98) * 2**6 *2**8
.agc2_slope2 = 0, // agc2_slope2
.agc1_pt1 = 0,
.agc1_pt2 = 0,
.agc1_pt3 = 98,
.agc1_slope1 = 0,
.agc1_slope2 = 167,
.agc1_pt1 = 98,
.agc2_pt2 = 255,
.agc2_slope1 = 104,
.agc2_slope2 = 0,
.alpha_mant = 18, // alpha_mant // 5Hz with 95.4dB
.alpha_exp = 0, // alpha_exp
.beta_mant = 20, // beta_mant
.beta_exp = 59, // beta_exp
.alpha_mant = 18,
.alpha_exp = 0,
.beta_mant = 20,
.beta_exp = 59,
.perform_agc_softsplit = 0, // perform_agc_softsplit
.perform_agc_softsplit = 0,
}
};
static struct dibx000_bandwidth_config dib7090_clock_config_12_mhz = {
60000, 15000, // internal, sampling
1, 5, 0, 0, 0, // pll_cfg: prediv, ratio, range, reset, bypass
0, 0, 1, 1, 2, // misc: refdiv, bypclk_div, IO_CLK_en_core, ADClkSrc, modulo
(3 << 14) | (1 << 12) | (524 << 0), // sad_cfg: refsel, sel, freq_15k
(0 << 25) | 0, // ifreq = 0.000000 MHz
20452225, // timf
15000000, // xtal_hz
60000, 15000,
1, 5, 0, 0, 0,
0, 0, 1, 1, 2,
(3 << 14) | (1 << 12) | (524 << 0),
(0 << 25) | 0,
20452225,
15000000,
};
static struct dib7000p_config nim7090_dib7000p_config = {
@ -2243,7 +2242,7 @@ static struct dib7000p_config tfe7090pvr_dib7000p_config[2] = {
.output_mode = OUTMODE_MPEG2_PAR_GATED_CLK,
.default_i2c_addr = 0x90,
.enMpegOutput = 1,
},{
}, {
.output_mpeg2_in_188_bytes = 1,
.hostbus_diversity = 1,
.tuner_is_baseband = 1,
@ -2340,7 +2339,7 @@ static const struct dib0090_config tfe7090pvr_dib0090_config[2] = {
.data_tx_drv = 0,
.low_if = NULL,
.in_soc = 1,
},{
}, {
.io.clock_khz = 12000,
.io.pll_bypass = 0,
.io.pll_range = 0,
@ -2378,15 +2377,15 @@ static const struct dib0090_config tfe7090pvr_dib0090_config[2] = {
static int nim7090_frontend_attach(struct dvb_usb_adapter *adap)
{
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 0);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
if (dib7000p_i2c_enumeration(&adap->dev->i2c_adap, 1, 0x10, &nim7090_dib7000p_config) != 0) {
@ -2421,15 +2420,15 @@ static int tfe7090pvr_frontend0_attach(struct dvb_usb_adapter *adap)
st->disable_streaming_master_mode = 1;
dib0700_set_gpio(adap->dev, GPIO6, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO9, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO4, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO7, GPIO_OUT, 1);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 0);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO10, GPIO_OUT, 1);
msleep(10);
msleep(20);
dib0700_set_gpio(adap->dev, GPIO0, GPIO_OUT, 1);
/* initialize IC 0 */
@ -2441,7 +2440,7 @@ static int tfe7090pvr_frontend0_attach(struct dvb_usb_adapter *adap)
dib0700_set_i2c_speed(adap->dev, 340);
adap->fe = dvb_attach(dib7000p_attach, &adap->dev->i2c_adap, 0x90, &tfe7090pvr_dib7000p_config[0]);
dib7090_slave_reset(adap->fe);
dib7090_slave_reset(adap->fe);
if (adap->fe == NULL)
return -ENODEV;

View File

@ -204,8 +204,8 @@ static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
{
u8 b[2];
struct i2c_msg msg[2] = {
{.addr = state->config->i2c_address,.flags = 0,.buf = &reg,.len = 1},
{.addr = state->config->i2c_address,.flags = I2C_M_RD,.buf = b,.len = 2},
{.addr = state->config->i2c_address, .flags = 0, .buf = &reg, .len = 1},
{.addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = b, .len = 2},
};
if (i2c_transfer(state->i2c, msg, 2) != 2) {
printk(KERN_WARNING "DiB0090 I2C read failed\n");
@ -217,7 +217,7 @@ static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
{
u8 b[3] = { reg & 0xff, val >> 8, val & 0xff };
struct i2c_msg msg = {.addr = state->config->i2c_address,.flags = 0,.buf = b,.len = 3 };
struct i2c_msg msg = {.addr = state->config->i2c_address, .flags = 0, .buf = b, .len = 3 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "DiB0090 I2C write failed\n");
return -EREMOTEIO;
@ -228,7 +228,7 @@ static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
{
u8 b[2];
struct i2c_msg msg = {.addr = reg,.flags = I2C_M_RD,.buf = b,.len = 2 };
struct i2c_msg msg = {.addr = reg, .flags = I2C_M_RD, .buf = b, .len = 2 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "DiB0090 I2C read failed\n");
return 0;
@ -239,7 +239,7 @@ static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
{
u8 b[2] = { val >> 8, val & 0xff };
struct i2c_msg msg = {.addr = reg,.flags = 0,.buf = b,.len = 2 };
struct i2c_msg msg = {.addr = reg, .flags = 0, .buf = b, .len = 2 };
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "DiB0090 I2C write failed\n");
return -EREMOTEIO;
@ -347,7 +347,7 @@ static int dib0090_identify(struct dvb_frontend *fe)
return 0;
identification_error:
identification_error:
return -EIO;
}
@ -371,8 +371,6 @@ static int dib0090_fw_identify(struct dvb_frontend *fe)
if (identity->product != KROSUS)
goto identification_error;
//From the SOC the version definition has changed
if ((identity->version & 0x3) == SOC) {
identity->in_soc = 1;
switch (identity->version) {
@ -439,7 +437,7 @@ static int dib0090_fw_identify(struct dvb_frontend *fe)
return 0;
identification_error:
identification_error:
return -EIO;;
}
@ -1009,7 +1007,6 @@ void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
if (state->current_band == BAND_VHF) {
if (state->identity.in_soc) {
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs);
//dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf_socs); /* TODO */
} else {
dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf);
dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
@ -1044,9 +1041,8 @@ EXPORT_SYMBOL(dib0090_pwm_gain_reset);
static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
{
u16 adc_val = dib0090_read_reg(state, 0x1d);
if (state->identity.in_soc) {
if (state->identity.in_soc)
adc_val >>= 2;
}
return adc_val;
}
@ -1200,7 +1196,7 @@ int dib0090_gain_control(struct dvb_frontend *fe)
#ifdef DEBUG_AGC
dprintk
("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
(u32) * tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
(u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
(u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
#endif
}
@ -1246,26 +1242,20 @@ u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
if (current_temp > 128)
current_temp = 128;
//What Wbd gain to apply for this range of frequency
state->wbdmux &= ~(7 << 13);
if (wbd->wbd_gain != 0)
state->wbdmux |= (wbd->wbd_gain << 13);
else
state->wbdmux |= (4 << 13); // 4 is the default WBD gain
state->wbdmux |= (4 << 13);
dib0090_write_reg(state, 0x10, state->wbdmux);
//All the curves are linear with slope*f/64+offset
wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
// Iet assumes that thot-tcold = 130 equiv 128, current temperature ref is -30deg
wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
//for (offset = 0; offset < 1000; offset += 4)
// dbgp("offset = %d -> %d\n", offset, dib0090_wbd_to_db(state, offset));
state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold); // get the value in dBm from the offset
state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
dprintk("wbd-target: %d dB", (u32) state->wbd_target);
dprintk("wbd offset applied is %d", wbd_tcold);
@ -1323,7 +1313,6 @@ static const u16 dib0090_defaults[] = {
};
static const u16 dib0090_p1g_additionnal_defaults[] = {
// additionnal INITIALISATION for p1g to be written after dib0090_defaults
1, 0x05,
0xabcd,
@ -1362,45 +1351,44 @@ static void dib0090_set_default_config(struct dib0090_state *state, const u16 *
void dib0090_set_EFUSE(struct dib0090_state *state)
{
u8 c,h,n;
u16 e2,e4;
u16 cal;
u8 c, h, n;
u16 e2, e4;
u16 cal;
e2=dib0090_read_reg(state,0x26);
e4=dib0090_read_reg(state,0x28);
e2 = dib0090_read_reg(state, 0x26);
e4 = dib0090_read_reg(state, 0x28);
if ((state->identity.version == P1D_E_F) || // All P1F uses the internal calibration
(state->identity.version == P1G) || (e2 == 0xffff)) { //W0090G11R1 and W0090G11R1-D : We will find the calibration Value of the Baseband
if ((state->identity.version == P1D_E_F) ||
(state->identity.version == P1G) || (e2 == 0xffff)) {
dib0090_write_reg(state,0x22,0x10); //Start the Calib
cal = (dib0090_read_reg(state,0x22)>>6) & 0x3ff;
dib0090_write_reg(state, 0x22, 0x10);
cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
if ((cal<670) || (cal==1023)) //Cal at 800 would give too high value for the n
cal=850; //Recenter the n to 32
n = 165 - ((cal * 10)>>6) ;
e2 = e4 = (3<<12) | (34<<6) | (n);
}
if ((cal < 670) || (cal == 1023))
cal = 850;
n = 165 - ((cal * 10)>>6) ;
e2 = e4 = (3<<12) | (34<<6) | (n);
}
if (e2!=e4) {
e2 &= e4; /* Remove the redundancy */
}
if (e2 != e4)
e2 &= e4; /* Remove the redundancy */
if (e2 != 0xffff) {
c = e2 & 0x3f;
n = (e2 >> 12) & 0xf;
h= (e2 >> 6) & 0x3f;
if (e2 != 0xffff) {
c = e2 & 0x3f;
n = (e2 >> 12) & 0xf;
h = (e2 >> 6) & 0x3f;
if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
c=32;
if ((h >= HR_MAX) || (h <= HR_MIN))
h=34;
if ((n >= POLY_MAX) || (n <= POLY_MIN))
n=3;
if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
c = 32;
if ((h >= HR_MAX) || (h <= HR_MIN))
h = 34;
if ((n >= POLY_MAX) || (n <= POLY_MIN))
n = 3;
dib0090_write_reg(state,0x13, (h << 10)) ;
e2 = (n<<11) | ((h>>2)<<6) | (c);
dib0090_write_reg(state,0x2, e2) ; /* Load the BB_2 */
}
dib0090_write_reg(state, 0x13, (h << 10)) ;
e2 = (n<<11) | ((h>>2)<<6) | (c);
dib0090_write_reg(state, 0x2, e2) ; /* Load the BB_2 */
}
}
static int dib0090_reset(struct dvb_frontend *fe)
@ -1425,14 +1413,15 @@ static int dib0090_reset(struct dvb_frontend *fe)
dib0090_set_default_config(state, dib0090_defaults);
if (state->identity.in_soc)
dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
if (state->identity.in_soc)
dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
if (state->identity.p1g)
dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc)) /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
dib0090_set_EFUSE(state);
/* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
dib0090_set_EFUSE(state);
/* Congigure in function of the crystal */
if (state->config->io.clock_khz >= 24000)
@ -1501,11 +1490,11 @@ static const struct dc_calibration dc_table[] = {
static const struct dc_calibration dc_p1g_table[] = {
/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
/* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
{0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1}, // offset_trim2_i_chann 0 0 5 0 0 1 6 9 5
{0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0}, // offset_trim2_q_chann 0 0 5 0 0 1 7 15 11
{0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
{0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
{0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1}, // offset_trim1_i_chann 0 0 5 0 0 1 6 4 0
{0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0}, // offset_trim1_q_chann 0 0 5 0 0 1 6 14 10
{0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
{0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
{0},
};
@ -1542,8 +1531,8 @@ static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum front
dib0090_write_reg(state, 0x24, reg);
state->wbdmux = dib0090_read_reg(state, 0x10);
dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3); // connect BB, disable WDB enable*
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); //Discard the DataTX
dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
state->dc = dc_table;
@ -1596,11 +1585,11 @@ static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum front
if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
/* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
state->step++;
state->min_adc_diff = state->adc_diff; //min is used as N-1
state->min_adc_diff = state->adc_diff;
*tune_state = CT_TUNER_STEP_1;
} else {
/* the minimum was what we have seen in the step before */
if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) { //Come back to the previous state since the delta was better
if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) {
dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff);
state->step--;
}
@ -1618,7 +1607,7 @@ static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum front
break;
case CT_TUNER_STEP_6:
dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); //Force the test bus to be off
dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
dib0090_write_reg(state, 0x1f, 0x7);
*tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
state->calibrate &= ~DC_CAL;
@ -1653,9 +1642,9 @@ static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tu
return 0;
}
dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3)); // Force: WBD enable,gain to 4, mux to WBD
dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1))); //Discard all LNA but crystal !!!
dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
*tune_state = CT_TUNER_STEP_0;
state->wbd_calibration_gain = wbd_gain;
return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
@ -1788,98 +1777,94 @@ static const struct dib0090_tuning dib0090_tuning_table[] = {
};
static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
//max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
{170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB}, // FM EN_CAB
{170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
#endif
#ifdef CONFIG_BAND_VHF
{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, // VHF EN_VHF
{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, // VHF EN_VHF
{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, // VHF EN_VHF
{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
#endif
#ifdef CONFIG_BAND_UHF
{510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, // SBD EN_SBD
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, // SBD EN_SBD
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};
static const struct dib0090_pll dib0090_p1g_pll_table[] = {
#ifdef CONFIG_BAND_CBAND
{57000, 0, 11, 48, 6}, // CAB
{70000, 1, 11, 48, 6}, // CAB
{86000, 0, 10, 32, 4}, // CAB
{105000, 1, 10, 32, 4}, // FM
{115000, 0, 9, 24, 6}, // FM
{140000, 1, 9, 24, 6}, // MID FM VHF
{170000, 0, 8, 16, 4}, // MID FM VHF
{57000, 0, 11, 48, 6},
{70000, 1, 11, 48, 6},
{86000, 0, 10, 32, 4},
{105000, 1, 10, 32, 4},
{115000, 0, 9, 24, 6},
{140000, 1, 9, 24, 6},
{170000, 0, 8, 16, 4},
#endif
#ifdef CONFIG_BAND_VHF
{200000, 1, 8, 16, 4}, // VHF
{230000, 0, 7, 12, 6}, // VHF
{280000, 1, 7, 12, 6}, // MID VHF UHF
{340000, 0, 6, 8, 4}, // MID VHF UHF
{380000, 1, 6, 8, 4}, // MID VHF UHF
{455000, 0, 5, 6, 6}, // MID VHF UHF
{200000, 1, 8, 16, 4},
{230000, 0, 7, 12, 6},
{280000, 1, 7, 12, 6},
{340000, 0, 6, 8, 4},
{380000, 1, 6, 8, 4},
{455000, 0, 5, 6, 6},
#endif
#ifdef CONFIG_BAND_UHF
{580000, 1, 5, 6, 6}, // UHF
{680000, 0, 4, 4, 4}, // UHF
{860000, 1, 4, 4, 4}, // UHF
{580000, 1, 5, 6, 6},
{680000, 0, 4, 4, 4},
{860000, 1, 4, 4, 4},
#endif
#ifdef CONFIG_BAND_LBAND
{1800000, 1, 2, 2, 4}, // LBD
{1800000, 1, 2, 2, 4},
#endif
#ifdef CONFIG_BAND_SBAND
{2900000, 0, 1, 1, 6}, // SBD
{2900000, 0, 1, 1, 6},
#endif
};
static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
//max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
{184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, // FM EN_CAB // 0x8190 Good perf but higher current //0x4187 Low current
{227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, // FM EN_CAB
{380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, // FM EN_CAB
{184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
{227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
{380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
#endif
#ifdef CONFIG_BAND_UHF
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, // UHF
{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, // LBD EN_LBD
{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, // SBD EN_SBD
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, // SBD EN_SBD
{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};
static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
//max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
//{ 184000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB }, // 0x81ce 0x8190 Good perf but higher current //0x4187 Low current
{300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
{380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, //0x4187
{380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
{570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
{858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
#endif
@ -1916,17 +1901,15 @@ static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tun
state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
}
}
state->adc_diff = 3000; // start with a unreachable high number : only set for KROSUS < P1G */
state->adc_diff = 3000;
*tune_state = CT_TUNER_STEP_0;
} else if (*tune_state == CT_TUNER_STEP_0) {
if (state->identity.p1g && !force_soft_search) {
// 30MHz => Code 15 for the ration => 128us to lock. Giving approximately
u8 ratio = 31; // (state->config->io.clock_khz / 1024 + 1) & 0x1f;
u8 ratio = 31;
dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
dib0090_read_reg(state, 0x40);
//dib0090_write_reg(state, 0x40, (3<<7) | ((((state->config->io.clock_khz >> 11)+1) & 0x1f)<<2) | (1<<1) | 1);
ret = 50;
} else {
state->step /= 2;
@ -1968,9 +1951,6 @@ static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tun
dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
state->adc_diff = adc;
state->fcaptrim = state->captrim;
//we could break here, to save time, if we reached a close-enough value
//e.g.: if (state->adc_diff < 20)
//break;
}
state->captrim += step_sign * state->step;
@ -1979,7 +1959,7 @@ static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tun
else
*tune_state = CT_TUNER_STEP_2;
ret = 25; //LOLO changed from 15
ret = 25;
}
} else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */
/*write the final cptrim config */
@ -2000,28 +1980,27 @@ static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tu
int ret = 15;
s16 val;
//The assumption is that the AGC is not active
switch (*tune_state) {
case CT_TUNER_START:
state->wbdmux = dib0090_read_reg(state, 0x10);
dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3)); //Move to the bias and clear the wbd enable
dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
state->bias = dib0090_read_reg(state, 0x13);
dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8)); //Move to the Ref
dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
*tune_state = CT_TUNER_STEP_0;
/* wait for the WBDMUX to switch and for the ADC to sample */
break;
case CT_TUNER_STEP_0:
state->adc_diff = dib0090_get_slow_adc_val(state); // Get the value for the Ref
dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8)); //Move to the Ptat
state->adc_diff = dib0090_get_slow_adc_val(state);
dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
*tune_state = CT_TUNER_STEP_1;
break;
case CT_TUNER_STEP_1:
val = dib0090_get_slow_adc_val(state); // Get the value for the Ptat
state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55; // +55 is defined as = -30deg
val = dib0090_get_slow_adc_val(state);
state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
dprintk("temperature: %d C", state->temperature - 30);
@ -2029,14 +2008,13 @@ static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tu
break;
case CT_TUNER_STEP_2:
//Reload the start values.
dib0090_write_reg(state, 0x13, state->bias);
dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */
*tune_state = CT_TUNER_START;
state->calibrate &= ~TEMP_CAL;
if (state->config->analog_output == 0)
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); //Set the DataTX
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
break;
@ -2070,16 +2048,17 @@ static int dib0090_tune(struct dvb_frontend *fe)
/* deactivate DataTX before some calibrations */
if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
else /* Activate DataTX in case a calibration has been done before */ if (state->config->analog_output == 0)
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
else
/* Activate DataTX in case a calibration has been done before */
if (state->config->analog_output == 0)
dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
}
if (state->calibrate & DC_CAL)
return dib0090_dc_offset_calibration(state, tune_state);
else if (state->calibrate & WBD_CAL) {
if (state->current_rf == 0) {
if (state->current_rf == 0)
state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
}
return dib0090_wbd_calibration(state, tune_state);
} else if (state->calibrate & TEMP_CAL)
return dib0090_get_temperature(state, tune_state);
@ -2091,7 +2070,7 @@ static int dib0090_tune(struct dvb_frontend *fe)
if (state->config->use_pwm_agc && state->identity.in_soc) {
tmp = dib0090_read_reg(state, 0x39);
if ((tmp >> 10) & 0x1)
dib0090_write_reg(state, 0x39, tmp & ~(1 << 10)); // disengage mux : en_mux_bb1 = 0
dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
}
state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
@ -2172,22 +2151,17 @@ static int dib0090_tune(struct dvb_frontend *fe)
state->current_tune_table_index = tune;
state->current_pll_table_index = pll;
// select internal switch
dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
// Find the VCO frequency in MHz
VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
FREF = state->config->io.clock_khz; // REFDIV is 1FREF Has to be as Close as possible to 10MHz
FREF = state->config->io.clock_khz;
if (state->config->fref_clock_ratio != 0)
FREF /= state->config->fref_clock_ratio;
// Determine the FB divider
// The reference is 10MHz, Therefore the FBdivider is on the first digits
FBDiv = (VCOF_kHz / pll->topresc / FREF);
Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; //in kHz
Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
// Avoid Spurs in the loopfilter bandwidth
if (Rest < LPF)
Rest = 0;
else if (Rest < 2 * LPF)
@ -2195,8 +2169,7 @@ static int dib0090_tune(struct dvb_frontend *fe)
else if (Rest > (FREF - LPF)) {
Rest = 0;
FBDiv += 1;
} //Go to the next FB
else if (Rest > (FREF - 2 * LPF))
} else if (Rest > (FREF - 2 * LPF))
Rest = FREF - 2 * LPF;
Rest = (Rest * 6528) / (FREF / 10);
state->rest = Rest;
@ -2208,8 +2181,6 @@ static int dib0090_tune(struct dvb_frontend *fe)
if (Rest == 0) {
if (pll->vco_band)
lo5 = 0x049f;
//else if (state->config->analog_output)
// lo5 = 0x041f;
else
lo5 = 0x041f;
} else {
@ -2228,12 +2199,11 @@ static int dib0090_tune(struct dvb_frontend *fe)
else
lo5 = 0x42f;
} else
lo5 = 0x42c; //BIAS Lo set to 4 by default in case of the Captrim search does not take care of the VCO Bias
lo5 = 0x42c;
}
lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
//Internal loop filter set...
if (!state->config->io.pll_int_loop_filt) {
if (state->identity.in_soc)
lo6 = 0xff98;
@ -2242,40 +2212,30 @@ static int dib0090_tune(struct dvb_frontend *fe)
else
lo6 = 0xff28;
} else
lo6 = (state->config->io.pll_int_loop_filt << 3); // take the loop filter value given by the layout
//dprintk("lo6 = 0x%04x", (u32)lo6);
lo6 = (state->config->io.pll_int_loop_filt << 3);
Den = 1;
if (Rest > 0) {
if (state->config->analog_output)
lo6 |= (1 << 2) | 2; //SigmaDelta and Dither
lo6 |= (1 << 2) | 2;
else {
if (state->identity.in_soc)
lo6 |= (1 << 2) | 2; //SigmaDelta and Dither
lo6 |= (1 << 2) | 2;
else
lo6 |= (1 << 2) | 2; //SigmaDelta and Dither
lo6 |= (1 << 2) | 2;
}
Den = 255;
}
// Now we have to define the Num and Denum
// LO1 gets the FBdiv
dib0090_write_reg(state, 0x15, (u16) FBDiv);
// LO2 gets the REFDiv
if (state->config->fref_clock_ratio != 0)
dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
else
dib0090_write_reg(state, 0x16, (Den << 8) | 1);
// LO3 for the Numerator
dib0090_write_reg(state, 0x17, (u16) Rest);
// VCO and HF DIV
dib0090_write_reg(state, 0x19, lo5);
// SIGMA Delta
dib0090_write_reg(state, 0x1c, lo6);
// Check if the 0090 is analogged configured
//Disable ADC and DigPLL =0xFF9F, 0xffbf for test purposes.
//Enable The Outputs of the BB on DATA_Tx
lo6 = tune->tuner_enable;
if (state->config->analog_output)
lo6 = (lo6 & 0xff9f) | 0x2;
@ -2294,10 +2254,8 @@ static int dib0090_tune(struct dvb_frontend *fe)
else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
// if(!state->identity.p1g) {
while (state->current_rf / 1000 > wbd->max_freq)
wbd++;
// }
dib0090_write_reg(state, 0x1e, 0x07ff);
dprintk("Final Captrim: %d", (u32) state->fcaptrim);
@ -2311,12 +2269,11 @@ static int dib0090_tune(struct dvb_frontend *fe)
#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
c = 4;
i = 3; //wbdmux_bias
i = 3;
if (wbd->wbd_gain != 0) //&& !state->identity.p1g)
if (wbd->wbd_gain != 0)
c = wbd->wbd_gain;
//Store wideband mux register.
state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
dib0090_write_reg(state, 0x10, state->wbdmux);
@ -2335,15 +2292,12 @@ static int dib0090_tune(struct dvb_frontend *fe)
} else if (*tune_state == CT_TUNER_STEP_1) {
/* initialize the lt gain register */
state->rf_lt_def = 0x7c00;
// dib0090_write_reg(state, 0x0f, state->rf_lt_def);
dib0090_set_bandwidth(state);
state->tuner_is_tuned = 1;
// if(!state->identity.p1g)
state->calibrate |= WBD_CAL; // TODO: only do the WBD calibration for new tune
//
state->calibrate |= TEMP_CAL; // Force the Temperature to be remesured at next TUNE.
state->calibrate |= WBD_CAL;
state->calibrate |= TEMP_CAL;
*tune_state = CT_TUNER_STOP;
} else
ret = FE_CALLBACK_TIME_NEVER;
@ -2435,8 +2389,8 @@ static const struct dvb_tuner_ops dib0090_fw_ops = {
static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
{470, 0, 250, 0, 100, 4},
{860, 51, 866, 21, 375, 4},
{1700, 0, 800, 0, 850, 4}, //LBAND Predefinition , to calibrate
{2900, 0, 250, 0, 100, 6}, //SBAND Predefinition , NOT tested Yet
{1700, 0, 800, 0, 850, 4},
{2900, 0, 250, 0, 100, 6},
{0xFFFF, 0, 0, 0, 0, 0},
};
@ -2489,12 +2443,11 @@ struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_ada
memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
return fe;
free_mem:
free_mem:
kfree(st);
fe->tuner_priv = NULL;
return NULL;
}
EXPORT_SYMBOL(dib0090_fw_register);
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");

View File

@ -79,8 +79,8 @@ static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
{.addr = state->i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
{.addr = state->i2c_addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
{.addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2},
{.addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2},
};
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
@ -96,7 +96,7 @@ static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg = {
.addr = state->i2c_addr >> 1,.flags = 0,.buf = b,.len = 4
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
@ -129,13 +129,13 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
dprintk("setting output mode for demod %p to %d", &state->demod, mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
case OUTMODE_MPEG2_PAR_GATED_CLK:
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
case OUTMODE_MPEG2_PAR_CONT_CLK:
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
case OUTMODE_MPEG2_SERIAL:
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */
break;
case OUTMODE_DIVERSITY:
@ -144,7 +144,7 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
else
outreg = (1 << 11);
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
case OUTMODE_MPEG2_FIFO:
smo_mode |= (3 << 1);
fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6);
@ -152,7 +152,7 @@ static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6);
break;
case OUTMODE_HIGH_Z: // disable
case OUTMODE_HIGH_Z:
outreg = 0;
break;
default:
@ -284,7 +284,7 @@ static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_ad
reg_909 &= 0x0003;
break;
case DIBX000_ADC_OFF: // leave the VBG voltage on
case DIBX000_ADC_OFF:
reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
break;
@ -336,13 +336,12 @@ static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
if (state->version == SOC7090)
dib7000p_write_word(state, 74, 2048); // P_sad_calib_value = (0.9/1.8)*4096
dib7000p_write_word(state, 74, 2048);
else
dib7000p_write_word(state, 74, 776); // P_sad_calib_value = 0.625*3.3 / 4096
dib7000p_write_word(state, 74, 776);
/* do the calibration */
dib7000p_write_word(state, 73, (1 << 0));
@ -371,8 +370,8 @@ static void dib7000p_reset_pll(struct dib7000p_state *state)
if (state->version == SOC7090) {
dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
}
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
;
dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
} else {
@ -420,7 +419,7 @@ int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config
dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
reg_1856 &= 0xf000;
reg_1857 = dib7000p_read_word(state, 1857);
dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); // desable pll
dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));
@ -431,11 +430,10 @@ int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config
dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) (internal & 0xffff));
dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); // enable pll
dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
dprintk("Waiting for PLL to lock");
}
return 0;
}
@ -503,7 +501,7 @@ static u16 dib7000p_defaults[] = {
0xd4c0,
1, 26,
0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
0x6680,
/* set ADC level to -16 */
11, 79,
@ -520,7 +518,7 @@ static u16 dib7000p_defaults[] = {
(1 << 13) - 501 - 117,
1, 142,
0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
0x0410,
/* disable power smoothing */
8, 145,
@ -534,42 +532,39 @@ static u16 dib7000p_defaults[] = {
0,
1, 154,
1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0
1 << 13,
1, 168,
0x0ccd, // P_pha3_thres, default 0x3000
// 1, 169,
// 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
0x0ccd,
1, 183,
0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
0x200f,
1, 212,
0x169, // P_vit_ksi_dwn = 5 P_vit_ksi_up = 5 0x1e1, // P_vit_ksi_dwn = 4 P_vit_ksi_up = 7
0x169,
5, 187,
0x023d, // P_adp_regul_cnt=573, default: 410
0x00a4, // P_adp_noise_cnt=
0x00a4, // P_adp_regul_ext
0x7ff0, // P_adp_noise_ext
0x3ccc, // P_adp_fil
0x023d,
0x00a4,
0x00a4,
0x7ff0,
0x3ccc,
1, 198,
0x800, // P_equal_thres_wgn
0x800,
1, 222,
0x0010, // P_fec_ber_rs_len=2
0x0010,
1, 235,
0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
0x0062,
2, 901,
0x0006, // P_clk_cfg1
(3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1
0x0006,
(3 << 10) | (1 << 6),
1, 905,
0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive
0x2c8e,
0,
};
@ -609,8 +604,7 @@ static int dib7000p_demod_reset(struct dib7000p_state *state)
dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
//dib7000p_write_word(state, 273, (1<<6) | 10); /* P_vit_inoise_sel = 1, P_vit_inoise_gain = 10*/
dib7000p_write_word(state, 273, (1<<6) | 30); //26/* P_vit_inoise_sel = 1, P_vit_inoise_gain = 26*/// FAG
dib7000p_write_word(state, 273, (1<<6) | 30);
}
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("OUTPUT_MODE could not be reset.");
@ -624,9 +618,9 @@ static int dib7000p_demod_reset(struct dib7000p_state *state)
dib7000p_set_bandwidth(state, 8000);
if(state->version == SOC7090) {
if (state->version == SOC7090) {
dib7000p_write_word(state, 36, 0x5755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
} else { // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
} else {
if (state->cfg.tuner_is_baseband)
dib7000p_write_word(state, 36, 0x0755);
else
@ -644,9 +638,9 @@ static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
u16 tmp = 0;
tmp = dib7000p_read_word(state, 903);
dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll
dib7000p_write_word(state, 903, (tmp | 0x1));
tmp = dib7000p_read_word(state, 900);
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
}
static void dib7000p_restart_agc(struct dib7000p_state *state)
@ -660,11 +654,9 @@ static int dib7000p_update_lna(struct dib7000p_state *state)
{
u16 dyn_gain;
// when there is no LNA to program return immediatly
if (state->cfg.update_lna) {
// read dyn_gain here (because it is demod-dependent and not fe)
dyn_gain = dib7000p_read_word(state, 394);
if (state->cfg.update_lna(&state->demod, dyn_gain)) { // LNA has changed
if (state->cfg.update_lna(&state->demod, dyn_gain)) {
dib7000p_restart_agc(state);
return 1;
}
@ -763,12 +755,11 @@ static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_
switch (state->agc_state) {
case 0:
// set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 0x79b) & 0xff00;
dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */
dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); // bit 14 = enDemodGain
dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
/* enable adc i & q */
reg = dib7000p_read_word(state, 0x780);
@ -787,7 +778,6 @@ static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_
break;
case 1:
// AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
@ -831,13 +821,11 @@ static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_
break;
case 4: /* LNA startup */
// wait AGC accurate lock time
ret = 7;
if (dib7000p_update_lna(state))
// wait only AGC rough lock time
ret = 5;
else // nothing was done, go to the next state
else
(*agc_state)++;
break;
@ -971,10 +959,10 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte
dib7000p_write_word(state, 208, value);
/* offset loop parameters */
dib7000p_write_word(state, 26, 0x6680); // timf(6xxx)
dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3)
dib7000p_write_word(state, 29, 0x1273); // isi
dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5)
dib7000p_write_word(state, 26, 0x6680);
dib7000p_write_word(state, 32, 0x0003);
dib7000p_write_word(state, 29, 0x1273);
dib7000p_write_word(state, 33, 0x0005);
/* P_dvsy_sync_wait */
switch (ch->u.ofdm.transmission_mode) {
@ -1005,9 +993,9 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte
break;
}
if (state->cfg.diversity_delay == 0)
state->div_sync_wait = (value * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
state->div_sync_wait = (value * 3) / 2 + 48;
else
state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for one DVSY-fifo
state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
/* deactive the possibility of diversity reception if extended interleaver */
state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
@ -1061,16 +1049,15 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron
else
factor = 6;
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * internal * factor;
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
dib7000p_write_word(state, 7, (u16) (value & 0xffff));
value = 100 * internal * factor;
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
dib7000p_write_word(state, 9, (u16) (value & 0xffff));
value = 500 * internal * factor;
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
dib7000p_write_word(state, 11, (u16) (value & 0xffff));
value = dib7000p_read_word(state, 0);
dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
@ -1085,13 +1072,13 @@ static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
struct dib7000p_state *state = demod->demodulator_priv;
u16 irq_pending = dib7000p_read_word(state, 1284);
if (irq_pending & 0x1) // failed
if (irq_pending & 0x1)
return 1;
if (irq_pending & 0x2) // succeeded
if (irq_pending & 0x2)
return 2;
return 0; // still pending
return 0;
}
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
@ -1202,9 +1189,9 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet
if (state->sfn_workaround_active) {
dprintk("SFN workaround is active");
tmp |= (1 << 9);
dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift
dib7000p_write_word(state, 166, 0x4000);
} else {
dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift
dib7000p_write_word(state, 166, 0x0000);
}
dib7000p_write_word(state, 29, tmp);
@ -1425,8 +1412,7 @@ static int dib7000p_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_pa
if (state->version == SOC7090) {
dib7090_set_diversity_in(fe, 0);
dib7090_set_output_mode(fe, OUTMODE_HIGH_Z);
}
else
} else
dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
/* maybe the parameter has been changed */
@ -1455,7 +1441,7 @@ static int dib7000p_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_pa
dprintk("autosearch returns: %d", found);
if (found == 0 || found == 1)
return 0; // no channel found
return 0;
dib7000p_get_frontend(fe, fep);
}
@ -1566,8 +1552,8 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{
u8 tx[2], rx[2];
struct i2c_msg msg[2] = {
{.addr = 18 >> 1,.flags = 0,.buf = tx,.len = 2},
{.addr = 18 >> 1,.flags = I2C_M_RD,.buf = rx,.len = 2},
{.addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2},
{.addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2},
};
tx[0] = 0x03;
@ -1725,9 +1711,8 @@ static int map_addr_to_serpar_number(struct i2c_msg *msg)
msg->buf[0] -= 3;
else if (msg->buf[0] == 28)
msg->buf[0] = 23;
else {
else
return -EINVAL;
}
return 0;
}
@ -1909,7 +1894,7 @@ static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[]
if (num == 1) { /* write */
word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
word &= 0x3;
word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); //Mask bit 12,13
word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
dib7000p_write_word(state, 72, word); /* Set the proper input */
return num;
}
@ -1996,7 +1981,7 @@ static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout
u16 rx_copy_buf[22];
dprintk("Configure DibStream Tx");
for (index_buf = 0; index_buf<22; index_buf++)
for (index_buf = 0; index_buf < 22; index_buf++)
rx_copy_buf[index_buf] = dib7000p_read_word(state, 1536+index_buf);
dib7000p_write_word(state, 1615, 1);
@ -2009,7 +1994,7 @@ static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout
dib7000p_write_word(state, 1612, syncSize);
dib7000p_write_word(state, 1615, 0);
for (index_buf = 0; index_buf<22; index_buf++)
for (index_buf = 0; index_buf < 22; index_buf++)
dib7000p_write_word(state, 1536+index_buf, rx_copy_buf[index_buf]);
return 0;
@ -2021,8 +2006,7 @@ static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout
u32 syncFreq;
dprintk("Configure DibStream Rx");
if ((P_Kin != 0) && (P_Kout != 0))
{
if ((P_Kin != 0) && (P_Kout != 0)) {
syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
dib7000p_write_word(state, 1542, syncFreq);
}
@ -2044,7 +2028,7 @@ static int dib7090_enDivOnHostBus(struct dib7000p_state *state)
u16 reg;
dprintk("Enable Diversity on host bus");
reg = (1 << 8) | (1 << 5); // P_enDivOutOnDibTx = 1 ; P_enDibTxOnHostBus = 1
reg = (1 << 8) | (1 << 5);
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
@ -2055,7 +2039,7 @@ static int dib7090_enAdcOnHostBus(struct dib7000p_state *state)
u16 reg;
dprintk("Enable ADC on host bus");
reg = (1 << 7) | (1 << 5); //P_enAdcOnDibTx = 1 ; P_enDibTxOnHostBus = 1
reg = (1 << 7) | (1 << 5);
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
@ -2066,7 +2050,7 @@ static int dib7090_enMpegOnHostBus(struct dib7000p_state *state)
u16 reg;
dprintk("Enable Mpeg on host bus");
reg = (1 << 9) | (1 << 5); //P_enMpegOnDibTx = 1 ; P_enDibTxOnHostBus = 1
reg = (1 << 9) | (1 << 5);
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
@ -2085,10 +2069,10 @@ static int dib7090_enMpegMux(struct dib7000p_state *state, u16 pulseWidth, u16 e
dprintk("Enable Mpeg mux");
dib7000p_write_word(state, 1287, reg);
reg &= ~(1 << 7); // P_restart_mpegMux = 0
reg &= ~(1 << 7);
dib7000p_write_word(state, 1287, reg);
reg = (1 << 4); //P_enMpegMuxOnHostBus = 1
reg = (1 << 4);
dib7000p_write_word(state, 1288, reg);
return 0;
@ -2099,10 +2083,10 @@ static int dib7090_disableMpegMux(struct dib7000p_state *state)
u16 reg;
dprintk("Disable Mpeg mux");
dib7000p_write_word(state, 1288, 0); //P_enMpegMuxOnHostBus = 0
dib7000p_write_word(state, 1288, 0);
reg = dib7000p_read_word(state, 1287);
reg &= ~(1 << 7); // P_restart_mpegMux = 0
reg &= ~(1 << 7);
dib7000p_write_word(state, 1287, reg);
return 0;
@ -2112,19 +2096,19 @@ static int dib7090_set_input_mode(struct dvb_frontend *fe, int mode)
{
struct dib7000p_state *state = fe->demodulator_priv;
switch(mode) {
case INPUT_MODE_DIVERSITY:
switch (mode) {
case INPUT_MODE_DIVERSITY:
dprintk("Enable diversity INPUT");
dib7090_cfg_DibRx(state, 5,5,0,0,0,0,0);
dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
break;
case INPUT_MODE_MPEG:
case INPUT_MODE_MPEG:
dprintk("Enable Mpeg INPUT");
dib7090_cfg_DibRx(state, 8,5,0,0,0,8,0); /*outputRate = 8 */
dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /*outputRate = 8 */
break;
case INPUT_MODE_OFF:
default:
case INPUT_MODE_OFF:
default:
dprintk("Disable INPUT");
dib7090_cfg_DibRx(state, 0,0,0,0,0,0,0);
dib7090_cfg_DibRx(state, 0, 0, 0, 0, 0, 0, 0);
break;
}
return 0;
@ -2175,7 +2159,7 @@ static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_SERIAL using Smooth bloc");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (2 << 6) | (0 << 1);
}
break;
@ -2190,7 +2174,7 @@ static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (0 << 6);
}
break;
@ -2198,14 +2182,14 @@ static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
dprintk("Sip 7090P setting output mode TS_PARALLEL_CONT using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (1 << 6);
break;
case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */
dprintk("Sip 7090P setting output mode TS_FIFO using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
dib7000p_write_word(state, 1288, (1 << 6));
outreg |= (5 << 6);
smo_mode |= (3 << 1);
fifo_threshold = 512;
@ -2242,12 +2226,11 @@ int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
en_cur_state = dib7000p_read_word(state, 1922);
if (en_cur_state > 0xff) { //LNAs and MIX are ON and therefore it is a valid configuration
if (en_cur_state > 0xff)
state->tuner_enable = en_cur_state;
}
if (onoff)
en_cur_state &= 0x00ff; //Mask to be applied
en_cur_state &= 0x00ff;
else {
if (state->tuner_enable != 0)
en_cur_state = state->tuner_enable;
@ -2275,13 +2258,13 @@ EXPORT_SYMBOL(dib7090_get_adc_power);
int dib7090_slave_reset(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg;
u16 reg;
reg = dib7000p_read_word(state, 1794);
dib7000p_write_word(state, 1794, reg | (4 << 12));
reg = dib7000p_read_word(state, 1794);
dib7000p_write_word(state, 1794, reg | (4 << 12));
dib7000p_write_word(state, 1032, 0xffff);
return 0;
dib7000p_write_word(state, 1032, 0xffff);
return 0;
}
EXPORT_SYMBOL(dib7090_slave_reset);
@ -2340,7 +2323,7 @@ struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr,
return demod;
error:
error:
kfree(st);
return NULL;
}

View File

@ -39,7 +39,7 @@ struct dib7000p_config {
u16 diversity_delay;
u8 default_i2c_addr;
u8 enMpegOutput : 1;
u8 enMpegOutput:1;
};
#define DEFAULT_DIB7000P_I2C_ADDRESS 18

View File

@ -261,7 +261,8 @@ static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode)
fifo_threshold = 1792;
smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
dprintk("-I- Setting output mode for demod %p to %d", &state->fe[0], mode);
dprintk("-I- Setting output mode for demod %p to %d",
&state->fe[0], mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
@ -295,7 +296,8 @@ static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode)
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe[0]);
dprintk("Unhandled output_mode passed to be set for demod %p",
&state->fe[0]);
return -EINVAL;
}
@ -345,7 +347,8 @@ static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_pow
{
/* by default everything is going to be powered off */
u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3,
reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
/* now, depending on the requested mode, we power on */
switch (mode) {
@ -482,7 +485,8 @@ static void dib8000_reset_pll(struct dib8000_state *state)
// clk_cfg1
clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
(pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) | (pll->pll_range << 1) | (pll->pll_reset << 0);
(pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) |
(pll->pll_range << 1) | (pll->pll_reset << 0);
dib8000_write_word(state, 902, clk_cfg1);
clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
@ -492,11 +496,12 @@ static void dib8000_reset_pll(struct dib8000_state *state)
/* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
if (state->cfg.pll->ADClkSrc == 0)
dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) |
(pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
else if (state->cfg.refclksel != 0)
dib8000_write_word(state, 904,
(0 << 15) | (1 << 12) | ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) | (pll->
ADClkSrc << 7) | (0 << 1));
dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) |
(pll->ADClkSrc << 7) | (0 << 1));
else
dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
@ -627,14 +632,14 @@ static const u16 dib8000_defaults[] = {
1, 285,
0x0020, //p_fec_
1, 299,
0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
1, 338,
(1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
(1 << 10) | // P_ctrl_pre_freq_mode_sat=1
(0 << 9) | // P_ctrl_pre_freq_inh=0
(3 << 5) | // P_ctrl_pre_freq_step=3
(1 << 0), // P_pre_freq_win_len=1
(1 << 10) |
(0 << 9) | /* P_ctrl_pre_freq_inh=0 */
(3 << 5) | /* P_ctrl_pre_freq_step=3 */
(1 << 0), /* P_pre_freq_win_len=1 */
1, 903,
(0 << 4) | 2, // P_divclksel=0 P_divbitsel=2 (was clk=3,bit=1 for MPW)
@ -782,7 +787,7 @@ static int dib8000_update_lna(struct dib8000_state *state)
// read dyn_gain here (because it is demod-dependent and not tuner)
dyn_gain = dib8000_read_word(state, 390);
if (state->cfg.update_lna(state->fe[0], dyn_gain)) { // LNA has changed
if (state->cfg.update_lna(state->fe[0], dyn_gain)) {
dib8000_restart_agc(state);
return 1;
}
@ -869,7 +874,8 @@ static int dib8000_agc_soft_split(struct dib8000_state *state)
split_offset = state->current_agc->split.max;
else
split_offset = state->current_agc->split.max *
(agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
(agc - state->current_agc->split.min_thres) /
(state->current_agc->split.max_thres - state->current_agc->split.min_thres);
dprintk("AGC split_offset: %d", split_offset);
@ -952,14 +958,13 @@ s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode)
s32 val;
val = dib8000_read32(state, 384);
/* mode = 1 : ln_agcpower calc using mant-exp conversion and mantis look up table */
if (mode) {
tmp_val = val;
while (tmp_val >>= 1)
exp++;
mant = (val * 1000 / (1<<exp));
ix = (u8)((mant-1000)/100); /* index of the LUT */
val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); /* 1000 * ln(adcpower_real) ; 693 = 1000ln(2) ; 6908 = 1000*ln(1000) ; 20 comes from adc_real = adc_pow_int / 2**20 */
val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908);
val = (val*256)/1000;
}
return val;
@ -1006,18 +1011,19 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
i = dib8000_read_word(state, 26) & 1; // P_dds_invspec
dib8000_write_word(state, 26, state->fe[0]->dtv_property_cache.inversion ^ i);
dib8000_write_word(state, 26, state->fe[0]->dtv_property_cache.inversion^i);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) {
//compute new dds_freq for the seg and adjust prbs
int seg_offset =
state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx - (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) -
state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx -
(state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) -
(state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2);
int clk = state->cfg.pll->internal;
u32 segtodds = ((u32) (430 << 23) / clk) << 3; // segtodds = SegBW / Fclk * pow(2,26)
int dds_offset = seg_offset * segtodds;
int new_dds, sub_channel;
if ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) // if even
if ((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
dds_offset -= (int)(segtodds / 2);
if (state->cfg.pll->ifreq == 0) {
@ -1031,7 +1037,8 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
// - the segment of center frequency with an odd total number of segments
// - the segment to the left of center frequency with an even total number of segments
// - the segment to the right of center frequency with an even total number of segments
if ((state->fe[0]->dtv_property_cache.delivery_system == SYS_ISDBT) && (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1)
if ((state->fe[0]->dtv_property_cache.delivery_system == SYS_ISDBT)
&& (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1)
&& (((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2)
&& (state->fe[0]->dtv_property_cache.isdbt_sb_segment_idx ==
((state->fe[0]->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
@ -1051,9 +1058,9 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
}
dib8000_write_word(state, 27, (u16) ((new_dds >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (new_dds & 0xffff));
if (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2) // if odd
if (state->fe[0]->dtv_property_cache.isdbt_sb_segment_count % 2)
sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset) + 1) % 41) / 3;
else // if even
else
sub_channel = ((state->fe[0]->dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset)) % 41) / 3;
sub_channel -= 6;
@ -1212,7 +1219,7 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
}
break;
}
} else { // if not state->fe[0]->dtv_property_cache.isdbt_sb_mode
} else {
dib8000_write_word(state, 27, (u16) ((state->cfg.pll->ifreq >> 16) & 0x01ff));
dib8000_write_word(state, 28, (u16) (state->cfg.pll->ifreq & 0xffff));
dib8000_write_word(state, 26, (u16) ((state->cfg.pll->ifreq >> 25) & 0x0003));
@ -1332,8 +1339,8 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
state->differential_constellation = (seg_diff_mask != 0);
dib8000_set_diversity_in(state->fe[0], state->diversity_onoff);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1)
seg_mask13 = 0x00E0;
else // 1-segment
seg_mask13 = 0x0040;
@ -1355,25 +1362,24 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
dib8000_write_word(state, 353, seg_mask13); // ADDR 353
/* // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */
// dib8000_write_word(state, 351, (state->fe[0]->dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5 );
// ---- SMALL ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
switch (state->fe[0]->dtv_property_cache.transmission_mode) {
case TRANSMISSION_MODE_2K:
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_2k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_2k_sb_1seg;
} else { // 3-segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK)
ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
else // QPSK or QAM on external segments
ncoeff = coeff_2k_sb_3seg_0dqpsk;
} else { // QPSK or QAM on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK)
ncoeff = coeff_2k_sb_3seg_1dqpsk;
else // QPSK or QAM on external segments
ncoeff = coeff_2k_sb_3seg;
@ -1382,20 +1388,20 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
break;
case TRANSMISSION_MODE_4K:
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_4k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_4k_sb_1seg;
} else { // 3-segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
} else { // QPSK or QAM on external segments
ncoeff = coeff_4k_sb_3seg_0dqpsk;
}
} else { // QPSK or QAM on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_4k_sb_3seg_1dqpsk;
} else // QPSK or QAM on external segments
ncoeff = coeff_4k_sb_3seg;
@ -1406,20 +1412,20 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
case TRANSMISSION_MODE_AUTO:
case TRANSMISSION_MODE_8K:
default:
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK)
ncoeff = coeff_8k_sb_1seg_dqpsk;
else // QPSK or QAM
ncoeff = coeff_8k_sb_1seg;
} else { // 3-segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
if (state->fe[0]->dtv_property_cache.layer[0].modulation == DQPSK) {
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
} else { // QPSK or QAM on external segments
ncoeff = coeff_8k_sb_3seg_0dqpsk;
}
} else { // QPSK or QAM on central segment
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
if (state->fe[0]->dtv_property_cache.layer[1].modulation == DQPSK) {
ncoeff = coeff_8k_sb_3seg_1dqpsk;
} else // QPSK or QAM on external segments
ncoeff = coeff_8k_sb_3seg;
@ -1437,7 +1443,7 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
// ---- COFF ----
// Carloff, the most robust
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { // Sound Broadcasting mode - use both TMCC and AC pilots
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
// P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64
// P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1
@ -1448,7 +1454,7 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
/* // P_small_coef_ext_enable = 1 */
/* dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
// P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1)
if (mode == 3)
@ -1512,7 +1518,7 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
}
// ---- FFT ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 && state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // 1-seg
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1 && state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
dib8000_write_word(state, 178, 64); // P_fft_powrange=64
else
dib8000_write_word(state, 178, 32); // P_fft_powrange=32
@ -1542,7 +1548,7 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
/* offset loop parameters */
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
/* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x40);
@ -1555,7 +1561,7 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
dib8000_write_word(state, 32, ((9 - mode) << 12) | (6 << 8) | 0x80);
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
/* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (11-P_mode) */
dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (10 - mode));
@ -1628,7 +1634,7 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
// ---- ANA_FE ----
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 1)
ana_fe = ana_fe_coeff_3seg;
else // 1-segment
ana_fe = ana_fe_coeff_1seg;
@ -1651,10 +1657,10 @@ static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosear
// "P_cspu_left_edge" not used => do not care
// "P_cspu_right_edge" not used => do not care
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
dib8000_write_word(state, 228, 1); // P_2d_mode_byp=1
dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); // P_cspu_win_cut = 0
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0 // 1-segment
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0
&& state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K) {
//dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0
dib8000_write_word(state, 265, 15); // P_equal_noise_sel = 15
@ -1803,7 +1809,7 @@ static int dib8000_tune(struct dvb_frontend *fe)
// never achieved a lock before - wait for timfreq to update
if (state->timf == 0) {
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0)
msleep(300);
else // Sound Broadcasting mode 3 seg
msleep(500);
@ -1811,7 +1817,7 @@ static int dib8000_tune(struct dvb_frontend *fe)
msleep(200);
}
if (state->fe[0]->dtv_property_cache.isdbt_sb_mode == 1) {
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
if (state->fe[0]->dtv_property_cache.isdbt_partial_reception == 0) {
/* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40 alpha to check on board */
dib8000_write_word(state, 32, ((13 - mode) << 12) | (6 << 8) | 0x40);
@ -1864,9 +1870,9 @@ static int dib8000_wakeup(struct dvb_frontend *fe)
if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
dprintk("could not start Slow ADC");
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]);
if (ret<0)
if (ret < 0)
return ret;
}
@ -1879,7 +1885,7 @@ static int dib8000_sleep(struct dvb_frontend *fe)
u8 index_frontend;
int ret;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
if (ret < 0)
return ret;
@ -1914,13 +1920,13 @@ static int dib8000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
fe->dtv_property_cache.bandwidth_hz = 6000000;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
if (stat&FE_HAS_SYNC) {
dprintk("TMCC lock on the slave%i", index_frontend);
/* synchronize the cache with the other frontends */
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], fep);
for (sub_index_frontend=0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
if (sub_index_frontend != index_frontend) {
state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
@ -2032,7 +2038,7 @@ static int dib8000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
}
/* synchronize the cache with the other frontends */
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = fe->dtv_property_cache.isdbt_sb_mode;
state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion;
state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode;
@ -2066,7 +2072,7 @@ static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
state->fe[0]->dtv_property_cache.bandwidth_hz = 6000000;
}
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
/* synchronization of the cache */
state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT;
memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
@ -2081,7 +2087,7 @@ static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
/* start up the AGC */
do {
time = dib8000_agc_startup(state->fe[0]);
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
time_slave = dib8000_agc_startup(state->fe[index_frontend]);
if (time == FE_CALLBACK_TIME_NEVER)
time = time_slave;
@ -2093,7 +2099,7 @@ static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
else
break;
exit_condition = 1;
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) {
exit_condition = 0;
break;
@ -2101,7 +2107,7 @@ static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
}
} while (exit_condition == 0);
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
if ((state->fe[0]->dtv_property_cache.delivery_system != SYS_ISDBT) ||
@ -2132,31 +2138,30 @@ static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
u8 found = 0;
u8 tune_failed = 0;
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib8000_set_bandwidth(state->fe[index_frontend], fe->dtv_property_cache.bandwidth_hz / 1000);
dib8000_autosearch_start(state->fe[index_frontend]);
}
do {
msleep(10);
msleep(20);
nbr_pending = 0;
exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (((tune_failed >> index_frontend) & 0x1) == 0) {
found = dib8000_autosearch_irq(state->fe[index_frontend]);
switch (found) {
case 0: /* tune pending */
case 0: /* tune pending */
nbr_pending++;
break;
case 2:
case 2:
dprintk("autosearch succeed on the frontend%i", index_frontend);
exit_condition = 2;
index_frontend_success = index_frontend;
break;
default:
default:
dprintk("unhandled autosearch result");
case 1:
tune_failed |= (1 << index_frontend);
case 1:
dprintk("autosearch failed for the frontend%i", index_frontend);
break;
}
@ -2178,13 +2183,12 @@ static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
dib8000_get_frontend(fe, fep);
}
for (index_frontend=0, ret=0; (ret >= 0) && (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0, ret = 0; (ret >= 0) && (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
ret = dib8000_tune(state->fe[index_frontend]);
}
/* set output mode and diversity input */
dib8000_set_output_mode(state->fe[0], state->cfg.output_mode);
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib8000_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
dib8000_set_diversity_in(state->fe[index_frontend-1], 1);
}
@ -2195,7 +2199,8 @@ static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
return ret;
}
static u16 dib8000_read_lock(struct dvb_frontend *fe) {
static u16 dib8000_read_lock(struct dvb_frontend *fe)
{
struct dib8000_state *state = fe->demodulator_priv;
return dib8000_read_word(state, 568);
@ -2207,7 +2212,7 @@ static int dib8000_read_status(struct dvb_frontend *fe, fe_status_t * stat)
u16 lock_slave = 0, lock = dib8000_read_word(state, 568);
u8 index_frontend;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
lock_slave |= dib8000_read_lock(state->fe[index_frontend]);
*stat = 0;
@ -2262,7 +2267,7 @@ static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
u16 val;
*strength = 0;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
if (val > 65535 - *strength)
*strength = 65535;
@ -2312,7 +2317,7 @@ static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
u32 snr_master;
snr_master = dib8000_get_snr(fe);
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
snr_master += dib8000_get_snr(state->fe[index_frontend]);
if (snr_master != 0) {
@ -2361,7 +2366,7 @@ int dib8000_remove_slave_frontend(struct dvb_frontend *fe)
}
EXPORT_SYMBOL(dib8000_remove_slave_frontend);
struct dvb_frontend * dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
struct dib8000_state *state = fe->demodulator_priv;
@ -2432,7 +2437,7 @@ static void dib8000_release(struct dvb_frontend *fe)
struct dib8000_state *st = fe->demodulator_priv;
u8 index_frontend;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
dvb_frontend_detach(st->fe[index_frontend]);
dibx000_exit_i2c_master(&st->i2c_master);

View File

@ -52,7 +52,7 @@ extern void dib8000_pwm_agc_reset(struct dvb_frontend *fe);
extern s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode);
extern int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave);
extern int dib8000_remove_slave_frontend(struct dvb_frontend *fe);
extern struct dvb_frontend * dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
extern struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
#else
static inline struct dvb_frontend *dib8000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
{
@ -126,9 +126,10 @@ int dib8000_remove_slave_frontend(struct dvb_frontend *fe)
return -ENODEV;
}
static inline struct dvb_frontend * dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) {
static inline struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL;
return NULL;
}
#endif

View File

@ -31,7 +31,7 @@ struct i2c_device {
/* lock */
#define DIB_LOCK struct mutex
#define DibAcquireLock(lock) do { if (mutex_lock_interruptible(lock)<0) dprintk("could not get the lock"); } while (0)
#define DibAcquireLock(lock) do { if (mutex_lock_interruptible(lock) < 0) dprintk("could not get the lock"); } while (0)
#define DibReleaseLock(lock) mutex_unlock(lock)
#define DibInitLock(lock) mutex_init(lock)
#define DibFreeLock(lock)
@ -187,8 +187,7 @@ enum dib9000_in_messages {
#define FE_MM_W_COMPONENT_ACCESS 16
#define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen,
u8 * b, u32 len);
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len);
static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len);
static u16 to_fw_output_mode(u16 mode)
@ -220,8 +219,8 @@ static u16 dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 * b, u32
int ret;
u8 wb[2] = { reg >> 8, reg & 0xff };
struct i2c_msg msg[2] = {
{.addr = state->i2c.i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
{.addr = state->i2c.i2c_addr >> 1,.flags = I2C_M_RD,.buf = b,.len = len},
{.addr = state->i2c.i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2},
{.addr = state->i2c.i2c_addr >> 1, .flags = I2C_M_RD, .buf = b, .len = len},
};
if (state->platform.risc.fw_is_running && (reg < 1024))
@ -257,8 +256,8 @@ static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg)
u8 b[2];
u8 wb[2] = { reg >> 8, reg & 0xff };
struct i2c_msg msg[2] = {
{.addr = i2c->i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
{.addr = i2c->i2c_addr >> 1,.flags = I2C_M_RD,.buf = b,.len = 2},
{.addr = i2c->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2},
{.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, .buf = b, .len = 2},
};
if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) {
@ -295,12 +294,12 @@ static u16 dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 *
int ret;
struct i2c_msg msg = {
.addr = state->i2c.i2c_addr >> 1,.flags = 0,.buf = b,.len = len + 2
.addr = state->i2c.i2c_addr >> 1, .flags = 0, .buf = b, .len = len + 2
};
if (state->platform.risc.fw_is_running && (reg < 1024)) {
if (dib9000_risc_apb_access_write
(state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0)
(state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0)
return -EINVAL;
return 0;
}
@ -334,7 +333,7 @@ static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
{
u8 b[4] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff };
struct i2c_msg msg = {
.addr = i2c->i2c_addr >> 1,.flags = 0,.buf = b,.len = 4
.addr = i2c->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
@ -369,24 +368,24 @@ static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u3
{
u8 b[14] = { 0 };
// dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len);
// b[0] = 0 << 7;
/* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */
/* b[0] = 0 << 7; */
b[1] = 1;
// b[2] = 0; // 1057
// b[3] = 0;
b[4] = (u8) (addr >> 8); // 1058
/* b[2] = 0; */
/* b[3] = 0; */
b[4] = (u8) (addr >> 8);
b[5] = (u8) (addr & 0xff);
// b[10] = 0; // 1061
// b[11] = 0;
b[12] = (u8) (addr >> 8); // 1062
/* b[10] = 0; */
/* b[11] = 0; */
b[12] = (u8) (addr >> 8);
b[13] = (u8) (addr & 0xff);
addr += len;
// b[6] = 0; // 1059
// b[7] = 0;
b[8] = (u8) (addr >> 8); // 1060
/* b[6] = 0; */
/* b[7] = 0; */
b[8] = (u8) (addr >> 8);
b[9] = (u8) (addr & 0xff);
dib9000_write(state, 1056, b, 14);
@ -400,7 +399,7 @@ static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd)
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f];
/* decide whether we need to "refresh" the memory controller */
if (state->platform.risc.memcmd == cmd && /* same command */
!(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */
!(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */
return;
dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80);
state->platform.risc.memcmd = cmd;
@ -506,7 +505,7 @@ static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data,
break;
} while (1);
//dprintk( "MBX: size: %d", size);
/*dprintk( "MBX: size: %d", size); */
if (tmp == 0) {
ret = -EINVAL;
@ -538,7 +537,7 @@ static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data,
/* update register nb_mes_in_RX */
ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr);
out:
out:
DibReleaseLock(&state->platform.risc.mbx_if_lock);
return ret;
@ -625,7 +624,7 @@ static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr)
if (*block == 0) {
size = dib9000_mbx_read(state, block, 1, attr);
// dprintk( "MBX: fetched %04x message to cache", *block);
/* dprintk( "MBX: fetched %04x message to cache", *block); */
switch (*block >> 8) {
case IN_MSG_DEBUG_BUF:
@ -671,8 +670,8 @@ static int dib9000_mbx_process(struct dib9000_state *state, u16 attr)
ret = dib9000_mbx_fetch_to_cache(state, attr);
tmp = dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */
// if (tmp)
// dprintk( "cleared IRQ: %x", tmp);
/* if (tmp) */
/* dprintk( "cleared IRQ: %x", tmp); */
DibReleaseLock(&state->platform.risc.mbx_lock);
return ret;
@ -805,7 +804,8 @@ static u16 dib9000_identify(struct i2c_device *client)
{
u16 value;
if ((value = dib9000_i2c_read16(client, 896)) != 0x01b3) {
value = dib9000_i2c_read16(client, 896);
if (value != 0x01b3) {
dprintk("wrong Vendor ID (0x%x)", value);
return 0;
}
@ -916,7 +916,7 @@ static int dib9000_fw_reset(struct dvb_frontend *fe)
{
struct dib9000_state *state = fe->demodulator_priv;
dib9000_write_word(state, 1817, 0x0003); // SRAM read lead in + P_host_rdy_cmos=1
dib9000_write_word(state, 1817, 0x0003);
dib9000_write_word(state, 1227, 1);
dib9000_write_word(state, 1227, 0);
@ -961,8 +961,7 @@ static int dib9000_fw_reset(struct dvb_frontend *fe)
return 0;
}
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen,
u8 * b, u32 len)
static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len)
{
u16 mb[10];
u8 i, s;
@ -970,14 +969,14 @@ static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address
if (address >= 1024 || !state->platform.risc.fw_is_running)
return -EINVAL;
//dprintk( "APB access thru rd fw %d %x", address, attribute);
/* dprintk( "APB access thru rd fw %d %x", address, attribute); */
mb[0] = (u16) address;
mb[1] = len / 2;
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute);
switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) {
case 1:
s--; // address
s--;
for (i = 0; i < s; i++) {
b[i * 2] = (mb[i + 1] >> 8) & 0xff;
b[i * 2 + 1] = (mb[i + 1]) & 0xff;
@ -997,10 +996,10 @@ static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 addres
if (address >= 1024 || !state->platform.risc.fw_is_running)
return -EINVAL;
//dprintk( "APB access thru wr fw %d %x", address, attribute);
/* dprintk( "APB access thru wr fw %d %x", address, attribute); */
mb[0] = (unsigned short)address;
for (i = 0; i < len && i < 20; i += 2) // 20 bytes max
for (i = 0; i < len && i < 20; i += 2)
mb[1 + (i / 2)] = (b[i] << 8 | b[i + 1]);
dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, 1 + len / 2, attribute);
@ -1031,7 +1030,6 @@ static int dib9000_fw_init(struct dib9000_state *state)
u8 size;
if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0)
//if (dib9000_fw_boot(state, microcode_A_buffer, microcode_A_size, microcode_B_buffer, microcode_B_size) != 0)
return -EIO;
/* initialize the firmware */
@ -1062,7 +1060,6 @@ static int dib9000_fw_init(struct dib9000_state *state)
b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask;
b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction;
b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value;
//dprintk( "SBS: %d %d %x %x %x\n", i, b[1 + i*4], b[2 + i*4], b[3 + i*4], b[4 + i*4]);
}
b[1 + i * 4] = 0; /* fe_id */
if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0)
@ -1071,7 +1068,7 @@ static int dib9000_fw_init(struct dib9000_state *state)
/* 0 - id, 1 - no_of_frontends */
b[0] = (0 << 8) | 1;
/* 0 = i2c-address demod, 0 = tuner */
b[1] = (0 << 8) | (0); //st->i2c_addr ) );
b[1] = (0 << 8) | (0);
b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff);
b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff);
b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff);
@ -1089,14 +1086,14 @@ static int dib9000_fw_init(struct dib9000_state *state)
return -EIO;
if (size > ARRAY_SIZE(b)) {
dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, (int)ARRAY_SIZE(b));
dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size,
(int)ARRAY_SIZE(b));
return -EINVAL;
}
for (i = 0; i < size; i += 2) {
state->platform.risc.fe_mm[i / 2].addr = b[i + 0];
state->platform.risc.fe_mm[i / 2].size = b[i + 1];
//dprintk( "MM: %d %d %d", state->platform.risc.fe_mm[i/2].addr, state->platform.risc.fe_mm[i/2].size, ARRAY_SIZE(state->platform.risc.fe_mm));
}
return 0;
@ -1150,9 +1147,9 @@ static int dib9000_fw_get_channel(struct dvb_frontend *fe, struct dvb_frontend_p
ret = -EIO;
}
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, (u8 *) & ch, sizeof(struct dibDVBTChannel));
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, (u8 *) &ch, sizeof(struct dibDVBTChannel));
switch (ch.spectrum_inversion&0x7) {
switch (ch.spectrum_inversion & 0x7) {
case 1:
state->fe[0]->dtv_property_cache.inversion = INVERSION_ON;
break;
@ -1267,7 +1264,7 @@ static int dib9000_fw_get_channel(struct dvb_frontend *fe, struct dvb_frontend_p
break;
}
error:
error:
DibReleaseLock(&state->platform.risc.mem_mbx_lock);
return ret;
}
@ -1412,7 +1409,7 @@ static int dib9000_fw_set_channel_union(struct dvb_frontend *fe, struct dvb_fron
ch.select_hp = 1;
ch.intlv_native = 1;
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) & ch);
dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch);
return 0;
}
@ -1441,9 +1438,9 @@ static int dib9000_fw_tune(struct dvb_frontend *fe, struct dvb_frontend_paramete
break;
case CT_DEMOD_STEP_1:
if (search)
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, (u8 *) & i, 1);
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, (u8 *) &i, 1);
else
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, (u8 *) & i, 1);
dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, (u8 *) &i, 1);
switch (i) { /* something happened */
case 0:
break;
@ -1484,22 +1481,22 @@ static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode)
dprintk("setting output mode for demod %p to %d", fe, mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
case OUTMODE_MPEG2_PAR_GATED_CLK:
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
case OUTMODE_MPEG2_PAR_CONT_CLK:
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
case OUTMODE_MPEG2_SERIAL:
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
break;
case OUTMODE_DIVERSITY:
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
case OUTMODE_MPEG2_FIFO:
outreg = (1 << 10) | (5 << 6);
break;
case OUTMODE_HIGH_Z: // disable
case OUTMODE_HIGH_Z:
outreg = 0;
break;
default:
@ -1507,7 +1504,7 @@ static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode)
return -EINVAL;
}
dib9000_write_word(state, 1795, outreg); // has to be written from outside
dib9000_write_word(state, 1795, outreg);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK:
@ -1596,10 +1593,9 @@ EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed);
static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib9000_state *state = i2c_get_adapdata(i2c_adap);
u8 type = 0; /* I2C */
u8 type = 0; /* I2C */
u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4;
u16 scl = state->component_bus_speed; /* SCL frequency */
//u16 scl = 208; /* SCL frequency */
u16 scl = state->component_bus_speed; /* SCL frequency */
struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER];
u8 p[13] = { 0 };
@ -1610,11 +1606,6 @@ static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2
p[3] = (u8) scl & 0xff; /* scl */
p[4] = (u8) (scl >> 8);
// p[5] = 0; /* attr */
// p[6] = 0;
// p[7] = (u8) (msg[0].addr << 1 );
// p[8] = (u8) (msg[0].addr >> 7 );
p[7] = 0;
p[8] = 0;
@ -1672,7 +1663,6 @@ struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe)
struct dib9000_state *st = fe->demodulator_priv;
return &st->tuner_adap;
}
EXPORT_SYMBOL(dib9000_get_tuner_interface);
struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe)
@ -1680,7 +1670,6 @@ struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe)
struct dib9000_state *st = fe->demodulator_priv;
return &st->component_bus;
}
EXPORT_SYMBOL(dib9000_get_component_bus_interface);
struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
@ -1688,7 +1677,6 @@ struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000
struct dib9000_state *st = fe->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib9000_get_i2c_master);
int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c)
@ -1698,7 +1686,6 @@ int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c)
st->i2c.i2c_adap = i2c;
return 0;
}
EXPORT_SYMBOL(dib9000_set_i2c_adapter);
static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val)
@ -1723,8 +1710,8 @@ int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
struct dib9000_state *state = fe->demodulator_priv;
return dib9000_cfg_gpio(state, num, dir, val);
}
EXPORT_SYMBOL(dib9000_set_gpio);
int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{
struct dib9000_state *state = fe->demodulator_priv;
@ -1734,15 +1721,14 @@ int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
dprintk("PID filter enabled %d", onoff);
return dib9000_write_word(state, 294 + 1, val);
}
EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl);
int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{
struct dib9000_state *state = fe->demodulator_priv;
dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff);
return dib9000_write_word(state, 300 + 1 + id, onoff ? (1 << 13) | pid : 0);
}
EXPORT_SYMBOL(dib9000_fw_pid_filter);
int dib9000_firmware_post_pll_init(struct dvb_frontend *fe)
@ -1750,7 +1736,6 @@ int dib9000_firmware_post_pll_init(struct dvb_frontend *fe)
struct dib9000_state *state = fe->demodulator_priv;
return dib9000_fw_init(state);
}
EXPORT_SYMBOL(dib9000_firmware_post_pll_init);
static void dib9000_release(struct dvb_frontend *demod)
@ -1758,7 +1743,7 @@ static void dib9000_release(struct dvb_frontend *demod)
struct dib9000_state *st = demod->demodulator_priv;
u8 index_frontend;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
dvb_frontend_detach(st->fe[index_frontend]);
DibFreeLock(&state->platform.risc.mbx_if_lock);
@ -1784,7 +1769,7 @@ static int dib9000_sleep(struct dvb_frontend *fe)
u8 index_frontend;
int ret;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
if (ret < 0)
return ret;
@ -1805,23 +1790,32 @@ static int dib9000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
fe_status_t stat;
int ret;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
if (stat & FE_HAS_SYNC) {
dprintk("TPS lock on the slave%i", index_frontend);
/* synchronize the cache with the other frontends */
state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], fep);
for (sub_index_frontend=0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL);
sub_index_frontend++) {
if (sub_index_frontend != index_frontend) {
state->fe[sub_index_frontend]->dtv_property_cache.modulation = state->fe[index_frontend]->dtv_property_cache.modulation;
state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = state->fe[index_frontend]->dtv_property_cache.hierarchy;
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = state->fe[index_frontend]->dtv_property_cache.code_rate_HP;
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = state->fe[index_frontend]->dtv_property_cache.code_rate_LP;
state->fe[sub_index_frontend]->dtv_property_cache.rolloff = state->fe[index_frontend]->dtv_property_cache.rolloff;
state->fe[sub_index_frontend]->dtv_property_cache.modulation =
state->fe[index_frontend]->dtv_property_cache.modulation;
state->fe[sub_index_frontend]->dtv_property_cache.inversion =
state->fe[index_frontend]->dtv_property_cache.inversion;
state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode =
state->fe[index_frontend]->dtv_property_cache.transmission_mode;
state->fe[sub_index_frontend]->dtv_property_cache.guard_interval =
state->fe[index_frontend]->dtv_property_cache.guard_interval;
state->fe[sub_index_frontend]->dtv_property_cache.hierarchy =
state->fe[index_frontend]->dtv_property_cache.hierarchy;
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP =
state->fe[index_frontend]->dtv_property_cache.code_rate_HP;
state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP =
state->fe[index_frontend]->dtv_property_cache.code_rate_LP;
state->fe[sub_index_frontend]->dtv_property_cache.rolloff =
state->fe[index_frontend]->dtv_property_cache.rolloff;
}
}
return 0;
@ -1834,7 +1828,7 @@ static int dib9000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
return ret;
/* synchronize the cache with the other frontends */
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->dtv_property_cache.inversion = fe->dtv_property_cache.inversion;
state->fe[index_frontend]->dtv_property_cache.transmission_mode = fe->dtv_property_cache.transmission_mode;
state->fe[index_frontend]->dtv_property_cache.guard_interval = fe->dtv_property_cache.guard_interval;
@ -1894,14 +1888,14 @@ static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
/* set the master status */
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
/* no channel specified, autosearch the channel */
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN;
} else
state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
/* set mode and status for the different frontends */
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
dib9000_fw_set_diversity_in(state->fe[index_frontend], 1);
/* synchronization of the cache */
@ -1915,11 +1909,11 @@ static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
}
/* actual tune */
exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */
index_frontend_success = 0;
do {
sleep_time = dib9000_fw_tune(state->fe[0], NULL);
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL);
if (sleep_time == FE_CALLBACK_TIME_NEVER)
sleep_time = sleep_time_slave;
@ -1934,23 +1928,23 @@ static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
nbr_pending = 0;
exit_condition = 0;
index_frontend_success = 0;
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
if (frontend_status > -FE_STATUS_TUNE_PENDING) {
exit_condition = 2; /* tune success */
exit_condition = 2; /* tune success */
index_frontend_success = index_frontend;
break;
}
if (frontend_status == -FE_STATUS_TUNE_PENDING)
nbr_pending++; /* some frontends are still tuning */
nbr_pending++; /* some frontends are still tuning */
}
if ((exit_condition != 2) && (nbr_pending == 0))
exit_condition = 1; /* if all tune are done and no success, exit: tune failed */
exit_condition = 1; /* if all tune are done and no success, exit: tune failed */
} while (exit_condition == 0);
/* check the tune result */
if (exit_condition == 1) { /* tune failed */
if (exit_condition == 1) { /* tune failed */
dprintk("tune failed");
return 0;
}
@ -1962,7 +1956,7 @@ static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
/* retune the other frontends with the found channel */
channel_status.status = CHANNEL_STATUS_PARAMETERS_SET;
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
/* only retune the frontends which was not tuned success */
if (index_frontend != index_frontend_success) {
dib9000_set_channel_status(state->fe[index_frontend], &channel_status);
@ -1971,7 +1965,7 @@ static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
}
do {
sleep_time = FE_CALLBACK_TIME_NEVER;
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (index_frontend != index_frontend_success) {
sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend], NULL);
if (sleep_time == FE_CALLBACK_TIME_NEVER)
@ -1986,22 +1980,22 @@ static int dib9000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_par
break;
nbr_pending = 0;
for (index_frontend=0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
if (index_frontend != index_frontend_success) {
frontend_status = -dib9000_get_status(state->fe[index_frontend]);
if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING))
nbr_pending++; /* some frontends are still tuning */
nbr_pending++; /* some frontends are still tuning */
}
}
} while (nbr_pending != 0);
/* set the output mode */
dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode);
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY);
/* turn off the diversity for the last frontend */
dib9000_fw_set_diversity_in(state->fe[index_frontend-1], 0);
dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0);
return 0;
}
@ -2019,7 +2013,7 @@ static int dib9000_read_status(struct dvb_frontend *fe, fe_status_t * stat)
u8 index_frontend;
u16 lock = 0, lock_slave = 0;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
lock_slave |= dib9000_read_lock(state->fe[index_frontend]);
lock = dib9000_read_word(state, 535);
@ -2063,7 +2057,7 @@ static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
u16 val;
*strength = 0;
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
if (val > 65535 - *strength)
*strength = 65535;
@ -2127,7 +2121,7 @@ static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr)
u32 snr_master;
snr_master = dib9000_get_snr(fe);
for (index_frontend=1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
snr_master += dib9000_get_snr(state->fe[index_frontend]);
if ((snr_master >> 16) != 0) {
@ -2161,7 +2155,7 @@ int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defaul
struct i2c_device client = {.i2c_adap = i2c };
client.i2c_addr = default_addr + 16;
dib9000_i2c_write16(&client, 1796, 0x0); // select DVB-T output
dib9000_i2c_write16(&client, 1796, 0x0);
for (k = no_of_demods - 1; k >= 0; k--) {
/* designated i2c address */
@ -2203,7 +2197,6 @@ int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defaul
return 0;
}
EXPORT_SYMBOL(dib9000_i2c_enumeration);
int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
@ -2232,7 +2225,7 @@ int dib9000_remove_slave_frontend(struct dvb_frontend *fe)
while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
index_frontend++;
if (index_frontend != 1) {
dprintk("remove slave fe %p (index %i)", state->fe[index_frontend-1], index_frontend-1);
dprintk("remove slave fe %p (index %i)", state->fe[index_frontend - 1], index_frontend - 1);
state->fe[index_frontend] = NULL;
return 0;
}
@ -2242,7 +2235,7 @@ int dib9000_remove_slave_frontend(struct dvb_frontend *fe)
}
EXPORT_SYMBOL(dib9000_remove_slave_frontend);
struct dvb_frontend * dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
struct dib9000_state *state = fe->demodulator_priv;
@ -2313,13 +2306,12 @@ struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, c
return fe;
component_bus_add_error:
component_bus_add_error:
i2c_del_adapter(&st->tuner_adap);
error:
error:
kfree(st);
return NULL;
}
EXPORT_SYMBOL(dib9000_attach);
static struct dvb_frontend_ops dib9000_ops = {

View File

@ -38,7 +38,7 @@ extern int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 ono
extern int dib9000_firmware_post_pll_init(struct dvb_frontend *fe);
extern int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave);
extern int dib9000_remove_slave_frontend(struct dvb_frontend *fe);
extern struct dvb_frontend * dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
extern struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index);
extern struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe);
extern int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c);
extern int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed);
@ -103,7 +103,8 @@ int dib9000_remove_slave_frontend(struct dvb_frontend *fe)
return -ENODEV;
}
static inline struct dvb_frontend * dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) {
static inline struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL;
}

View File

@ -26,8 +26,8 @@ static u16 dibx000_read_word(struct dibx000_i2c_master *mst, u16 reg)
u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
{.addr = mst->i2c_addr,.flags = 0,.buf = wb,.len = 2},
{.addr = mst->i2c_addr,.flags = I2C_M_RD,.buf = rb,.len = 2},
{.addr = mst->i2c_addr, .flags = 0, .buf = wb, .len = 2},
{.addr = mst->i2c_addr, .flags = I2C_M_RD, .buf = rb, .len = 2},
};
if (i2c_transfer(mst->i2c_adap, msg, 2) != 2)
@ -38,10 +38,11 @@ static u16 dibx000_read_word(struct dibx000_i2c_master *mst, u16 reg)
static int dibx000_is_i2c_done(struct dibx000_i2c_master *mst)
{
int i = 100; // max_i2c_polls;
int i = 100;
u16 status;
while (((status = dibx000_read_word(mst, mst->base_reg + 2)) & 0x0100) == 0 && --i > 0);
while (((status = dibx000_read_word(mst, mst->base_reg + 2)) & 0x0100) == 0 && --i > 0)
;
/* i2c timed out */
if (i == 0)
@ -63,7 +64,7 @@ static int dibx000_master_i2c_write(struct dibx000_i2c_master *mst, struct i2c_m
const u8 *b = msg->buf;
while (txlen) {
dibx000_read_word(mst, mst->base_reg + 2); // reset fifo ptr
dibx000_read_word(mst, mst->base_reg + 2);
len = txlen > 8 ? 8 : txlen;
for (i = 0; i < len; i += 2) {
@ -72,14 +73,14 @@ static int dibx000_master_i2c_write(struct dibx000_i2c_master *mst, struct i2c_m
data |= *b++;
dibx000_write_word(mst, mst->base_reg, data);
}
da = (((u8) (msg->addr)) << 9) | // addr
(1 << 8) | // master
(1 << 7) | // rq
(0 << 6) | // stop
(0 << 5) | // start
((len & 0x7) << 2) | // nb 8 bytes == 0 here
(0 << 1) | // rw
(0 << 0); // irqen
da = (((u8) (msg->addr)) << 9) |
(1 << 8) |
(1 << 7) |
(0 << 6) |
(0 << 5) |
((len & 0x7) << 2) |
(0 << 1) |
(0 << 0);
if (txlen == msg->len)
da |= 1 << 5; /* start */
@ -105,14 +106,14 @@ static int dibx000_master_i2c_read(struct dibx000_i2c_master *mst, struct i2c_ms
while (rxlen) {
len = rxlen > 8 ? 8 : rxlen;
da = (((u8) (msg->addr)) << 9) | // addr
(1 << 8) | // master
(1 << 7) | // rq
(0 << 6) | // stop
(0 << 5) | // start
((len & 0x7) << 2) | // nb
(1 << 1) | // rw
(0 << 0); // irqen
da = (((u8) (msg->addr)) << 9) |
(1 << 8) |
(1 << 7) |
(0 << 6) |
(0 << 5) |
((len & 0x7) << 2) |
(1 << 1) |
(0 << 0);
if (rxlen == msg->len)
da |= 1 << 5; /* start */
@ -174,15 +175,12 @@ static int dibx000_i2c_master_xfer_gpio12(struct i2c_adapter *i2c_adap, struct i
int ret = 0;
dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_GPIO_1_2);
for (msg_index = 0; msg_index<num; msg_index++) {
if (msg[msg_index].flags & I2C_M_RD)
{
for (msg_index = 0; msg_index < num; msg_index++) {
if (msg[msg_index].flags & I2C_M_RD) {
ret = dibx000_master_i2c_read(mst, &msg[msg_index]);
if (ret != 0)
return 0;
}
else
{
} else {
ret = dibx000_master_i2c_write(mst, &msg[msg_index], 1);
if (ret != 0)
return 0;
@ -199,15 +197,12 @@ static int dibx000_i2c_master_xfer_gpio34(struct i2c_adapter *i2c_adap, struct i
int ret = 0;
dibx000_i2c_select_interface(mst, DIBX000_I2C_INTERFACE_GPIO_3_4);
for (msg_index = 0; msg_index<num; msg_index++) {
if (msg[msg_index].flags & I2C_M_RD)
{
for (msg_index = 0; msg_index < num; msg_index++) {
if (msg[msg_index].flags & I2C_M_RD) {
ret = dibx000_master_i2c_read(mst, &msg[msg_index]);
if (ret != 0)
return 0;
}
else
{
} else {
ret = dibx000_master_i2c_write(mst, &msg[msg_index], 1);
if (ret != 0)
return 0;

View File

@ -18,7 +18,7 @@ struct dibx000_i2c_master {
enum dibx000_i2c_interface selected_interface;
// struct i2c_adapter tuner_i2c_adap;
/* struct i2c_adapter tuner_i2c_adap; */
struct i2c_adapter gated_tuner_i2c_adap;
struct i2c_adapter master_i2c_adap_gpio12;
struct i2c_adapter master_i2c_adap_gpio34;
@ -50,7 +50,7 @@ extern u32 systime(void);
#define BAND_FM 0x10
#define BAND_CBAND 0x20
#define BAND_OF_FREQUENCY(freq_kHz) ( (freq_kHz) <= 170000 ? BAND_CBAND : \
#define BAND_OF_FREQUENCY(freq_kHz) ((freq_kHz) <= 170000 ? BAND_CBAND : \
(freq_kHz) <= 115000 ? BAND_FM : \
(freq_kHz) <= 250000 ? BAND_VHF : \
(freq_kHz) <= 863000 ? BAND_UHF : \
@ -140,9 +140,9 @@ enum dibx000_adc_states {
DIBX000_VBG_DISABLE,
};
#define BANDWIDTH_TO_KHZ(v) ( (v) == BANDWIDTH_8_MHZ ? 8000 : \
#define BANDWIDTH_TO_KHZ(v) ((v) == BANDWIDTH_8_MHZ ? 8000 : \
(v) == BANDWIDTH_7_MHZ ? 7000 : \
(v) == BANDWIDTH_6_MHZ ? 6000 : 8000 )
(v) == BANDWIDTH_6_MHZ ? 6000 : 8000)
#define BANDWIDTH_TO_INDEX(v) ( \
(v) == 8000 ? BANDWIDTH_8_MHZ : \
@ -223,7 +223,7 @@ struct dvb_frontend_parametersContext {
#define FE_CALLBACK_TIME_NEVER 0xffffffff
#define ABS(x) ((x<0)?(-x):(x))
#define ABS(x) ((x < 0) ? (-x) : (x))
#define DATA_BUS_ACCESS_MODE_8BIT 0x01
#define DATA_BUS_ACCESS_MODE_16BIT 0x02