mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-15 16:53:54 +08:00
documentation: Record rcu_dereference() value mishandling
Recent LKML discussings (see http://lwn.net/Articles/586838/ and http://lwn.net/Articles/588300/ for the LWN writeups) brought out some ways of misusing the return value from rcu_dereference() that are not necessarily completely intuitive. This commit therefore documents what can and cannot safely be done with these values. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit is contained in:
parent
96224daa16
commit
b4c5bf3534
@ -12,6 +12,8 @@ lockdep-splat.txt
|
||||
- RCU Lockdep splats explained.
|
||||
NMI-RCU.txt
|
||||
- Using RCU to Protect Dynamic NMI Handlers
|
||||
rcu_dereference.txt
|
||||
- Proper care and feeding of return values from rcu_dereference()
|
||||
rcubarrier.txt
|
||||
- RCU and Unloadable Modules
|
||||
rculist_nulls.txt
|
||||
|
@ -114,12 +114,16 @@ over a rather long period of time, but improvements are always welcome!
|
||||
http://www.openvms.compaq.com/wizard/wiz_2637.html
|
||||
|
||||
The rcu_dereference() primitive is also an excellent
|
||||
documentation aid, letting the person reading the code
|
||||
know exactly which pointers are protected by RCU.
|
||||
documentation aid, letting the person reading the
|
||||
code know exactly which pointers are protected by RCU.
|
||||
Please note that compilers can also reorder code, and
|
||||
they are becoming increasingly aggressive about doing
|
||||
just that. The rcu_dereference() primitive therefore
|
||||
also prevents destructive compiler optimizations.
|
||||
just that. The rcu_dereference() primitive therefore also
|
||||
prevents destructive compiler optimizations. However,
|
||||
with a bit of devious creativity, it is possible to
|
||||
mishandle the return value from rcu_dereference().
|
||||
Please see rcu_dereference.txt in this directory for
|
||||
more information.
|
||||
|
||||
The rcu_dereference() primitive is used by the
|
||||
various "_rcu()" list-traversal primitives, such
|
||||
|
371
Documentation/RCU/rcu_dereference.txt
Normal file
371
Documentation/RCU/rcu_dereference.txt
Normal file
@ -0,0 +1,371 @@
|
||||
PROPER CARE AND FEEDING OF RETURN VALUES FROM rcu_dereference()
|
||||
|
||||
Most of the time, you can use values from rcu_dereference() or one of
|
||||
the similar primitives without worries. Dereferencing (prefix "*"),
|
||||
field selection ("->"), assignment ("="), address-of ("&"), addition and
|
||||
subtraction of constants, and casts all work quite naturally and safely.
|
||||
|
||||
It is nevertheless possible to get into trouble with other operations.
|
||||
Follow these rules to keep your RCU code working properly:
|
||||
|
||||
o You must use one of the rcu_dereference() family of primitives
|
||||
to load an RCU-protected pointer, otherwise CONFIG_PROVE_RCU
|
||||
will complain. Worse yet, your code can see random memory-corruption
|
||||
bugs due to games that compilers and DEC Alpha can play.
|
||||
Without one of the rcu_dereference() primitives, compilers
|
||||
can reload the value, and won't your code have fun with two
|
||||
different values for a single pointer! Without rcu_dereference(),
|
||||
DEC Alpha can load a pointer, dereference that pointer, and
|
||||
return data preceding initialization that preceded the store of
|
||||
the pointer.
|
||||
|
||||
In addition, the volatile cast in rcu_dereference() prevents the
|
||||
compiler from deducing the resulting pointer value. Please see
|
||||
the section entitled "EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH"
|
||||
for an example where the compiler can in fact deduce the exact
|
||||
value of the pointer, and thus cause misordering.
|
||||
|
||||
o Do not use single-element RCU-protected arrays. The compiler
|
||||
is within its right to assume that the value of an index into
|
||||
such an array must necessarily evaluate to zero. The compiler
|
||||
could then substitute the constant zero for the computation, so
|
||||
that the array index no longer depended on the value returned
|
||||
by rcu_dereference(). If the array index no longer depends
|
||||
on rcu_dereference(), then both the compiler and the CPU
|
||||
are within their rights to order the array access before the
|
||||
rcu_dereference(), which can cause the array access to return
|
||||
garbage.
|
||||
|
||||
o Avoid cancellation when using the "+" and "-" infix arithmetic
|
||||
operators. For example, for a given variable "x", avoid
|
||||
"(x-x)". There are similar arithmetic pitfalls from other
|
||||
arithmetic operatiors, such as "(x*0)", "(x/(x+1))" or "(x%1)".
|
||||
The compiler is within its rights to substitute zero for all of
|
||||
these expressions, so that subsequent accesses no longer depend
|
||||
on the rcu_dereference(), again possibly resulting in bugs due
|
||||
to misordering.
|
||||
|
||||
Of course, if "p" is a pointer from rcu_dereference(), and "a"
|
||||
and "b" are integers that happen to be equal, the expression
|
||||
"p+a-b" is safe because its value still necessarily depends on
|
||||
the rcu_dereference(), thus maintaining proper ordering.
|
||||
|
||||
o Avoid all-zero operands to the bitwise "&" operator, and
|
||||
similarly avoid all-ones operands to the bitwise "|" operator.
|
||||
If the compiler is able to deduce the value of such operands,
|
||||
it is within its rights to substitute the corresponding constant
|
||||
for the bitwise operation. Once again, this causes subsequent
|
||||
accesses to no longer depend on the rcu_dereference(), causing
|
||||
bugs due to misordering.
|
||||
|
||||
Please note that single-bit operands to bitwise "&" can also
|
||||
be dangerous. At this point, the compiler knows that the
|
||||
resulting value can only take on one of two possible values.
|
||||
Therefore, a very small amount of additional information will
|
||||
allow the compiler to deduce the exact value, which again can
|
||||
result in misordering.
|
||||
|
||||
o If you are using RCU to protect JITed functions, so that the
|
||||
"()" function-invocation operator is applied to a value obtained
|
||||
(directly or indirectly) from rcu_dereference(), you may need to
|
||||
interact directly with the hardware to flush instruction caches.
|
||||
This issue arises on some systems when a newly JITed function is
|
||||
using the same memory that was used by an earlier JITed function.
|
||||
|
||||
o Do not use the results from the boolean "&&" and "||" when
|
||||
dereferencing. For example, the following (rather improbable)
|
||||
code is buggy:
|
||||
|
||||
int a[2];
|
||||
int index;
|
||||
int force_zero_index = 1;
|
||||
|
||||
...
|
||||
|
||||
r1 = rcu_dereference(i1)
|
||||
r2 = a[r1 && force_zero_index]; /* BUGGY!!! */
|
||||
|
||||
The reason this is buggy is that "&&" and "||" are often compiled
|
||||
using branches. While weak-memory machines such as ARM or PowerPC
|
||||
do order stores after such branches, they can speculate loads,
|
||||
which can result in misordering bugs.
|
||||
|
||||
o Do not use the results from relational operators ("==", "!=",
|
||||
">", ">=", "<", or "<=") when dereferencing. For example,
|
||||
the following (quite strange) code is buggy:
|
||||
|
||||
int a[2];
|
||||
int index;
|
||||
int flip_index = 0;
|
||||
|
||||
...
|
||||
|
||||
r1 = rcu_dereference(i1)
|
||||
r2 = a[r1 != flip_index]; /* BUGGY!!! */
|
||||
|
||||
As before, the reason this is buggy is that relational operators
|
||||
are often compiled using branches. And as before, although
|
||||
weak-memory machines such as ARM or PowerPC do order stores
|
||||
after such branches, but can speculate loads, which can again
|
||||
result in misordering bugs.
|
||||
|
||||
o Be very careful about comparing pointers obtained from
|
||||
rcu_dereference() against non-NULL values. As Linus Torvalds
|
||||
explained, if the two pointers are equal, the compiler could
|
||||
substitute the pointer you are comparing against for the pointer
|
||||
obtained from rcu_dereference(). For example:
|
||||
|
||||
p = rcu_dereference(gp);
|
||||
if (p == &default_struct)
|
||||
do_default(p->a);
|
||||
|
||||
Because the compiler now knows that the value of "p" is exactly
|
||||
the address of the variable "default_struct", it is free to
|
||||
transform this code into the following:
|
||||
|
||||
p = rcu_dereference(gp);
|
||||
if (p == &default_struct)
|
||||
do_default(default_struct.a);
|
||||
|
||||
On ARM and Power hardware, the load from "default_struct.a"
|
||||
can now be speculated, such that it might happen before the
|
||||
rcu_dereference(). This could result in bugs due to misordering.
|
||||
|
||||
However, comparisons are OK in the following cases:
|
||||
|
||||
o The comparison was against the NULL pointer. If the
|
||||
compiler knows that the pointer is NULL, you had better
|
||||
not be dereferencing it anyway. If the comparison is
|
||||
non-equal, the compiler is none the wiser. Therefore,
|
||||
it is safe to compare pointers from rcu_dereference()
|
||||
against NULL pointers.
|
||||
|
||||
o The pointer is never dereferenced after being compared.
|
||||
Since there are no subsequent dereferences, the compiler
|
||||
cannot use anything it learned from the comparison
|
||||
to reorder the non-existent subsequent dereferences.
|
||||
This sort of comparison occurs frequently when scanning
|
||||
RCU-protected circular linked lists.
|
||||
|
||||
o The comparison is against a pointer that references memory
|
||||
that was initialized "a long time ago." The reason
|
||||
this is safe is that even if misordering occurs, the
|
||||
misordering will not affect the accesses that follow
|
||||
the comparison. So exactly how long ago is "a long
|
||||
time ago"? Here are some possibilities:
|
||||
|
||||
o Compile time.
|
||||
|
||||
o Boot time.
|
||||
|
||||
o Module-init time for module code.
|
||||
|
||||
o Prior to kthread creation for kthread code.
|
||||
|
||||
o During some prior acquisition of the lock that
|
||||
we now hold.
|
||||
|
||||
o Before mod_timer() time for a timer handler.
|
||||
|
||||
There are many other possibilities involving the Linux
|
||||
kernel's wide array of primitives that cause code to
|
||||
be invoked at a later time.
|
||||
|
||||
o The pointer being compared against also came from
|
||||
rcu_dereference(). In this case, both pointers depend
|
||||
on one rcu_dereference() or another, so you get proper
|
||||
ordering either way.
|
||||
|
||||
That said, this situation can make certain RCU usage
|
||||
bugs more likely to happen. Which can be a good thing,
|
||||
at least if they happen during testing. An example
|
||||
of such an RCU usage bug is shown in the section titled
|
||||
"EXAMPLE OF AMPLIFIED RCU-USAGE BUG".
|
||||
|
||||
o All of the accesses following the comparison are stores,
|
||||
so that a control dependency preserves the needed ordering.
|
||||
That said, it is easy to get control dependencies wrong.
|
||||
Please see the "CONTROL DEPENDENCIES" section of
|
||||
Documentation/memory-barriers.txt for more details.
|
||||
|
||||
o The pointers are not equal -and- the compiler does
|
||||
not have enough information to deduce the value of the
|
||||
pointer. Note that the volatile cast in rcu_dereference()
|
||||
will normally prevent the compiler from knowing too much.
|
||||
|
||||
o Disable any value-speculation optimizations that your compiler
|
||||
might provide, especially if you are making use of feedback-based
|
||||
optimizations that take data collected from prior runs. Such
|
||||
value-speculation optimizations reorder operations by design.
|
||||
|
||||
There is one exception to this rule: Value-speculation
|
||||
optimizations that leverage the branch-prediction hardware are
|
||||
safe on strongly ordered systems (such as x86), but not on weakly
|
||||
ordered systems (such as ARM or Power). Choose your compiler
|
||||
command-line options wisely!
|
||||
|
||||
|
||||
EXAMPLE OF AMPLIFIED RCU-USAGE BUG
|
||||
|
||||
Because updaters can run concurrently with RCU readers, RCU readers can
|
||||
see stale and/or inconsistent values. If RCU readers need fresh or
|
||||
consistent values, which they sometimes do, they need to take proper
|
||||
precautions. To see this, consider the following code fragment:
|
||||
|
||||
struct foo {
|
||||
int a;
|
||||
int b;
|
||||
int c;
|
||||
};
|
||||
struct foo *gp1;
|
||||
struct foo *gp2;
|
||||
|
||||
void updater(void)
|
||||
{
|
||||
struct foo *p;
|
||||
|
||||
p = kmalloc(...);
|
||||
if (p == NULL)
|
||||
deal_with_it();
|
||||
p->a = 42; /* Each field in its own cache line. */
|
||||
p->b = 43;
|
||||
p->c = 44;
|
||||
rcu_assign_pointer(gp1, p);
|
||||
p->b = 143;
|
||||
p->c = 144;
|
||||
rcu_assign_pointer(gp2, p);
|
||||
}
|
||||
|
||||
void reader(void)
|
||||
{
|
||||
struct foo *p;
|
||||
struct foo *q;
|
||||
int r1, r2;
|
||||
|
||||
p = rcu_dereference(gp2);
|
||||
if (p == NULL)
|
||||
return;
|
||||
r1 = p->b; /* Guaranteed to get 143. */
|
||||
q = rcu_dereference(gp1); /* Guaranteed non-NULL. */
|
||||
if (p == q) {
|
||||
/* The compiler decides that q->c is same as p->c. */
|
||||
r2 = p->c; /* Could get 44 on weakly order system. */
|
||||
}
|
||||
do_something_with(r1, r2);
|
||||
}
|
||||
|
||||
You might be surprised that the outcome (r1 == 143 && r2 == 44) is possible,
|
||||
but you should not be. After all, the updater might have been invoked
|
||||
a second time between the time reader() loaded into "r1" and the time
|
||||
that it loaded into "r2". The fact that this same result can occur due
|
||||
to some reordering from the compiler and CPUs is beside the point.
|
||||
|
||||
But suppose that the reader needs a consistent view?
|
||||
|
||||
Then one approach is to use locking, for example, as follows:
|
||||
|
||||
struct foo {
|
||||
int a;
|
||||
int b;
|
||||
int c;
|
||||
spinlock_t lock;
|
||||
};
|
||||
struct foo *gp1;
|
||||
struct foo *gp2;
|
||||
|
||||
void updater(void)
|
||||
{
|
||||
struct foo *p;
|
||||
|
||||
p = kmalloc(...);
|
||||
if (p == NULL)
|
||||
deal_with_it();
|
||||
spin_lock(&p->lock);
|
||||
p->a = 42; /* Each field in its own cache line. */
|
||||
p->b = 43;
|
||||
p->c = 44;
|
||||
spin_unlock(&p->lock);
|
||||
rcu_assign_pointer(gp1, p);
|
||||
spin_lock(&p->lock);
|
||||
p->b = 143;
|
||||
p->c = 144;
|
||||
spin_unlock(&p->lock);
|
||||
rcu_assign_pointer(gp2, p);
|
||||
}
|
||||
|
||||
void reader(void)
|
||||
{
|
||||
struct foo *p;
|
||||
struct foo *q;
|
||||
int r1, r2;
|
||||
|
||||
p = rcu_dereference(gp2);
|
||||
if (p == NULL)
|
||||
return;
|
||||
spin_lock(&p->lock);
|
||||
r1 = p->b; /* Guaranteed to get 143. */
|
||||
q = rcu_dereference(gp1); /* Guaranteed non-NULL. */
|
||||
if (p == q) {
|
||||
/* The compiler decides that q->c is same as p->c. */
|
||||
r2 = p->c; /* Locking guarantees r2 == 144. */
|
||||
}
|
||||
spin_unlock(&p->lock);
|
||||
do_something_with(r1, r2);
|
||||
}
|
||||
|
||||
As always, use the right tool for the job!
|
||||
|
||||
|
||||
EXAMPLE WHERE THE COMPILER KNOWS TOO MUCH
|
||||
|
||||
If a pointer obtained from rcu_dereference() compares not-equal to some
|
||||
other pointer, the compiler normally has no clue what the value of the
|
||||
first pointer might be. This lack of knowledge prevents the compiler
|
||||
from carrying out optimizations that otherwise might destroy the ordering
|
||||
guarantees that RCU depends on. And the volatile cast in rcu_dereference()
|
||||
should prevent the compiler from guessing the value.
|
||||
|
||||
But without rcu_dereference(), the compiler knows more than you might
|
||||
expect. Consider the following code fragment:
|
||||
|
||||
struct foo {
|
||||
int a;
|
||||
int b;
|
||||
};
|
||||
static struct foo variable1;
|
||||
static struct foo variable2;
|
||||
static struct foo *gp = &variable1;
|
||||
|
||||
void updater(void)
|
||||
{
|
||||
initialize_foo(&variable2);
|
||||
rcu_assign_pointer(gp, &variable2);
|
||||
/*
|
||||
* The above is the only store to gp in this translation unit,
|
||||
* and the address of gp is not exported in any way.
|
||||
*/
|
||||
}
|
||||
|
||||
int reader(void)
|
||||
{
|
||||
struct foo *p;
|
||||
|
||||
p = gp;
|
||||
barrier();
|
||||
if (p == &variable1)
|
||||
return p->a; /* Must be variable1.a. */
|
||||
else
|
||||
return p->b; /* Must be variable2.b. */
|
||||
}
|
||||
|
||||
Because the compiler can see all stores to "gp", it knows that the only
|
||||
possible values of "gp" are "variable1" on the one hand and "variable2"
|
||||
on the other. The comparison in reader() therefore tells the compiler
|
||||
the exact value of "p" even in the not-equals case. This allows the
|
||||
compiler to make the return values independent of the load from "gp",
|
||||
in turn destroying the ordering between this load and the loads of the
|
||||
return values. This can result in "p->b" returning pre-initialization
|
||||
garbage values.
|
||||
|
||||
In short, rcu_dereference() is -not- optional when you are going to
|
||||
dereference the resulting pointer.
|
Loading…
Reference in New Issue
Block a user