mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-18 18:23:53 +08:00
Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU changes from Paul E. McKenney: "The major changes for this series are: 1. Simplify RCU's grace-period and callback processing based on the new numbering for callbacks. These were posted to LKML at https://lkml.org/lkml/2013/5/20/330. 2. Documentation updates. These were posted to LKML at https://lkml.org/lkml/2013/5/20/348. 3. Miscellaneous fixes, including converting a few remaining printk() calls to pr_*(). These were posted to LKML at https://lkml.org/lkml/2013/5/20/324. 4. SRCU-related changes and fixes. These were posted to LKML at https://lkml.org/lkml/2013/5/20/425. 5. Removal of TINY_PREEMPT_RCU in favor of TREE_PREEMPT_RCU for single-CPU low-latency systems. These were posted to LKML at https://lkml.org/lkml/2013/5/20/427." Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
commit
b1fe9987b7
@ -354,12 +354,6 @@ over a rather long period of time, but improvements are always welcome!
|
||||
using RCU rather than SRCU, because RCU is almost always faster
|
||||
and easier to use than is SRCU.
|
||||
|
||||
If you need to enter your read-side critical section in a
|
||||
hardirq or exception handler, and then exit that same read-side
|
||||
critical section in the task that was interrupted, then you need
|
||||
to srcu_read_lock_raw() and srcu_read_unlock_raw(), which avoid
|
||||
the lockdep checking that would otherwise this practice illegal.
|
||||
|
||||
Also unlike other forms of RCU, explicit initialization
|
||||
and cleanup is required via init_srcu_struct() and
|
||||
cleanup_srcu_struct(). These are passed a "struct srcu_struct"
|
||||
|
@ -182,12 +182,6 @@ torture_type The type of RCU to test, with string values as follows:
|
||||
"srcu_expedited": srcu_read_lock(), srcu_read_unlock() and
|
||||
synchronize_srcu_expedited().
|
||||
|
||||
"srcu_raw": srcu_read_lock_raw(), srcu_read_unlock_raw(),
|
||||
and call_srcu().
|
||||
|
||||
"srcu_raw_sync": srcu_read_lock_raw(), srcu_read_unlock_raw(),
|
||||
and synchronize_srcu().
|
||||
|
||||
"sched": preempt_disable(), preempt_enable(), and
|
||||
call_rcu_sched().
|
||||
|
||||
|
@ -530,113 +530,21 @@ o "nos" counts the number of times we balked for other
|
||||
reasons, e.g., the grace period ended first.
|
||||
|
||||
|
||||
CONFIG_TINY_RCU and CONFIG_TINY_PREEMPT_RCU debugfs Files and Formats
|
||||
CONFIG_TINY_RCU debugfs Files and Formats
|
||||
|
||||
These implementations of RCU provides a single debugfs file under the
|
||||
top-level directory RCU, namely rcu/rcudata, which displays fields in
|
||||
rcu_bh_ctrlblk, rcu_sched_ctrlblk and, for CONFIG_TINY_PREEMPT_RCU,
|
||||
rcu_preempt_ctrlblk.
|
||||
rcu_bh_ctrlblk and rcu_sched_ctrlblk.
|
||||
|
||||
The output of "cat rcu/rcudata" is as follows:
|
||||
|
||||
rcu_preempt: qlen=24 gp=1097669 g197/p197/c197 tasks=...
|
||||
ttb=. btg=no ntb=184 neb=0 nnb=183 j=01f7 bt=0274
|
||||
normal balk: nt=1097669 gt=0 bt=371 b=0 ny=25073378 nos=0
|
||||
exp balk: bt=0 nos=0
|
||||
rcu_sched: qlen: 0
|
||||
rcu_bh: qlen: 0
|
||||
|
||||
This is split into rcu_preempt, rcu_sched, and rcu_bh sections, with the
|
||||
rcu_preempt section appearing only in CONFIG_TINY_PREEMPT_RCU builds.
|
||||
The last three lines of the rcu_preempt section appear only in
|
||||
CONFIG_RCU_BOOST kernel builds. The fields are as follows:
|
||||
This is split into rcu_sched and rcu_bh sections. The field is as
|
||||
follows:
|
||||
|
||||
o "qlen" is the number of RCU callbacks currently waiting either
|
||||
for an RCU grace period or waiting to be invoked. This is the
|
||||
only field present for rcu_sched and rcu_bh, due to the
|
||||
short-circuiting of grace period in those two cases.
|
||||
|
||||
o "gp" is the number of grace periods that have completed.
|
||||
|
||||
o "g197/p197/c197" displays the grace-period state, with the
|
||||
"g" number being the number of grace periods that have started
|
||||
(mod 256), the "p" number being the number of grace periods
|
||||
that the CPU has responded to (also mod 256), and the "c"
|
||||
number being the number of grace periods that have completed
|
||||
(once again mode 256).
|
||||
|
||||
Why have both "gp" and "g"? Because the data flowing into
|
||||
"gp" is only present in a CONFIG_RCU_TRACE kernel.
|
||||
|
||||
o "tasks" is a set of bits. The first bit is "T" if there are
|
||||
currently tasks that have recently blocked within an RCU
|
||||
read-side critical section, the second bit is "N" if any of the
|
||||
aforementioned tasks are blocking the current RCU grace period,
|
||||
and the third bit is "E" if any of the aforementioned tasks are
|
||||
blocking the current expedited grace period. Each bit is "."
|
||||
if the corresponding condition does not hold.
|
||||
|
||||
o "ttb" is a single bit. It is "B" if any of the blocked tasks
|
||||
need to be priority boosted and "." otherwise.
|
||||
|
||||
o "btg" indicates whether boosting has been carried out during
|
||||
the current grace period, with "exp" indicating that boosting
|
||||
is in progress for an expedited grace period, "no" indicating
|
||||
that boosting has not yet started for a normal grace period,
|
||||
"begun" indicating that boosting has bebug for a normal grace
|
||||
period, and "done" indicating that boosting has completed for
|
||||
a normal grace period.
|
||||
|
||||
o "ntb" is the total number of tasks subjected to RCU priority boosting
|
||||
periods since boot.
|
||||
|
||||
o "neb" is the number of expedited grace periods that have had
|
||||
to resort to RCU priority boosting since boot.
|
||||
|
||||
o "nnb" is the number of normal grace periods that have had
|
||||
to resort to RCU priority boosting since boot.
|
||||
|
||||
o "j" is the low-order 16 bits of the jiffies counter in hexadecimal.
|
||||
|
||||
o "bt" is the low-order 16 bits of the value that the jiffies counter
|
||||
will have at the next time that boosting is scheduled to begin.
|
||||
|
||||
o In the line beginning with "normal balk", the fields are as follows:
|
||||
|
||||
o "nt" is the number of times that the system balked from
|
||||
boosting because there were no blocked tasks to boost.
|
||||
Note that the system will balk from boosting even if the
|
||||
grace period is overdue when the currently running task
|
||||
is looping within an RCU read-side critical section.
|
||||
There is no point in boosting in this case, because
|
||||
boosting a running task won't make it run any faster.
|
||||
|
||||
o "gt" is the number of times that the system balked
|
||||
from boosting because, although there were blocked tasks,
|
||||
none of them were preventing the current grace period
|
||||
from completing.
|
||||
|
||||
o "bt" is the number of times that the system balked
|
||||
from boosting because boosting was already in progress.
|
||||
|
||||
o "b" is the number of times that the system balked from
|
||||
boosting because boosting had already completed for
|
||||
the grace period in question.
|
||||
|
||||
o "ny" is the number of times that the system balked from
|
||||
boosting because it was not yet time to start boosting
|
||||
the grace period in question.
|
||||
|
||||
o "nos" is the number of times that the system balked from
|
||||
boosting for inexplicable ("not otherwise specified")
|
||||
reasons. This can actually happen due to races involving
|
||||
increments of the jiffies counter.
|
||||
|
||||
o In the line beginning with "exp balk", the fields are as follows:
|
||||
|
||||
o "bt" is the number of times that the system balked from
|
||||
boosting because there were no blocked tasks to boost.
|
||||
|
||||
o "nos" is the number of times that the system balked from
|
||||
boosting for inexplicable ("not otherwise specified")
|
||||
reasons.
|
||||
|
@ -842,9 +842,7 @@ SRCU: Critical sections Grace period Barrier
|
||||
|
||||
srcu_read_lock synchronize_srcu srcu_barrier
|
||||
srcu_read_unlock call_srcu
|
||||
srcu_read_lock_raw synchronize_srcu_expedited
|
||||
srcu_read_unlock_raw
|
||||
srcu_dereference
|
||||
srcu_dereference synchronize_srcu_expedited
|
||||
|
||||
SRCU: Initialization/cleanup
|
||||
init_srcu_struct
|
||||
@ -865,38 +863,32 @@ list can be helpful:
|
||||
|
||||
a. Will readers need to block? If so, you need SRCU.
|
||||
|
||||
b. Is it necessary to start a read-side critical section in a
|
||||
hardirq handler or exception handler, and then to complete
|
||||
this read-side critical section in the task that was
|
||||
interrupted? If so, you need SRCU's srcu_read_lock_raw() and
|
||||
srcu_read_unlock_raw() primitives.
|
||||
|
||||
c. What about the -rt patchset? If readers would need to block
|
||||
b. What about the -rt patchset? If readers would need to block
|
||||
in an non-rt kernel, you need SRCU. If readers would block
|
||||
in a -rt kernel, but not in a non-rt kernel, SRCU is not
|
||||
necessary.
|
||||
|
||||
d. Do you need to treat NMI handlers, hardirq handlers,
|
||||
c. Do you need to treat NMI handlers, hardirq handlers,
|
||||
and code segments with preemption disabled (whether
|
||||
via preempt_disable(), local_irq_save(), local_bh_disable(),
|
||||
or some other mechanism) as if they were explicit RCU readers?
|
||||
If so, RCU-sched is the only choice that will work for you.
|
||||
|
||||
e. Do you need RCU grace periods to complete even in the face
|
||||
d. Do you need RCU grace periods to complete even in the face
|
||||
of softirq monopolization of one or more of the CPUs? For
|
||||
example, is your code subject to network-based denial-of-service
|
||||
attacks? If so, you need RCU-bh.
|
||||
|
||||
f. Is your workload too update-intensive for normal use of
|
||||
e. Is your workload too update-intensive for normal use of
|
||||
RCU, but inappropriate for other synchronization mechanisms?
|
||||
If so, consider SLAB_DESTROY_BY_RCU. But please be careful!
|
||||
|
||||
g. Do you need read-side critical sections that are respected
|
||||
f. Do you need read-side critical sections that are respected
|
||||
even though they are in the middle of the idle loop, during
|
||||
user-mode execution, or on an offlined CPU? If so, SRCU is the
|
||||
only choice that will work for you.
|
||||
|
||||
h. Otherwise, use RCU.
|
||||
g. Otherwise, use RCU.
|
||||
|
||||
Of course, this all assumes that you have determined that RCU is in fact
|
||||
the right tool for your job.
|
||||
|
@ -157,6 +157,53 @@ RCU_SOFTIRQ: Do at least one of the following:
|
||||
calls and by forcing both kernel threads and interrupts
|
||||
to execute elsewhere.
|
||||
|
||||
Name: kworker/%u:%d%s (cpu, id, priority)
|
||||
Purpose: Execute workqueue requests
|
||||
To reduce its OS jitter, do any of the following:
|
||||
1. Run your workload at a real-time priority, which will allow
|
||||
preempting the kworker daemons.
|
||||
2. Do any of the following needed to avoid jitter that your
|
||||
application cannot tolerate:
|
||||
a. Build your kernel with CONFIG_SLUB=y rather than
|
||||
CONFIG_SLAB=y, thus avoiding the slab allocator's periodic
|
||||
use of each CPU's workqueues to run its cache_reap()
|
||||
function.
|
||||
b. Avoid using oprofile, thus avoiding OS jitter from
|
||||
wq_sync_buffer().
|
||||
c. Limit your CPU frequency so that a CPU-frequency
|
||||
governor is not required, possibly enlisting the aid of
|
||||
special heatsinks or other cooling technologies. If done
|
||||
correctly, and if you CPU architecture permits, you should
|
||||
be able to build your kernel with CONFIG_CPU_FREQ=n to
|
||||
avoid the CPU-frequency governor periodically running
|
||||
on each CPU, including cs_dbs_timer() and od_dbs_timer().
|
||||
WARNING: Please check your CPU specifications to
|
||||
make sure that this is safe on your particular system.
|
||||
d. It is not possible to entirely get rid of OS jitter
|
||||
from vmstat_update() on CONFIG_SMP=y systems, but you
|
||||
can decrease its frequency by writing a large value to
|
||||
/proc/sys/vm/stat_interval. The default value is HZ,
|
||||
for an interval of one second. Of course, larger values
|
||||
will make your virtual-memory statistics update more
|
||||
slowly. Of course, you can also run your workload at
|
||||
a real-time priority, thus preempting vmstat_update().
|
||||
e. If running on high-end powerpc servers, build with
|
||||
CONFIG_PPC_RTAS_DAEMON=n. This prevents the RTAS
|
||||
daemon from running on each CPU every second or so.
|
||||
(This will require editing Kconfig files and will defeat
|
||||
this platform's RAS functionality.) This avoids jitter
|
||||
due to the rtas_event_scan() function.
|
||||
WARNING: Please check your CPU specifications to
|
||||
make sure that this is safe on your particular system.
|
||||
f. If running on Cell Processor, build your kernel with
|
||||
CBE_CPUFREQ_SPU_GOVERNOR=n to avoid OS jitter from
|
||||
spu_gov_work().
|
||||
WARNING: Please check your CPU specifications to
|
||||
make sure that this is safe on your particular system.
|
||||
g. If running on PowerMAC, build your kernel with
|
||||
CONFIG_PMAC_RACKMETER=n to disable the CPU-meter,
|
||||
avoiding OS jitter from rackmeter_do_timer().
|
||||
|
||||
Name: rcuc/%u
|
||||
Purpose: Execute RCU callbacks in CONFIG_RCU_BOOST=y kernels.
|
||||
To reduce its OS jitter, do at least one of the following:
|
||||
|
@ -7,21 +7,59 @@ efficiency and reducing OS jitter. Reducing OS jitter is important for
|
||||
some types of computationally intensive high-performance computing (HPC)
|
||||
applications and for real-time applications.
|
||||
|
||||
There are two main contexts in which the number of scheduling-clock
|
||||
interrupts can be reduced compared to the old-school approach of sending
|
||||
a scheduling-clock interrupt to all CPUs every jiffy whether they need
|
||||
it or not (CONFIG_HZ_PERIODIC=y or CONFIG_NO_HZ=n for older kernels):
|
||||
There are three main ways of managing scheduling-clock interrupts
|
||||
(also known as "scheduling-clock ticks" or simply "ticks"):
|
||||
|
||||
1. Idle CPUs (CONFIG_NO_HZ_IDLE=y or CONFIG_NO_HZ=y for older kernels).
|
||||
1. Never omit scheduling-clock ticks (CONFIG_HZ_PERIODIC=y or
|
||||
CONFIG_NO_HZ=n for older kernels). You normally will -not-
|
||||
want to choose this option.
|
||||
|
||||
2. CPUs having only one runnable task (CONFIG_NO_HZ_FULL=y).
|
||||
2. Omit scheduling-clock ticks on idle CPUs (CONFIG_NO_HZ_IDLE=y or
|
||||
CONFIG_NO_HZ=y for older kernels). This is the most common
|
||||
approach, and should be the default.
|
||||
|
||||
These two cases are described in the following two sections, followed
|
||||
3. Omit scheduling-clock ticks on CPUs that are either idle or that
|
||||
have only one runnable task (CONFIG_NO_HZ_FULL=y). Unless you
|
||||
are running realtime applications or certain types of HPC
|
||||
workloads, you will normally -not- want this option.
|
||||
|
||||
These three cases are described in the following three sections, followed
|
||||
by a third section on RCU-specific considerations and a fourth and final
|
||||
section listing known issues.
|
||||
|
||||
|
||||
IDLE CPUs
|
||||
NEVER OMIT SCHEDULING-CLOCK TICKS
|
||||
|
||||
Very old versions of Linux from the 1990s and the very early 2000s
|
||||
are incapable of omitting scheduling-clock ticks. It turns out that
|
||||
there are some situations where this old-school approach is still the
|
||||
right approach, for example, in heavy workloads with lots of tasks
|
||||
that use short bursts of CPU, where there are very frequent idle
|
||||
periods, but where these idle periods are also quite short (tens or
|
||||
hundreds of microseconds). For these types of workloads, scheduling
|
||||
clock interrupts will normally be delivered any way because there
|
||||
will frequently be multiple runnable tasks per CPU. In these cases,
|
||||
attempting to turn off the scheduling clock interrupt will have no effect
|
||||
other than increasing the overhead of switching to and from idle and
|
||||
transitioning between user and kernel execution.
|
||||
|
||||
This mode of operation can be selected using CONFIG_HZ_PERIODIC=y (or
|
||||
CONFIG_NO_HZ=n for older kernels).
|
||||
|
||||
However, if you are instead running a light workload with long idle
|
||||
periods, failing to omit scheduling-clock interrupts will result in
|
||||
excessive power consumption. This is especially bad on battery-powered
|
||||
devices, where it results in extremely short battery lifetimes. If you
|
||||
are running light workloads, you should therefore read the following
|
||||
section.
|
||||
|
||||
In addition, if you are running either a real-time workload or an HPC
|
||||
workload with short iterations, the scheduling-clock interrupts can
|
||||
degrade your applications performance. If this describes your workload,
|
||||
you should read the following two sections.
|
||||
|
||||
|
||||
OMIT SCHEDULING-CLOCK TICKS FOR IDLE CPUs
|
||||
|
||||
If a CPU is idle, there is little point in sending it a scheduling-clock
|
||||
interrupt. After all, the primary purpose of a scheduling-clock interrupt
|
||||
@ -59,10 +97,12 @@ By default, CONFIG_NO_HZ_IDLE=y kernels boot with "nohz=on", enabling
|
||||
dyntick-idle mode.
|
||||
|
||||
|
||||
CPUs WITH ONLY ONE RUNNABLE TASK
|
||||
OMIT SCHEDULING-CLOCK TICKS FOR CPUs WITH ONLY ONE RUNNABLE TASK
|
||||
|
||||
If a CPU has only one runnable task, there is little point in sending it
|
||||
a scheduling-clock interrupt because there is no other task to switch to.
|
||||
Note that omitting scheduling-clock ticks for CPUs with only one runnable
|
||||
task implies also omitting them for idle CPUs.
|
||||
|
||||
The CONFIG_NO_HZ_FULL=y Kconfig option causes the kernel to avoid
|
||||
sending scheduling-clock interrupts to CPUs with a single runnable task,
|
||||
@ -238,6 +278,11 @@ o Adaptive-ticks does not do anything unless there is only one
|
||||
single runnable SCHED_FIFO task and multiple runnable SCHED_OTHER
|
||||
tasks, even though these interrupts are unnecessary.
|
||||
|
||||
And even when there are multiple runnable tasks on a given CPU,
|
||||
there is little point in interrupting that CPU until the current
|
||||
running task's timeslice expires, which is almost always way
|
||||
longer than the time of the next scheduling-clock interrupt.
|
||||
|
||||
Better handling of these sorts of situations is future work.
|
||||
|
||||
o A reboot is required to reconfigure both adaptive idle and RCU
|
||||
@ -268,6 +313,16 @@ o Unless all CPUs are idle, at least one CPU must keep the
|
||||
scheduling-clock interrupt going in order to support accurate
|
||||
timekeeping.
|
||||
|
||||
o If there are adaptive-ticks CPUs, there will be at least one
|
||||
CPU keeping the scheduling-clock interrupt going, even if all
|
||||
CPUs are otherwise idle.
|
||||
o If there might potentially be some adaptive-ticks CPUs, there
|
||||
will be at least one CPU keeping the scheduling-clock interrupt
|
||||
going, even if all CPUs are otherwise idle.
|
||||
|
||||
Better handling of this situation is ongoing work.
|
||||
|
||||
o Some process-handling operations still require the occasional
|
||||
scheduling-clock tick. These operations include calculating CPU
|
||||
load, maintaining sched average, computing CFS entity vruntime,
|
||||
computing avenrun, and carrying out load balancing. They are
|
||||
currently accommodated by scheduling-clock tick every second
|
||||
or so. On-going work will eliminate the need even for these
|
||||
infrequent scheduling-clock ticks.
|
||||
|
@ -1864,7 +1864,7 @@ static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
|
||||
|
||||
up_out:
|
||||
up_read(¤t->mm->mmap_sem);
|
||||
goto out;
|
||||
goto out_srcu;
|
||||
}
|
||||
|
||||
int kvmppc_core_init_vm(struct kvm *kvm)
|
||||
|
@ -128,7 +128,7 @@ extern void synchronize_irq(unsigned int irq);
|
||||
# define synchronize_irq(irq) barrier()
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
|
||||
#if defined(CONFIG_TINY_RCU)
|
||||
|
||||
static inline void rcu_nmi_enter(void)
|
||||
{
|
||||
|
@ -216,6 +216,7 @@ static inline int rcu_preempt_depth(void)
|
||||
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
|
||||
|
||||
/* Internal to kernel */
|
||||
extern void rcu_init(void);
|
||||
extern void rcu_sched_qs(int cpu);
|
||||
extern void rcu_bh_qs(int cpu);
|
||||
extern void rcu_check_callbacks(int cpu, int user);
|
||||
@ -239,8 +240,6 @@ static inline void rcu_user_hooks_switch(struct task_struct *prev,
|
||||
struct task_struct *next) { }
|
||||
#endif /* CONFIG_RCU_USER_QS */
|
||||
|
||||
extern void exit_rcu(void);
|
||||
|
||||
/**
|
||||
* RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
|
||||
* @a: Code that RCU needs to pay attention to.
|
||||
@ -277,7 +276,7 @@ void wait_rcu_gp(call_rcu_func_t crf);
|
||||
|
||||
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
|
||||
#include <linux/rcutree.h>
|
||||
#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
|
||||
#elif defined(CONFIG_TINY_RCU)
|
||||
#include <linux/rcutiny.h>
|
||||
#else
|
||||
#error "Unknown RCU implementation specified to kernel configuration"
|
||||
|
@ -27,10 +27,6 @@
|
||||
|
||||
#include <linux/cache.h>
|
||||
|
||||
static inline void rcu_init(void)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void rcu_barrier_bh(void)
|
||||
{
|
||||
wait_rcu_gp(call_rcu_bh);
|
||||
@ -41,8 +37,6 @@ static inline void rcu_barrier_sched(void)
|
||||
wait_rcu_gp(call_rcu_sched);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TINY_RCU
|
||||
|
||||
static inline void synchronize_rcu_expedited(void)
|
||||
{
|
||||
synchronize_sched(); /* Only one CPU, so pretty fast anyway!!! */
|
||||
@ -53,17 +47,6 @@ static inline void rcu_barrier(void)
|
||||
rcu_barrier_sched(); /* Only one CPU, so only one list of callbacks! */
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
void synchronize_rcu_expedited(void);
|
||||
|
||||
static inline void rcu_barrier(void)
|
||||
{
|
||||
wait_rcu_gp(call_rcu);
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
static inline void synchronize_rcu_bh(void)
|
||||
{
|
||||
synchronize_sched();
|
||||
@ -85,35 +68,15 @@ static inline void kfree_call_rcu(struct rcu_head *head,
|
||||
call_rcu(head, func);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TINY_RCU
|
||||
|
||||
static inline void rcu_preempt_note_context_switch(void)
|
||||
{
|
||||
}
|
||||
|
||||
static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
||||
{
|
||||
*delta_jiffies = ULONG_MAX;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
void rcu_preempt_note_context_switch(void);
|
||||
int rcu_preempt_needs_cpu(void);
|
||||
|
||||
static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
||||
{
|
||||
*delta_jiffies = ULONG_MAX;
|
||||
return rcu_preempt_needs_cpu();
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
static inline void rcu_note_context_switch(int cpu)
|
||||
{
|
||||
rcu_sched_qs(cpu);
|
||||
rcu_preempt_note_context_switch();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -156,6 +119,10 @@ static inline void rcu_cpu_stall_reset(void)
|
||||
{
|
||||
}
|
||||
|
||||
static inline void exit_rcu(void)
|
||||
{
|
||||
}
|
||||
|
||||
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
||||
extern int rcu_scheduler_active __read_mostly;
|
||||
extern void rcu_scheduler_starting(void);
|
||||
|
@ -30,7 +30,6 @@
|
||||
#ifndef __LINUX_RCUTREE_H
|
||||
#define __LINUX_RCUTREE_H
|
||||
|
||||
extern void rcu_init(void);
|
||||
extern void rcu_note_context_switch(int cpu);
|
||||
extern int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies);
|
||||
extern void rcu_cpu_stall_reset(void);
|
||||
@ -86,6 +85,8 @@ extern void rcu_force_quiescent_state(void);
|
||||
extern void rcu_bh_force_quiescent_state(void);
|
||||
extern void rcu_sched_force_quiescent_state(void);
|
||||
|
||||
extern void exit_rcu(void);
|
||||
|
||||
extern void rcu_scheduler_starting(void);
|
||||
extern int rcu_scheduler_active __read_mostly;
|
||||
|
||||
|
@ -237,47 +237,4 @@ static inline void srcu_read_unlock(struct srcu_struct *sp, int idx)
|
||||
__srcu_read_unlock(sp, idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* srcu_read_lock_raw - register a new reader for an SRCU-protected structure.
|
||||
* @sp: srcu_struct in which to register the new reader.
|
||||
*
|
||||
* Enter an SRCU read-side critical section. Similar to srcu_read_lock(),
|
||||
* but avoids the RCU-lockdep checking. This means that it is legal to
|
||||
* use srcu_read_lock_raw() in one context, for example, in an exception
|
||||
* handler, and then have the matching srcu_read_unlock_raw() in another
|
||||
* context, for example in the task that took the exception.
|
||||
*
|
||||
* However, the entire SRCU read-side critical section must reside within a
|
||||
* single task. For example, beware of using srcu_read_lock_raw() in
|
||||
* a device interrupt handler and srcu_read_unlock() in the interrupted
|
||||
* task: This will not work if interrupts are threaded.
|
||||
*/
|
||||
static inline int srcu_read_lock_raw(struct srcu_struct *sp)
|
||||
{
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
|
||||
local_irq_save(flags);
|
||||
ret = __srcu_read_lock(sp);
|
||||
local_irq_restore(flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* srcu_read_unlock_raw - unregister reader from an SRCU-protected structure.
|
||||
* @sp: srcu_struct in which to unregister the old reader.
|
||||
* @idx: return value from corresponding srcu_read_lock_raw().
|
||||
*
|
||||
* Exit an SRCU read-side critical section without lockdep-RCU checking.
|
||||
* See srcu_read_lock_raw() for more details.
|
||||
*/
|
||||
static inline void srcu_read_unlock_raw(struct srcu_struct *sp, int idx)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
__srcu_read_unlock(sp, idx);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
46
init/Kconfig
46
init/Kconfig
@ -459,18 +459,10 @@ config TINY_RCU
|
||||
is not required. This option greatly reduces the
|
||||
memory footprint of RCU.
|
||||
|
||||
config TINY_PREEMPT_RCU
|
||||
bool "Preemptible UP-only small-memory-footprint RCU"
|
||||
depends on PREEMPT && !SMP
|
||||
help
|
||||
This option selects the RCU implementation that is designed
|
||||
for real-time UP systems. This option greatly reduces the
|
||||
memory footprint of RCU.
|
||||
|
||||
endchoice
|
||||
|
||||
config PREEMPT_RCU
|
||||
def_bool ( TREE_PREEMPT_RCU || TINY_PREEMPT_RCU )
|
||||
def_bool TREE_PREEMPT_RCU
|
||||
help
|
||||
This option enables preemptible-RCU code that is common between
|
||||
the TREE_PREEMPT_RCU and TINY_PREEMPT_RCU implementations.
|
||||
@ -656,7 +648,7 @@ config RCU_BOOST_DELAY
|
||||
Accept the default if unsure.
|
||||
|
||||
config RCU_NOCB_CPU
|
||||
bool "Offload RCU callback processing from boot-selected CPUs (EXPERIMENTAL"
|
||||
bool "Offload RCU callback processing from boot-selected CPUs"
|
||||
depends on TREE_RCU || TREE_PREEMPT_RCU
|
||||
default n
|
||||
help
|
||||
@ -682,9 +674,10 @@ choice
|
||||
prompt "Build-forced no-CBs CPUs"
|
||||
default RCU_NOCB_CPU_NONE
|
||||
help
|
||||
This option allows no-CBs CPUs to be specified at build time.
|
||||
Additional no-CBs CPUs may be specified by the rcu_nocbs=
|
||||
boot parameter.
|
||||
This option allows no-CBs CPUs (whose RCU callbacks are invoked
|
||||
from kthreads rather than from softirq context) to be specified
|
||||
at build time. Additional no-CBs CPUs may be specified by
|
||||
the rcu_nocbs= boot parameter.
|
||||
|
||||
config RCU_NOCB_CPU_NONE
|
||||
bool "No build_forced no-CBs CPUs"
|
||||
@ -692,25 +685,40 @@ config RCU_NOCB_CPU_NONE
|
||||
help
|
||||
This option does not force any of the CPUs to be no-CBs CPUs.
|
||||
Only CPUs designated by the rcu_nocbs= boot parameter will be
|
||||
no-CBs CPUs.
|
||||
no-CBs CPUs, whose RCU callbacks will be invoked by per-CPU
|
||||
kthreads whose names begin with "rcuo". All other CPUs will
|
||||
invoke their own RCU callbacks in softirq context.
|
||||
|
||||
Select this option if you want to choose no-CBs CPUs at
|
||||
boot time, for example, to allow testing of different no-CBs
|
||||
configurations without having to rebuild the kernel each time.
|
||||
|
||||
config RCU_NOCB_CPU_ZERO
|
||||
bool "CPU 0 is a build_forced no-CBs CPU"
|
||||
depends on RCU_NOCB_CPU && !NO_HZ_FULL
|
||||
help
|
||||
This option forces CPU 0 to be a no-CBs CPU. Additional CPUs
|
||||
may be designated as no-CBs CPUs using the rcu_nocbs= boot
|
||||
parameter will be no-CBs CPUs.
|
||||
This option forces CPU 0 to be a no-CBs CPU, so that its RCU
|
||||
callbacks are invoked by a per-CPU kthread whose name begins
|
||||
with "rcuo". Additional CPUs may be designated as no-CBs
|
||||
CPUs using the rcu_nocbs= boot parameter will be no-CBs CPUs.
|
||||
All other CPUs will invoke their own RCU callbacks in softirq
|
||||
context.
|
||||
|
||||
Select this if CPU 0 needs to be a no-CBs CPU for real-time
|
||||
or energy-efficiency reasons.
|
||||
or energy-efficiency reasons, but the real reason it exists
|
||||
is to ensure that randconfig testing covers mixed systems.
|
||||
|
||||
config RCU_NOCB_CPU_ALL
|
||||
bool "All CPUs are build_forced no-CBs CPUs"
|
||||
depends on RCU_NOCB_CPU
|
||||
help
|
||||
This option forces all CPUs to be no-CBs CPUs. The rcu_nocbs=
|
||||
boot parameter will be ignored.
|
||||
boot parameter will be ignored. All CPUs' RCU callbacks will
|
||||
be executed in the context of per-CPU rcuo kthreads created for
|
||||
this purpose. Assuming that the kthreads whose names start with
|
||||
"rcuo" are bound to "housekeeping" CPUs, this reduces OS jitter
|
||||
on the remaining CPUs, but might decrease memory locality during
|
||||
RCU-callback invocation, thus potentially degrading throughput.
|
||||
|
||||
Select this if all CPUs need to be no-CBs CPUs for real-time
|
||||
or energy-efficiency reasons.
|
||||
|
@ -104,31 +104,7 @@ void __rcu_read_unlock(void)
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
|
||||
|
||||
/*
|
||||
* Check for a task exiting while in a preemptible-RCU read-side
|
||||
* critical section, clean up if so. No need to issue warnings,
|
||||
* as debug_check_no_locks_held() already does this if lockdep
|
||||
* is enabled.
|
||||
*/
|
||||
void exit_rcu(void)
|
||||
{
|
||||
struct task_struct *t = current;
|
||||
|
||||
if (likely(list_empty(¤t->rcu_node_entry)))
|
||||
return;
|
||||
t->rcu_read_lock_nesting = 1;
|
||||
barrier();
|
||||
t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
|
||||
__rcu_read_unlock();
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_PREEMPT_RCU */
|
||||
|
||||
void exit_rcu(void)
|
||||
{
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
|
||||
#endif /* #ifdef CONFIG_PREEMPT_RCU */
|
||||
|
||||
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
||||
static struct lock_class_key rcu_lock_key;
|
||||
@ -145,9 +121,6 @@ static struct lock_class_key rcu_sched_lock_key;
|
||||
struct lockdep_map rcu_sched_lock_map =
|
||||
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
|
||||
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
||||
|
||||
int debug_lockdep_rcu_enabled(void)
|
||||
{
|
||||
|
@ -44,7 +44,6 @@
|
||||
|
||||
/* Forward declarations for rcutiny_plugin.h. */
|
||||
struct rcu_ctrlblk;
|
||||
static void invoke_rcu_callbacks(void);
|
||||
static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp);
|
||||
static void rcu_process_callbacks(struct softirq_action *unused);
|
||||
static void __call_rcu(struct rcu_head *head,
|
||||
@ -205,7 +204,7 @@ static int rcu_is_cpu_rrupt_from_idle(void)
|
||||
*/
|
||||
static int rcu_qsctr_help(struct rcu_ctrlblk *rcp)
|
||||
{
|
||||
reset_cpu_stall_ticks(rcp);
|
||||
RCU_TRACE(reset_cpu_stall_ticks(rcp));
|
||||
if (rcp->rcucblist != NULL &&
|
||||
rcp->donetail != rcp->curtail) {
|
||||
rcp->donetail = rcp->curtail;
|
||||
@ -227,7 +226,7 @@ void rcu_sched_qs(int cpu)
|
||||
local_irq_save(flags);
|
||||
if (rcu_qsctr_help(&rcu_sched_ctrlblk) +
|
||||
rcu_qsctr_help(&rcu_bh_ctrlblk))
|
||||
invoke_rcu_callbacks();
|
||||
raise_softirq(RCU_SOFTIRQ);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
@ -240,7 +239,7 @@ void rcu_bh_qs(int cpu)
|
||||
|
||||
local_irq_save(flags);
|
||||
if (rcu_qsctr_help(&rcu_bh_ctrlblk))
|
||||
invoke_rcu_callbacks();
|
||||
raise_softirq(RCU_SOFTIRQ);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
@ -252,12 +251,11 @@ void rcu_bh_qs(int cpu)
|
||||
*/
|
||||
void rcu_check_callbacks(int cpu, int user)
|
||||
{
|
||||
check_cpu_stalls();
|
||||
RCU_TRACE(check_cpu_stalls());
|
||||
if (user || rcu_is_cpu_rrupt_from_idle())
|
||||
rcu_sched_qs(cpu);
|
||||
else if (!in_softirq())
|
||||
rcu_bh_qs(cpu);
|
||||
rcu_preempt_check_callbacks();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -278,7 +276,7 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp)
|
||||
ACCESS_ONCE(rcp->rcucblist),
|
||||
need_resched(),
|
||||
is_idle_task(current),
|
||||
rcu_is_callbacks_kthread()));
|
||||
false));
|
||||
return;
|
||||
}
|
||||
|
||||
@ -290,7 +288,6 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp)
|
||||
*rcp->donetail = NULL;
|
||||
if (rcp->curtail == rcp->donetail)
|
||||
rcp->curtail = &rcp->rcucblist;
|
||||
rcu_preempt_remove_callbacks(rcp);
|
||||
rcp->donetail = &rcp->rcucblist;
|
||||
local_irq_restore(flags);
|
||||
|
||||
@ -309,14 +306,13 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp)
|
||||
RCU_TRACE(rcu_trace_sub_qlen(rcp, cb_count));
|
||||
RCU_TRACE(trace_rcu_batch_end(rcp->name, cb_count, 0, need_resched(),
|
||||
is_idle_task(current),
|
||||
rcu_is_callbacks_kthread()));
|
||||
false));
|
||||
}
|
||||
|
||||
static void rcu_process_callbacks(struct softirq_action *unused)
|
||||
{
|
||||
__rcu_process_callbacks(&rcu_sched_ctrlblk);
|
||||
__rcu_process_callbacks(&rcu_bh_ctrlblk);
|
||||
rcu_preempt_process_callbacks();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -382,3 +378,8 @@ void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
||||
__call_rcu(head, func, &rcu_bh_ctrlblk);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(call_rcu_bh);
|
||||
|
||||
void rcu_init(void)
|
||||
{
|
||||
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -695,44 +695,6 @@ static struct rcu_torture_ops srcu_sync_ops = {
|
||||
.name = "srcu_sync"
|
||||
};
|
||||
|
||||
static int srcu_torture_read_lock_raw(void) __acquires(&srcu_ctl)
|
||||
{
|
||||
return srcu_read_lock_raw(&srcu_ctl);
|
||||
}
|
||||
|
||||
static void srcu_torture_read_unlock_raw(int idx) __releases(&srcu_ctl)
|
||||
{
|
||||
srcu_read_unlock_raw(&srcu_ctl, idx);
|
||||
}
|
||||
|
||||
static struct rcu_torture_ops srcu_raw_ops = {
|
||||
.init = rcu_sync_torture_init,
|
||||
.readlock = srcu_torture_read_lock_raw,
|
||||
.read_delay = srcu_read_delay,
|
||||
.readunlock = srcu_torture_read_unlock_raw,
|
||||
.completed = srcu_torture_completed,
|
||||
.deferred_free = srcu_torture_deferred_free,
|
||||
.sync = srcu_torture_synchronize,
|
||||
.call = NULL,
|
||||
.cb_barrier = NULL,
|
||||
.stats = srcu_torture_stats,
|
||||
.name = "srcu_raw"
|
||||
};
|
||||
|
||||
static struct rcu_torture_ops srcu_raw_sync_ops = {
|
||||
.init = rcu_sync_torture_init,
|
||||
.readlock = srcu_torture_read_lock_raw,
|
||||
.read_delay = srcu_read_delay,
|
||||
.readunlock = srcu_torture_read_unlock_raw,
|
||||
.completed = srcu_torture_completed,
|
||||
.deferred_free = rcu_sync_torture_deferred_free,
|
||||
.sync = srcu_torture_synchronize,
|
||||
.call = NULL,
|
||||
.cb_barrier = NULL,
|
||||
.stats = srcu_torture_stats,
|
||||
.name = "srcu_raw_sync"
|
||||
};
|
||||
|
||||
static void srcu_torture_synchronize_expedited(void)
|
||||
{
|
||||
synchronize_srcu_expedited(&srcu_ctl);
|
||||
@ -1983,7 +1945,6 @@ rcu_torture_init(void)
|
||||
{ &rcu_ops, &rcu_sync_ops, &rcu_expedited_ops,
|
||||
&rcu_bh_ops, &rcu_bh_sync_ops, &rcu_bh_expedited_ops,
|
||||
&srcu_ops, &srcu_sync_ops, &srcu_expedited_ops,
|
||||
&srcu_raw_ops, &srcu_raw_sync_ops,
|
||||
&sched_ops, &sched_sync_ops, &sched_expedited_ops, };
|
||||
|
||||
mutex_lock(&fullstop_mutex);
|
||||
|
168
kernel/rcutree.c
168
kernel/rcutree.c
@ -218,8 +218,8 @@ module_param(blimit, long, 0444);
|
||||
module_param(qhimark, long, 0444);
|
||||
module_param(qlowmark, long, 0444);
|
||||
|
||||
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
|
||||
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
|
||||
static ulong jiffies_till_first_fqs = ULONG_MAX;
|
||||
static ulong jiffies_till_next_fqs = ULONG_MAX;
|
||||
|
||||
module_param(jiffies_till_first_fqs, ulong, 0644);
|
||||
module_param(jiffies_till_next_fqs, ulong, 0644);
|
||||
@ -866,7 +866,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
|
||||
* See Documentation/RCU/stallwarn.txt for info on how to debug
|
||||
* RCU CPU stall warnings.
|
||||
*/
|
||||
printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
|
||||
pr_err("INFO: %s detected stalls on CPUs/tasks:",
|
||||
rsp->name);
|
||||
print_cpu_stall_info_begin();
|
||||
rcu_for_each_leaf_node(rsp, rnp) {
|
||||
@ -899,7 +899,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
|
||||
smp_processor_id(), (long)(jiffies - rsp->gp_start),
|
||||
rsp->gpnum, rsp->completed, totqlen);
|
||||
if (ndetected == 0)
|
||||
printk(KERN_ERR "INFO: Stall ended before state dump start\n");
|
||||
pr_err("INFO: Stall ended before state dump start\n");
|
||||
else if (!trigger_all_cpu_backtrace())
|
||||
rcu_dump_cpu_stacks(rsp);
|
||||
|
||||
@ -922,7 +922,7 @@ static void print_cpu_stall(struct rcu_state *rsp)
|
||||
* See Documentation/RCU/stallwarn.txt for info on how to debug
|
||||
* RCU CPU stall warnings.
|
||||
*/
|
||||
printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
|
||||
pr_err("INFO: %s self-detected stall on CPU", rsp->name);
|
||||
print_cpu_stall_info_begin();
|
||||
print_cpu_stall_info(rsp, smp_processor_id());
|
||||
print_cpu_stall_info_end();
|
||||
@ -984,65 +984,6 @@ void rcu_cpu_stall_reset(void)
|
||||
rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update CPU-local rcu_data state to record the newly noticed grace period.
|
||||
* This is used both when we started the grace period and when we notice
|
||||
* that someone else started the grace period. The caller must hold the
|
||||
* ->lock of the leaf rcu_node structure corresponding to the current CPU,
|
||||
* and must have irqs disabled.
|
||||
*/
|
||||
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
|
||||
{
|
||||
if (rdp->gpnum != rnp->gpnum) {
|
||||
/*
|
||||
* If the current grace period is waiting for this CPU,
|
||||
* set up to detect a quiescent state, otherwise don't
|
||||
* go looking for one.
|
||||
*/
|
||||
rdp->gpnum = rnp->gpnum;
|
||||
trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
|
||||
rdp->passed_quiesce = 0;
|
||||
rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
|
||||
zero_cpu_stall_ticks(rdp);
|
||||
}
|
||||
}
|
||||
|
||||
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct rcu_node *rnp;
|
||||
|
||||
local_irq_save(flags);
|
||||
rnp = rdp->mynode;
|
||||
if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
|
||||
!raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
|
||||
local_irq_restore(flags);
|
||||
return;
|
||||
}
|
||||
__note_new_gpnum(rsp, rnp, rdp);
|
||||
raw_spin_unlock_irqrestore(&rnp->lock, flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* Did someone else start a new RCU grace period start since we last
|
||||
* checked? Update local state appropriately if so. Must be called
|
||||
* on the CPU corresponding to rdp.
|
||||
*/
|
||||
static int
|
||||
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
|
||||
{
|
||||
unsigned long flags;
|
||||
int ret = 0;
|
||||
|
||||
local_irq_save(flags);
|
||||
if (rdp->gpnum != rsp->gpnum) {
|
||||
note_new_gpnum(rsp, rdp);
|
||||
ret = 1;
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the specified rcu_data structure's callback list to empty.
|
||||
*/
|
||||
@ -1313,18 +1254,16 @@ static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
|
||||
}
|
||||
|
||||
/*
|
||||
* Advance this CPU's callbacks, but only if the current grace period
|
||||
* has ended. This may be called only from the CPU to whom the rdp
|
||||
* belongs. In addition, the corresponding leaf rcu_node structure's
|
||||
* ->lock must be held by the caller, with irqs disabled.
|
||||
* Update CPU-local rcu_data state to record the beginnings and ends of
|
||||
* grace periods. The caller must hold the ->lock of the leaf rcu_node
|
||||
* structure corresponding to the current CPU, and must have irqs disabled.
|
||||
*/
|
||||
static void
|
||||
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
|
||||
static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
|
||||
{
|
||||
/* Did another grace period end? */
|
||||
/* Handle the ends of any preceding grace periods first. */
|
||||
if (rdp->completed == rnp->completed) {
|
||||
|
||||
/* No, so just accelerate recent callbacks. */
|
||||
/* No grace period end, so just accelerate recent callbacks. */
|
||||
rcu_accelerate_cbs(rsp, rnp, rdp);
|
||||
|
||||
} else {
|
||||
@ -1335,67 +1274,39 @@ __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_dat
|
||||
/* Remember that we saw this grace-period completion. */
|
||||
rdp->completed = rnp->completed;
|
||||
trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
|
||||
}
|
||||
|
||||
if (rdp->gpnum != rnp->gpnum) {
|
||||
/*
|
||||
* If we were in an extended quiescent state, we may have
|
||||
* missed some grace periods that others CPUs handled on
|
||||
* our behalf. Catch up with this state to avoid noting
|
||||
* spurious new grace periods. If another grace period
|
||||
* has started, then rnp->gpnum will have advanced, so
|
||||
* we will detect this later on. Of course, any quiescent
|
||||
* states we found for the old GP are now invalid.
|
||||
* If the current grace period is waiting for this CPU,
|
||||
* set up to detect a quiescent state, otherwise don't
|
||||
* go looking for one.
|
||||
*/
|
||||
if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
|
||||
rdp->gpnum = rdp->completed;
|
||||
rdp->passed_quiesce = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* If RCU does not need a quiescent state from this CPU,
|
||||
* then make sure that this CPU doesn't go looking for one.
|
||||
*/
|
||||
if ((rnp->qsmask & rdp->grpmask) == 0)
|
||||
rdp->qs_pending = 0;
|
||||
rdp->gpnum = rnp->gpnum;
|
||||
trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
|
||||
rdp->passed_quiesce = 0;
|
||||
rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
|
||||
zero_cpu_stall_ticks(rdp);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Advance this CPU's callbacks, but only if the current grace period
|
||||
* has ended. This may be called only from the CPU to whom the rdp
|
||||
* belongs.
|
||||
*/
|
||||
static void
|
||||
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
|
||||
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct rcu_node *rnp;
|
||||
|
||||
local_irq_save(flags);
|
||||
rnp = rdp->mynode;
|
||||
if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
|
||||
if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
|
||||
rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
|
||||
!raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
|
||||
local_irq_restore(flags);
|
||||
return;
|
||||
}
|
||||
__rcu_process_gp_end(rsp, rnp, rdp);
|
||||
__note_gp_changes(rsp, rnp, rdp);
|
||||
raw_spin_unlock_irqrestore(&rnp->lock, flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* Do per-CPU grace-period initialization for running CPU. The caller
|
||||
* must hold the lock of the leaf rcu_node structure corresponding to
|
||||
* this CPU.
|
||||
*/
|
||||
static void
|
||||
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
|
||||
{
|
||||
/* Prior grace period ended, so advance callbacks for current CPU. */
|
||||
__rcu_process_gp_end(rsp, rnp, rdp);
|
||||
|
||||
/* Set state so that this CPU will detect the next quiescent state. */
|
||||
__note_new_gpnum(rsp, rnp, rdp);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize a new grace period.
|
||||
*/
|
||||
@ -1444,7 +1355,7 @@ static int rcu_gp_init(struct rcu_state *rsp)
|
||||
WARN_ON_ONCE(rnp->completed != rsp->completed);
|
||||
ACCESS_ONCE(rnp->completed) = rsp->completed;
|
||||
if (rnp == rdp->mynode)
|
||||
rcu_start_gp_per_cpu(rsp, rnp, rdp);
|
||||
__note_gp_changes(rsp, rnp, rdp);
|
||||
rcu_preempt_boost_start_gp(rnp);
|
||||
trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
|
||||
rnp->level, rnp->grplo,
|
||||
@ -1527,7 +1438,7 @@ static void rcu_gp_cleanup(struct rcu_state *rsp)
|
||||
ACCESS_ONCE(rnp->completed) = rsp->gpnum;
|
||||
rdp = this_cpu_ptr(rsp->rda);
|
||||
if (rnp == rdp->mynode)
|
||||
__rcu_process_gp_end(rsp, rnp, rdp);
|
||||
__note_gp_changes(rsp, rnp, rdp);
|
||||
nocb += rcu_future_gp_cleanup(rsp, rnp);
|
||||
raw_spin_unlock_irq(&rnp->lock);
|
||||
cond_resched();
|
||||
@ -1805,9 +1716,8 @@ rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
|
||||
static void
|
||||
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
|
||||
{
|
||||
/* If there is now a new grace period, record and return. */
|
||||
if (check_for_new_grace_period(rsp, rdp))
|
||||
return;
|
||||
/* Check for grace-period ends and beginnings. */
|
||||
note_gp_changes(rsp, rdp);
|
||||
|
||||
/*
|
||||
* Does this CPU still need to do its part for current grace period?
|
||||
@ -2271,9 +2181,6 @@ __rcu_process_callbacks(struct rcu_state *rsp)
|
||||
|
||||
WARN_ON_ONCE(rdp->beenonline == 0);
|
||||
|
||||
/* Handle the end of a grace period that some other CPU ended. */
|
||||
rcu_process_gp_end(rsp, rdp);
|
||||
|
||||
/* Update RCU state based on any recent quiescent states. */
|
||||
rcu_check_quiescent_state(rsp, rdp);
|
||||
|
||||
@ -2358,8 +2265,7 @@ static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
|
||||
if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
|
||||
|
||||
/* Are we ignoring a completed grace period? */
|
||||
rcu_process_gp_end(rsp, rdp);
|
||||
check_for_new_grace_period(rsp, rdp);
|
||||
note_gp_changes(rsp, rdp);
|
||||
|
||||
/* Start a new grace period if one not already started. */
|
||||
if (!rcu_gp_in_progress(rsp)) {
|
||||
@ -3265,11 +3171,25 @@ static void __init rcu_init_one(struct rcu_state *rsp,
|
||||
*/
|
||||
static void __init rcu_init_geometry(void)
|
||||
{
|
||||
ulong d;
|
||||
int i;
|
||||
int j;
|
||||
int n = nr_cpu_ids;
|
||||
int rcu_capacity[MAX_RCU_LVLS + 1];
|
||||
|
||||
/*
|
||||
* Initialize any unspecified boot parameters.
|
||||
* The default values of jiffies_till_first_fqs and
|
||||
* jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
|
||||
* value, which is a function of HZ, then adding one for each
|
||||
* RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
|
||||
*/
|
||||
d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
|
||||
if (jiffies_till_first_fqs == ULONG_MAX)
|
||||
jiffies_till_first_fqs = d;
|
||||
if (jiffies_till_next_fqs == ULONG_MAX)
|
||||
jiffies_till_next_fqs = d;
|
||||
|
||||
/* If the compile-time values are accurate, just leave. */
|
||||
if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
|
||||
nr_cpu_ids == NR_CPUS)
|
||||
|
@ -343,12 +343,17 @@ struct rcu_data {
|
||||
#define RCU_FORCE_QS 3 /* Need to force quiescent state. */
|
||||
#define RCU_SIGNAL_INIT RCU_SAVE_DYNTICK
|
||||
|
||||
#define RCU_JIFFIES_TILL_FORCE_QS 3 /* for rsp->jiffies_force_qs */
|
||||
#define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
|
||||
/* For jiffies_till_first_fqs and */
|
||||
/* and jiffies_till_next_fqs. */
|
||||
|
||||
#define RCU_STALL_RAT_DELAY 2 /* Allow other CPUs time */
|
||||
/* to take at least one */
|
||||
/* scheduling clock irq */
|
||||
/* before ratting on them. */
|
||||
#define RCU_JIFFIES_FQS_DIV 256 /* Very large systems need more */
|
||||
/* delay between bouts of */
|
||||
/* quiescent-state forcing. */
|
||||
|
||||
#define RCU_STALL_RAT_DELAY 2 /* Allow other CPUs time to take */
|
||||
/* at least one scheduling clock */
|
||||
/* irq before ratting on them. */
|
||||
|
||||
#define rcu_wait(cond) \
|
||||
do { \
|
||||
|
@ -53,38 +53,37 @@ static char __initdata nocb_buf[NR_CPUS * 5];
|
||||
static void __init rcu_bootup_announce_oddness(void)
|
||||
{
|
||||
#ifdef CONFIG_RCU_TRACE
|
||||
printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
|
||||
pr_info("\tRCU debugfs-based tracing is enabled.\n");
|
||||
#endif
|
||||
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
|
||||
printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
|
||||
pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
|
||||
CONFIG_RCU_FANOUT);
|
||||
#endif
|
||||
#ifdef CONFIG_RCU_FANOUT_EXACT
|
||||
printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
|
||||
pr_info("\tHierarchical RCU autobalancing is disabled.\n");
|
||||
#endif
|
||||
#ifdef CONFIG_RCU_FAST_NO_HZ
|
||||
printk(KERN_INFO
|
||||
"\tRCU dyntick-idle grace-period acceleration is enabled.\n");
|
||||
pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
|
||||
#endif
|
||||
#ifdef CONFIG_PROVE_RCU
|
||||
printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
|
||||
pr_info("\tRCU lockdep checking is enabled.\n");
|
||||
#endif
|
||||
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
|
||||
printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
|
||||
pr_info("\tRCU torture testing starts during boot.\n");
|
||||
#endif
|
||||
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
|
||||
printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
|
||||
pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
|
||||
#endif
|
||||
#if defined(CONFIG_RCU_CPU_STALL_INFO)
|
||||
printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
|
||||
pr_info("\tAdditional per-CPU info printed with stalls.\n");
|
||||
#endif
|
||||
#if NUM_RCU_LVL_4 != 0
|
||||
printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
|
||||
pr_info("\tFour-level hierarchy is enabled.\n");
|
||||
#endif
|
||||
if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
|
||||
printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
|
||||
pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
|
||||
if (nr_cpu_ids != NR_CPUS)
|
||||
printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
|
||||
pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
|
||||
#ifdef CONFIG_RCU_NOCB_CPU
|
||||
#ifndef CONFIG_RCU_NOCB_CPU_NONE
|
||||
if (!have_rcu_nocb_mask) {
|
||||
@ -92,19 +91,19 @@ static void __init rcu_bootup_announce_oddness(void)
|
||||
have_rcu_nocb_mask = true;
|
||||
}
|
||||
#ifdef CONFIG_RCU_NOCB_CPU_ZERO
|
||||
pr_info("\tExperimental no-CBs CPU 0\n");
|
||||
pr_info("\tOffload RCU callbacks from CPU 0\n");
|
||||
cpumask_set_cpu(0, rcu_nocb_mask);
|
||||
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
|
||||
#ifdef CONFIG_RCU_NOCB_CPU_ALL
|
||||
pr_info("\tExperimental no-CBs for all CPUs\n");
|
||||
pr_info("\tOffload RCU callbacks from all CPUs\n");
|
||||
cpumask_setall(rcu_nocb_mask);
|
||||
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
|
||||
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
|
||||
if (have_rcu_nocb_mask) {
|
||||
cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
|
||||
pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf);
|
||||
pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
|
||||
if (rcu_nocb_poll)
|
||||
pr_info("\tExperimental polled no-CBs CPUs.\n");
|
||||
pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
|
||||
}
|
||||
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
|
||||
}
|
||||
@ -123,7 +122,7 @@ static int rcu_preempted_readers_exp(struct rcu_node *rnp);
|
||||
*/
|
||||
static void __init rcu_bootup_announce(void)
|
||||
{
|
||||
printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
|
||||
pr_info("Preemptible hierarchical RCU implementation.\n");
|
||||
rcu_bootup_announce_oddness();
|
||||
}
|
||||
|
||||
@ -490,13 +489,13 @@ static void rcu_print_detail_task_stall(struct rcu_state *rsp)
|
||||
|
||||
static void rcu_print_task_stall_begin(struct rcu_node *rnp)
|
||||
{
|
||||
printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
|
||||
pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
|
||||
rnp->level, rnp->grplo, rnp->grphi);
|
||||
}
|
||||
|
||||
static void rcu_print_task_stall_end(void)
|
||||
{
|
||||
printk(KERN_CONT "\n");
|
||||
pr_cont("\n");
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
|
||||
@ -526,7 +525,7 @@ static int rcu_print_task_stall(struct rcu_node *rnp)
|
||||
t = list_entry(rnp->gp_tasks,
|
||||
struct task_struct, rcu_node_entry);
|
||||
list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
|
||||
printk(KERN_CONT " P%d", t->pid);
|
||||
pr_cont(" P%d", t->pid);
|
||||
ndetected++;
|
||||
}
|
||||
rcu_print_task_stall_end();
|
||||
@ -933,6 +932,24 @@ static void __init __rcu_init_preempt(void)
|
||||
rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
|
||||
}
|
||||
|
||||
/*
|
||||
* Check for a task exiting while in a preemptible-RCU read-side
|
||||
* critical section, clean up if so. No need to issue warnings,
|
||||
* as debug_check_no_locks_held() already does this if lockdep
|
||||
* is enabled.
|
||||
*/
|
||||
void exit_rcu(void)
|
||||
{
|
||||
struct task_struct *t = current;
|
||||
|
||||
if (likely(list_empty(¤t->rcu_node_entry)))
|
||||
return;
|
||||
t->rcu_read_lock_nesting = 1;
|
||||
barrier();
|
||||
t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
|
||||
__rcu_read_unlock();
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
|
||||
|
||||
static struct rcu_state *rcu_state = &rcu_sched_state;
|
||||
@ -942,7 +959,7 @@ static struct rcu_state *rcu_state = &rcu_sched_state;
|
||||
*/
|
||||
static void __init rcu_bootup_announce(void)
|
||||
{
|
||||
printk(KERN_INFO "Hierarchical RCU implementation.\n");
|
||||
pr_info("Hierarchical RCU implementation.\n");
|
||||
rcu_bootup_announce_oddness();
|
||||
}
|
||||
|
||||
@ -1101,6 +1118,14 @@ static void __init __rcu_init_preempt(void)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
* Because preemptible RCU does not exist, tasks cannot possibly exit
|
||||
* while in preemptible RCU read-side critical sections.
|
||||
*/
|
||||
void exit_rcu(void)
|
||||
{
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
|
||||
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
@ -1629,7 +1654,7 @@ static bool rcu_try_advance_all_cbs(void)
|
||||
*/
|
||||
if (rdp->completed != rnp->completed &&
|
||||
rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
|
||||
rcu_process_gp_end(rsp, rdp);
|
||||
note_gp_changes(rsp, rdp);
|
||||
|
||||
if (cpu_has_callbacks_ready_to_invoke(rdp))
|
||||
cbs_ready = true;
|
||||
@ -1883,7 +1908,7 @@ static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
|
||||
/* Initiate the stall-info list. */
|
||||
static void print_cpu_stall_info_begin(void)
|
||||
{
|
||||
printk(KERN_CONT "\n");
|
||||
pr_cont("\n");
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1914,7 +1939,7 @@ static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
|
||||
ticks_value = rsp->gpnum - rdp->gpnum;
|
||||
}
|
||||
print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
|
||||
printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
|
||||
pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
|
||||
cpu, ticks_value, ticks_title,
|
||||
atomic_read(&rdtp->dynticks) & 0xfff,
|
||||
rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
|
||||
@ -1925,7 +1950,7 @@ static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
|
||||
/* Terminate the stall-info list. */
|
||||
static void print_cpu_stall_info_end(void)
|
||||
{
|
||||
printk(KERN_ERR "\t");
|
||||
pr_err("\t");
|
||||
}
|
||||
|
||||
/* Zero ->ticks_this_gp for all flavors of RCU. */
|
||||
@ -1948,17 +1973,17 @@ static void increment_cpu_stall_ticks(void)
|
||||
|
||||
static void print_cpu_stall_info_begin(void)
|
||||
{
|
||||
printk(KERN_CONT " {");
|
||||
pr_cont(" {");
|
||||
}
|
||||
|
||||
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
|
||||
{
|
||||
printk(KERN_CONT " %d", cpu);
|
||||
pr_cont(" %d", cpu);
|
||||
}
|
||||
|
||||
static void print_cpu_stall_info_end(void)
|
||||
{
|
||||
printk(KERN_CONT "} ");
|
||||
pr_cont("} ");
|
||||
}
|
||||
|
||||
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
|
||||
|
Loading…
Reference in New Issue
Block a user