2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 02:54:00 +08:00

Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler changes from Ingo Molnar:
 "The main changes are:

   - irqtime accounting cleanups and enhancements. (Frederic Weisbecker)

   - schedstat debugging enhancements, make it more broadly runtime
     available. (Josh Poimboeuf)

   - More work on asymmetric topology/capacity scheduling. (Morten
     Rasmussen)

   - sched/wait fixes and cleanups. (Oleg Nesterov)

   - PELT (per entity load tracking) improvements. (Peter Zijlstra)

   - Rewrite and enhance select_idle_siblings(). (Peter Zijlstra)

   - sched/numa enhancements/fixes (Rik van Riel)

   - sched/cputime scalability improvements (Stanislaw Gruszka)

   - Load calculation arithmetics fixes. (Dietmar Eggemann)

   - sched/deadline enhancements (Tommaso Cucinotta)

   - Fix utilization accounting when switching to the SCHED_NORMAL
     policy. (Vincent Guittot)

   - ... plus misc cleanups and enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
  sched/irqtime: Consolidate irqtime flushing code
  sched/irqtime: Consolidate accounting synchronization with u64_stats API
  u64_stats: Introduce IRQs disabled helpers
  sched/irqtime: Remove needless IRQs disablement on kcpustat update
  sched/irqtime: No need for preempt-safe accessors
  sched/fair: Fix min_vruntime tracking
  sched/debug: Add SCHED_WARN_ON()
  sched/core: Fix set_user_nice()
  sched/fair: Introduce set_curr_task() helper
  sched/core, ia64: Rename set_curr_task()
  sched/core: Fix incorrect utilization accounting when switching to fair class
  sched/core: Optimize SCHED_SMT
  sched/core: Rewrite and improve select_idle_siblings()
  sched/core: Replace sd_busy/nr_busy_cpus with sched_domain_shared
  sched/core: Introduce 'struct sched_domain_shared'
  sched/core: Restructure destroy_sched_domain()
  sched/core: Remove unused @cpu argument from destroy_sched_domain*()
  sched/wait: Introduce init_wait_entry()
  sched/wait: Avoid abort_exclusive_wait() in __wait_on_bit_lock()
  sched/wait: Avoid abort_exclusive_wait() in ___wait_event()
  ...
This commit is contained in:
Linus Torvalds 2016-10-03 13:39:00 -07:00
commit af79ad2b1f
24 changed files with 1221 additions and 769 deletions

View File

@ -16,6 +16,7 @@ CONTENTS
4.1 System-wide settings
4.2 Task interface
4.3 Default behavior
4.4 Behavior of sched_yield()
5. Tasks CPU affinity
5.1 SCHED_DEADLINE and cpusets HOWTO
6. Future plans
@ -426,6 +427,23 @@ CONTENTS
Finally, notice that in order not to jeopardize the admission control a
-deadline task cannot fork.
4.4 Behavior of sched_yield()
-----------------------------
When a SCHED_DEADLINE task calls sched_yield(), it gives up its
remaining runtime and is immediately throttled, until the next
period, when its runtime will be replenished (a special flag
dl_yielded is set and used to handle correctly throttling and runtime
replenishment after a call to sched_yield()).
This behavior of sched_yield() allows the task to wake-up exactly at
the beginning of the next period. Also, this may be useful in the
future with bandwidth reclaiming mechanisms, where sched_yield() will
make the leftoever runtime available for reclamation by other
SCHED_DEADLINE tasks.
5. Tasks CPU affinity
=====================

View File

@ -986,7 +986,7 @@ ia64_mca_modify_original_stack(struct pt_regs *regs,
int cpu = smp_processor_id();
previous_current = curr_task(cpu);
set_curr_task(cpu, current);
ia64_set_curr_task(cpu, current);
if ((p = strchr(current->comm, ' ')))
*p = '\0';
@ -1360,14 +1360,14 @@ ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
while (monarch_cpu != -1)
cpu_relax(); /* spin until last cpu leaves */
set_curr_task(cpu, previous_current);
ia64_set_curr_task(cpu, previous_current);
ia64_mc_info.imi_rendez_checkin[cpu]
= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
return;
}
}
}
set_curr_task(cpu, previous_current);
ia64_set_curr_task(cpu, previous_current);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
monarch_cpu = -1; /* This frees the slaves and previous monarchs */
}
@ -1729,7 +1729,7 @@ ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
mprintk("Slave on cpu %d returning to normal service.\n", cpu);
set_curr_task(cpu, previous_current);
ia64_set_curr_task(cpu, previous_current);
ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
atomic_dec(&slaves);
return;
@ -1756,7 +1756,7 @@ ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
atomic_dec(&monarchs);
set_curr_task(cpu, previous_current);
ia64_set_curr_task(cpu, previous_current);
monarch_cpu = -1;
return;
}

View File

@ -471,7 +471,7 @@ static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
return false;
}
static struct sched_domain_topology_level numa_inside_package_topology[] = {
static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
@ -480,22 +480,23 @@ static struct sched_domain_topology_level numa_inside_package_topology[] = {
#endif
{ NULL, },
};
static struct sched_domain_topology_level x86_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
};
/*
* set_sched_topology() sets the topology internal to a CPU. The
* NUMA topologies are layered on top of it to build the full
* system topology.
*
* If NUMA nodes are observed to occur within a CPU package, this
* function should be called. It forces the sched domain code to
* only use the SMT level for the CPU portion of the topology.
* This essentially falls back to relying on NUMA information
* from the SRAT table to describe the entire system topology
* (except for hyperthreads).
* Set if a package/die has multiple NUMA nodes inside.
* AMD Magny-Cours and Intel Cluster-on-Die have this.
*/
static void primarily_use_numa_for_topology(void)
{
set_sched_topology(numa_inside_package_topology);
}
static bool x86_has_numa_in_package;
void set_cpu_sibling_map(int cpu)
{
@ -558,7 +559,7 @@ void set_cpu_sibling_map(int cpu)
c->booted_cores = cpu_data(i).booted_cores;
}
if (match_die(c, o) && !topology_same_node(c, o))
primarily_use_numa_for_topology();
x86_has_numa_in_package = true;
}
threads = cpumask_weight(topology_sibling_cpumask(cpu));
@ -1304,6 +1305,16 @@ void __init native_smp_prepare_cpus(unsigned int max_cpus)
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
}
/*
* Set 'default' x86 topology, this matches default_topology() in that
* it has NUMA nodes as a topology level. See also
* native_smp_cpus_done().
*
* Must be done before set_cpus_sibling_map() is ran.
*/
set_sched_topology(x86_topology);
set_cpu_sibling_map(0);
switch (smp_sanity_check(max_cpus)) {
@ -1370,6 +1381,9 @@ void __init native_smp_cpus_done(unsigned int max_cpus)
{
pr_debug("Boot done\n");
if (x86_has_numa_in_package)
set_sched_topology(x86_numa_in_package_topology);
nmi_selftest();
impress_friends();
setup_ioapic_dest();

View File

@ -259,17 +259,14 @@ static inline void might_fault(void) { }
extern struct atomic_notifier_head panic_notifier_list;
extern long (*panic_blink)(int state);
__printf(1, 2)
void panic(const char *fmt, ...)
__noreturn __cold;
void panic(const char *fmt, ...) __noreturn __cold;
void nmi_panic(struct pt_regs *regs, const char *msg);
extern void oops_enter(void);
extern void oops_exit(void);
void print_oops_end_marker(void);
extern int oops_may_print(void);
void do_exit(long error_code)
__noreturn;
void complete_and_exit(struct completion *, long)
__noreturn;
void do_exit(long error_code) __noreturn;
void complete_and_exit(struct completion *, long) __noreturn;
/* Internal, do not use. */
int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);

View File

@ -448,6 +448,8 @@ static inline void io_schedule(void)
io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
}
void __noreturn do_task_dead(void);
struct nsproxy;
struct user_namespace;
@ -1022,7 +1024,8 @@ extern void wake_up_q(struct wake_q_head *head);
#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
@ -1064,6 +1067,12 @@ extern int sched_domain_level_max;
struct sched_group;
struct sched_domain_shared {
atomic_t ref;
atomic_t nr_busy_cpus;
int has_idle_cores;
};
struct sched_domain {
/* These fields must be setup */
struct sched_domain *parent; /* top domain must be null terminated */
@ -1094,6 +1103,8 @@ struct sched_domain {
u64 max_newidle_lb_cost;
unsigned long next_decay_max_lb_cost;
u64 avg_scan_cost; /* select_idle_sibling */
#ifdef CONFIG_SCHEDSTATS
/* load_balance() stats */
unsigned int lb_count[CPU_MAX_IDLE_TYPES];
@ -1132,6 +1143,7 @@ struct sched_domain {
void *private; /* used during construction */
struct rcu_head rcu; /* used during destruction */
};
struct sched_domain_shared *shared;
unsigned int span_weight;
/*
@ -1165,6 +1177,7 @@ typedef int (*sched_domain_flags_f)(void);
struct sd_data {
struct sched_domain **__percpu sd;
struct sched_domain_shared **__percpu sds;
struct sched_group **__percpu sg;
struct sched_group_capacity **__percpu sgc;
};
@ -2568,7 +2581,7 @@ static inline bool is_idle_task(const struct task_struct *p)
return p->pid == 0;
}
extern struct task_struct *curr_task(int cpu);
extern void set_curr_task(int cpu, struct task_struct *p);
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
void yield(void);
@ -3206,7 +3219,11 @@ static inline int signal_pending_state(long state, struct task_struct *p)
* cond_resched_lock() will drop the spinlock before scheduling,
* cond_resched_softirq() will enable bhs before scheduling.
*/
#ifndef CONFIG_PREEMPT
extern int _cond_resched(void);
#else
static inline int _cond_resched(void) { return 0; }
#endif
#define cond_resched() ({ \
___might_sleep(__FILE__, __LINE__, 0); \
@ -3236,6 +3253,15 @@ static inline void cond_resched_rcu(void)
#endif
}
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
return p->preempt_disable_ip;
#else
return 0;
#endif
}
/*
* Does a critical section need to be broken due to another
* task waiting?: (technically does not depend on CONFIG_PREEMPT,

View File

@ -103,29 +103,40 @@ static inline void u64_stats_update_end_raw(struct u64_stats_sync *syncp)
#endif
}
static inline unsigned int u64_stats_fetch_begin(const struct u64_stats_sync *syncp)
static inline unsigned int __u64_stats_fetch_begin(const struct u64_stats_sync *syncp)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
return read_seqcount_begin(&syncp->seq);
#else
#if BITS_PER_LONG==32
return 0;
#endif
}
static inline unsigned int u64_stats_fetch_begin(const struct u64_stats_sync *syncp)
{
#if BITS_PER_LONG==32 && !defined(CONFIG_SMP)
preempt_disable();
#endif
return 0;
return __u64_stats_fetch_begin(syncp);
}
static inline bool __u64_stats_fetch_retry(const struct u64_stats_sync *syncp,
unsigned int start)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
return read_seqcount_retry(&syncp->seq, start);
#else
return false;
#endif
}
static inline bool u64_stats_fetch_retry(const struct u64_stats_sync *syncp,
unsigned int start)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
return read_seqcount_retry(&syncp->seq, start);
#else
#if BITS_PER_LONG==32
#if BITS_PER_LONG==32 && !defined(CONFIG_SMP)
preempt_enable();
#endif
return false;
#endif
return __u64_stats_fetch_retry(syncp, start);
}
/*
@ -136,27 +147,19 @@ static inline bool u64_stats_fetch_retry(const struct u64_stats_sync *syncp,
*/
static inline unsigned int u64_stats_fetch_begin_irq(const struct u64_stats_sync *syncp)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
return read_seqcount_begin(&syncp->seq);
#else
#if BITS_PER_LONG==32
#if BITS_PER_LONG==32 && !defined(CONFIG_SMP)
local_irq_disable();
#endif
return 0;
#endif
return __u64_stats_fetch_begin(syncp);
}
static inline bool u64_stats_fetch_retry_irq(const struct u64_stats_sync *syncp,
unsigned int start)
unsigned int start)
{
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
return read_seqcount_retry(&syncp->seq, start);
#else
#if BITS_PER_LONG==32
#if BITS_PER_LONG==32 && !defined(CONFIG_SMP)
local_irq_enable();
#endif
return false;
#endif
return __u64_stats_fetch_retry(syncp, start);
}
#endif /* _LINUX_U64_STATS_SYNC_H */

View File

@ -248,6 +248,8 @@ wait_queue_head_t *bit_waitqueue(void *, int);
(!__builtin_constant_p(state) || \
state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE) \
extern void init_wait_entry(wait_queue_t *__wait, int flags);
/*
* The below macro ___wait_event() has an explicit shadow of the __ret
* variable when used from the wait_event_*() macros.
@ -266,12 +268,7 @@ wait_queue_head_t *bit_waitqueue(void *, int);
wait_queue_t __wait; \
long __ret = ret; /* explicit shadow */ \
\
INIT_LIST_HEAD(&__wait.task_list); \
if (exclusive) \
__wait.flags = WQ_FLAG_EXCLUSIVE; \
else \
__wait.flags = 0; \
\
init_wait_entry(&__wait, exclusive ? WQ_FLAG_EXCLUSIVE : 0); \
for (;;) { \
long __int = prepare_to_wait_event(&wq, &__wait, state);\
\
@ -280,12 +277,7 @@ wait_queue_head_t *bit_waitqueue(void *, int);
\
if (___wait_is_interruptible(state) && __int) { \
__ret = __int; \
if (exclusive) { \
abort_exclusive_wait(&wq, &__wait, \
state, NULL); \
goto __out; \
} \
break; \
goto __out; \
} \
\
cmd; \
@ -989,7 +981,6 @@ void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, unsigned int mode, void *key);
long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);

View File

@ -725,7 +725,7 @@ static void check_stack_usage(void)
static inline void check_stack_usage(void) {}
#endif
void do_exit(long code)
void __noreturn do_exit(long code)
{
struct task_struct *tsk = current;
int group_dead;
@ -882,29 +882,7 @@ void do_exit(long code)
exit_rcu();
TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
/*
* The setting of TASK_RUNNING by try_to_wake_up() may be delayed
* when the following two conditions become true.
* - There is race condition of mmap_sem (It is acquired by
* exit_mm()), and
* - SMI occurs before setting TASK_RUNINNG.
* (or hypervisor of virtual machine switches to other guest)
* As a result, we may become TASK_RUNNING after becoming TASK_DEAD
*
* To avoid it, we have to wait for releasing tsk->pi_lock which
* is held by try_to_wake_up()
*/
smp_mb();
raw_spin_unlock_wait(&tsk->pi_lock);
/* causes final put_task_struct in finish_task_switch(). */
tsk->state = TASK_DEAD;
tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
schedule();
BUG();
/* Avoid "noreturn function does return". */
for (;;)
cpu_relax(); /* For when BUG is null */
do_task_dead();
}
EXPORT_SYMBOL_GPL(do_exit);

View File

@ -1070,8 +1070,12 @@ static int migration_cpu_stop(void *data)
* holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
* we're holding p->pi_lock.
*/
if (task_rq(p) == rq && task_on_rq_queued(p))
rq = __migrate_task(rq, p, arg->dest_cpu);
if (task_rq(p) == rq) {
if (task_on_rq_queued(p))
rq = __migrate_task(rq, p, arg->dest_cpu);
else
p->wake_cpu = arg->dest_cpu;
}
raw_spin_unlock(&rq->lock);
raw_spin_unlock(&p->pi_lock);
@ -1112,10 +1116,10 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
p->sched_class->set_cpus_allowed(p, new_mask);
if (running)
p->sched_class->set_curr_task(rq);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE);
if (running)
set_curr_task(rq, p);
}
/*
@ -1272,7 +1276,7 @@ static void __migrate_swap_task(struct task_struct *p, int cpu)
/*
* Task isn't running anymore; make it appear like we migrated
* it before it went to sleep. This means on wakeup we make the
* previous cpu our targer instead of where it really is.
* previous cpu our target instead of where it really is.
*/
p->wake_cpu = cpu;
}
@ -1636,23 +1640,25 @@ static inline int __set_cpus_allowed_ptr(struct task_struct *p,
static void
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
{
#ifdef CONFIG_SCHEDSTATS
struct rq *rq = this_rq();
struct rq *rq;
if (!schedstat_enabled())
return;
rq = this_rq();
#ifdef CONFIG_SMP
int this_cpu = smp_processor_id();
if (cpu == this_cpu) {
schedstat_inc(rq, ttwu_local);
schedstat_inc(p, se.statistics.nr_wakeups_local);
if (cpu == rq->cpu) {
schedstat_inc(rq->ttwu_local);
schedstat_inc(p->se.statistics.nr_wakeups_local);
} else {
struct sched_domain *sd;
schedstat_inc(p, se.statistics.nr_wakeups_remote);
schedstat_inc(p->se.statistics.nr_wakeups_remote);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
for_each_domain(rq->cpu, sd) {
if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
schedstat_inc(sd, ttwu_wake_remote);
schedstat_inc(sd->ttwu_wake_remote);
break;
}
}
@ -1660,17 +1666,14 @@ ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
}
if (wake_flags & WF_MIGRATED)
schedstat_inc(p, se.statistics.nr_wakeups_migrate);
schedstat_inc(p->se.statistics.nr_wakeups_migrate);
#endif /* CONFIG_SMP */
schedstat_inc(rq, ttwu_count);
schedstat_inc(p, se.statistics.nr_wakeups);
schedstat_inc(rq->ttwu_count);
schedstat_inc(p->se.statistics.nr_wakeups);
if (wake_flags & WF_SYNC)
schedstat_inc(p, se.statistics.nr_wakeups_sync);
#endif /* CONFIG_SCHEDSTATS */
schedstat_inc(p->se.statistics.nr_wakeups_sync);
}
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
@ -2091,8 +2094,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
ttwu_queue(p, cpu, wake_flags);
stat:
if (schedstat_enabled())
ttwu_stat(p, cpu, wake_flags);
ttwu_stat(p, cpu, wake_flags);
out:
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
@ -2102,6 +2104,7 @@ out:
/**
* try_to_wake_up_local - try to wake up a local task with rq lock held
* @p: the thread to be awakened
* @cookie: context's cookie for pinning
*
* Put @p on the run-queue if it's not already there. The caller must
* ensure that this_rq() is locked, @p is bound to this_rq() and not
@ -2140,8 +2143,7 @@ static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie
ttwu_activate(rq, p, ENQUEUE_WAKEUP);
ttwu_do_wakeup(rq, p, 0, cookie);
if (schedstat_enabled())
ttwu_stat(p, smp_processor_id(), 0);
ttwu_stat(p, smp_processor_id(), 0);
out:
raw_spin_unlock(&p->pi_lock);
}
@ -3199,6 +3201,9 @@ static inline void preempt_latency_stop(int val) { }
*/
static noinline void __schedule_bug(struct task_struct *prev)
{
/* Save this before calling printk(), since that will clobber it */
unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
if (oops_in_progress)
return;
@ -3209,13 +3214,12 @@ static noinline void __schedule_bug(struct task_struct *prev)
print_modules();
if (irqs_disabled())
print_irqtrace_events(prev);
#ifdef CONFIG_DEBUG_PREEMPT
if (in_atomic_preempt_off()) {
if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
&& in_atomic_preempt_off()) {
pr_err("Preemption disabled at:");
print_ip_sym(current->preempt_disable_ip);
print_ip_sym(preempt_disable_ip);
pr_cont("\n");
}
#endif
if (panic_on_warn)
panic("scheduling while atomic\n");
@ -3241,7 +3245,7 @@ static inline void schedule_debug(struct task_struct *prev)
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
schedstat_inc(this_rq(), sched_count);
schedstat_inc(this_rq()->sched_count);
}
/*
@ -3334,17 +3338,6 @@ static void __sched notrace __schedule(bool preempt)
rq = cpu_rq(cpu);
prev = rq->curr;
/*
* do_exit() calls schedule() with preemption disabled as an exception;
* however we must fix that up, otherwise the next task will see an
* inconsistent (higher) preempt count.
*
* It also avoids the below schedule_debug() test from complaining
* about this.
*/
if (unlikely(prev->state == TASK_DEAD))
preempt_enable_no_resched_notrace();
schedule_debug(prev);
if (sched_feat(HRTICK))
@ -3412,6 +3405,33 @@ static void __sched notrace __schedule(bool preempt)
}
STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
void __noreturn do_task_dead(void)
{
/*
* The setting of TASK_RUNNING by try_to_wake_up() may be delayed
* when the following two conditions become true.
* - There is race condition of mmap_sem (It is acquired by
* exit_mm()), and
* - SMI occurs before setting TASK_RUNINNG.
* (or hypervisor of virtual machine switches to other guest)
* As a result, we may become TASK_RUNNING after becoming TASK_DEAD
*
* To avoid it, we have to wait for releasing tsk->pi_lock which
* is held by try_to_wake_up()
*/
smp_mb();
raw_spin_unlock_wait(&current->pi_lock);
/* causes final put_task_struct in finish_task_switch(). */
__set_current_state(TASK_DEAD);
current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
__schedule(false);
BUG();
/* Avoid "noreturn function does return". */
for (;;)
cpu_relax(); /* For when BUG is null */
}
static inline void sched_submit_work(struct task_struct *tsk)
{
if (!tsk->state || tsk_is_pi_blocked(tsk))
@ -3694,10 +3714,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
p->prio = prio;
if (running)
p->sched_class->set_curr_task(rq);
if (queued)
enqueue_task(rq, p, queue_flag);
if (running)
set_curr_task(rq, p);
check_class_changed(rq, p, prev_class, oldprio);
out_unlock:
@ -3711,7 +3731,8 @@ out_unlock:
void set_user_nice(struct task_struct *p, long nice)
{
int old_prio, delta, queued;
bool queued, running;
int old_prio, delta;
struct rq_flags rf;
struct rq *rq;
@ -3733,8 +3754,11 @@ void set_user_nice(struct task_struct *p, long nice)
goto out_unlock;
}
queued = task_on_rq_queued(p);
running = task_current(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE);
if (running)
put_prev_task(rq, p);
p->static_prio = NICE_TO_PRIO(nice);
set_load_weight(p);
@ -3751,6 +3775,8 @@ void set_user_nice(struct task_struct *p, long nice)
if (delta < 0 || (delta > 0 && task_running(rq, p)))
resched_curr(rq);
}
if (running)
set_curr_task(rq, p);
out_unlock:
task_rq_unlock(rq, p, &rf);
}
@ -4250,8 +4276,6 @@ change:
prev_class = p->sched_class;
__setscheduler(rq, p, attr, pi);
if (running)
p->sched_class->set_curr_task(rq);
if (queued) {
/*
* We enqueue to tail when the priority of a task is
@ -4262,6 +4286,8 @@ change:
enqueue_task(rq, p, queue_flags);
}
if (running)
set_curr_task(rq, p);
check_class_changed(rq, p, prev_class, oldprio);
preempt_disable(); /* avoid rq from going away on us */
@ -4853,7 +4879,7 @@ SYSCALL_DEFINE0(sched_yield)
{
struct rq *rq = this_rq_lock();
schedstat_inc(rq, yld_count);
schedstat_inc(rq->yld_count);
current->sched_class->yield_task(rq);
/*
@ -4870,6 +4896,7 @@ SYSCALL_DEFINE0(sched_yield)
return 0;
}
#ifndef CONFIG_PREEMPT
int __sched _cond_resched(void)
{
if (should_resched(0)) {
@ -4879,6 +4906,7 @@ int __sched _cond_resched(void)
return 0;
}
EXPORT_SYMBOL(_cond_resched);
#endif
/*
* __cond_resched_lock() - if a reschedule is pending, drop the given lock,
@ -5004,7 +5032,7 @@ again:
yielded = curr->sched_class->yield_to_task(rq, p, preempt);
if (yielded) {
schedstat_inc(rq, yld_count);
schedstat_inc(rq->yld_count);
/*
* Make p's CPU reschedule; pick_next_entity takes care of
* fairness.
@ -5424,10 +5452,10 @@ void sched_setnuma(struct task_struct *p, int nid)
p->numa_preferred_nid = nid;
if (running)
p->sched_class->set_curr_task(rq);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE);
if (running)
set_curr_task(rq, p);
task_rq_unlock(rq, p, &rf);
}
#endif /* CONFIG_NUMA_BALANCING */
@ -5724,6 +5752,8 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
}
}
#else /* !CONFIG_SCHED_DEBUG */
# define sched_debug_enabled 0
# define sched_domain_debug(sd, cpu) do { } while (0)
static inline bool sched_debug(void)
{
@ -5742,6 +5772,7 @@ static int sd_degenerate(struct sched_domain *sd)
SD_BALANCE_FORK |
SD_BALANCE_EXEC |
SD_SHARE_CPUCAPACITY |
SD_ASYM_CPUCAPACITY |
SD_SHARE_PKG_RESOURCES |
SD_SHARE_POWERDOMAIN)) {
if (sd->groups != sd->groups->next)
@ -5772,6 +5803,7 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
SD_BALANCE_NEWIDLE |
SD_BALANCE_FORK |
SD_BALANCE_EXEC |
SD_ASYM_CPUCAPACITY |
SD_SHARE_CPUCAPACITY |
SD_SHARE_PKG_RESOURCES |
SD_PREFER_SIBLING |
@ -5916,10 +5948,8 @@ static void free_sched_groups(struct sched_group *sg, int free_sgc)
} while (sg != first);
}
static void free_sched_domain(struct rcu_head *rcu)
static void destroy_sched_domain(struct sched_domain *sd)
{
struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
/*
* If its an overlapping domain it has private groups, iterate and
* nuke them all.
@ -5930,18 +5960,26 @@ static void free_sched_domain(struct rcu_head *rcu)
kfree(sd->groups->sgc);
kfree(sd->groups);
}
if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
kfree(sd->shared);
kfree(sd);
}
static void destroy_sched_domain(struct sched_domain *sd, int cpu)
static void destroy_sched_domains_rcu(struct rcu_head *rcu)
{
call_rcu(&sd->rcu, free_sched_domain);
struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
while (sd) {
struct sched_domain *parent = sd->parent;
destroy_sched_domain(sd);
sd = parent;
}
}
static void destroy_sched_domains(struct sched_domain *sd, int cpu)
static void destroy_sched_domains(struct sched_domain *sd)
{
for (; sd; sd = sd->parent)
destroy_sched_domain(sd, cpu);
if (sd)
call_rcu(&sd->rcu, destroy_sched_domains_rcu);
}
/*
@ -5956,14 +5994,14 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu)
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_size);
DEFINE_PER_CPU(int, sd_llc_id);
DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
static void update_top_cache_domain(int cpu)
{
struct sched_domain_shared *sds = NULL;
struct sched_domain *sd;
struct sched_domain *busy_sd = NULL;
int id = cpu;
int size = 1;
@ -5971,13 +6009,13 @@ static void update_top_cache_domain(int cpu)
if (sd) {
id = cpumask_first(sched_domain_span(sd));
size = cpumask_weight(sched_domain_span(sd));
busy_sd = sd->parent; /* sd_busy */
sds = sd->shared;
}
rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
per_cpu(sd_llc_size, cpu) = size;
per_cpu(sd_llc_id, cpu) = id;
rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
sd = lowest_flag_domain(cpu, SD_NUMA);
rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
@ -6013,7 +6051,7 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
*/
if (parent->flags & SD_PREFER_SIBLING)
tmp->flags |= SD_PREFER_SIBLING;
destroy_sched_domain(parent, cpu);
destroy_sched_domain(parent);
} else
tmp = tmp->parent;
}
@ -6021,7 +6059,7 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
if (sd && sd_degenerate(sd)) {
tmp = sd;
sd = sd->parent;
destroy_sched_domain(tmp, cpu);
destroy_sched_domain(tmp);
if (sd)
sd->child = NULL;
}
@ -6031,7 +6069,7 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
rq_attach_root(rq, rd);
tmp = rq->sd;
rcu_assign_pointer(rq->sd, sd);
destroy_sched_domains(tmp, cpu);
destroy_sched_domains(tmp);
update_top_cache_domain(cpu);
}
@ -6274,7 +6312,6 @@ static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
return;
update_group_capacity(sd, cpu);
atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
}
/*
@ -6362,6 +6399,9 @@ static void claim_allocations(int cpu, struct sched_domain *sd)
WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
*per_cpu_ptr(sdd->sd, cpu) = NULL;
if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
*per_cpu_ptr(sdd->sds, cpu) = NULL;
if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
*per_cpu_ptr(sdd->sg, cpu) = NULL;
@ -6381,26 +6421,37 @@ static int sched_domains_curr_level;
/*
* SD_flags allowed in topology descriptions.
*
* SD_SHARE_CPUCAPACITY - describes SMT topologies
* SD_SHARE_PKG_RESOURCES - describes shared caches
* SD_NUMA - describes NUMA topologies
* SD_SHARE_POWERDOMAIN - describes shared power domain
* These flags are purely descriptive of the topology and do not prescribe
* behaviour. Behaviour is artificial and mapped in the below sd_init()
* function:
*
* Odd one out:
* SD_ASYM_PACKING - describes SMT quirks
* SD_SHARE_CPUCAPACITY - describes SMT topologies
* SD_SHARE_PKG_RESOURCES - describes shared caches
* SD_NUMA - describes NUMA topologies
* SD_SHARE_POWERDOMAIN - describes shared power domain
* SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
*
* Odd one out, which beside describing the topology has a quirk also
* prescribes the desired behaviour that goes along with it:
*
* SD_ASYM_PACKING - describes SMT quirks
*/
#define TOPOLOGY_SD_FLAGS \
(SD_SHARE_CPUCAPACITY | \
SD_SHARE_PKG_RESOURCES | \
SD_NUMA | \
SD_ASYM_PACKING | \
SD_ASYM_CPUCAPACITY | \
SD_SHARE_POWERDOMAIN)
static struct sched_domain *
sd_init(struct sched_domain_topology_level *tl, int cpu)
sd_init(struct sched_domain_topology_level *tl,
const struct cpumask *cpu_map,
struct sched_domain *child, int cpu)
{
struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
int sd_weight, sd_flags = 0;
struct sd_data *sdd = &tl->data;
struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
int sd_id, sd_weight, sd_flags = 0;
#ifdef CONFIG_NUMA
/*
@ -6449,15 +6500,26 @@ sd_init(struct sched_domain_topology_level *tl, int cpu)
.smt_gain = 0,
.max_newidle_lb_cost = 0,
.next_decay_max_lb_cost = jiffies,
.child = child,
#ifdef CONFIG_SCHED_DEBUG
.name = tl->name,
#endif
};
cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
sd_id = cpumask_first(sched_domain_span(sd));
/*
* Convert topological properties into behaviour.
*/
if (sd->flags & SD_ASYM_CPUCAPACITY) {
struct sched_domain *t = sd;
for_each_lower_domain(t)
t->flags |= SD_BALANCE_WAKE;
}
if (sd->flags & SD_SHARE_CPUCAPACITY) {
sd->flags |= SD_PREFER_SIBLING;
sd->imbalance_pct = 110;
@ -6489,7 +6551,17 @@ sd_init(struct sched_domain_topology_level *tl, int cpu)
sd->idle_idx = 1;
}
sd->private = &tl->data;
/*
* For all levels sharing cache; connect a sched_domain_shared
* instance.
*/
if (sd->flags & SD_SHARE_PKG_RESOURCES) {
sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
atomic_inc(&sd->shared->ref);
atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
}
sd->private = sdd;
return sd;
}
@ -6516,6 +6588,9 @@ static struct sched_domain_topology_level *sched_domain_topology =
void set_sched_topology(struct sched_domain_topology_level *tl)
{
if (WARN_ON_ONCE(sched_smp_initialized))
return;
sched_domain_topology = tl;
}
@ -6796,6 +6871,10 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
if (!sdd->sd)
return -ENOMEM;
sdd->sds = alloc_percpu(struct sched_domain_shared *);
if (!sdd->sds)
return -ENOMEM;
sdd->sg = alloc_percpu(struct sched_group *);
if (!sdd->sg)
return -ENOMEM;
@ -6806,6 +6885,7 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
for_each_cpu(j, cpu_map) {
struct sched_domain *sd;
struct sched_domain_shared *sds;
struct sched_group *sg;
struct sched_group_capacity *sgc;
@ -6816,6 +6896,13 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
*per_cpu_ptr(sdd->sd, j) = sd;
sds = kzalloc_node(sizeof(struct sched_domain_shared),
GFP_KERNEL, cpu_to_node(j));
if (!sds)
return -ENOMEM;
*per_cpu_ptr(sdd->sds, j) = sds;
sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
GFP_KERNEL, cpu_to_node(j));
if (!sg)
@ -6855,6 +6942,8 @@ static void __sdt_free(const struct cpumask *cpu_map)
kfree(*per_cpu_ptr(sdd->sd, j));
}
if (sdd->sds)
kfree(*per_cpu_ptr(sdd->sds, j));
if (sdd->sg)
kfree(*per_cpu_ptr(sdd->sg, j));
if (sdd->sgc)
@ -6862,6 +6951,8 @@ static void __sdt_free(const struct cpumask *cpu_map)
}
free_percpu(sdd->sd);
sdd->sd = NULL;
free_percpu(sdd->sds);
sdd->sds = NULL;
free_percpu(sdd->sg);
sdd->sg = NULL;
free_percpu(sdd->sgc);
@ -6873,16 +6964,12 @@ struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
const struct cpumask *cpu_map, struct sched_domain_attr *attr,
struct sched_domain *child, int cpu)
{
struct sched_domain *sd = sd_init(tl, cpu);
if (!sd)
return child;
struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
if (child) {
sd->level = child->level + 1;
sched_domain_level_max = max(sched_domain_level_max, sd->level);
child->parent = sd;
sd->child = child;
if (!cpumask_subset(sched_domain_span(child),
sched_domain_span(sd))) {
@ -6913,6 +7000,7 @@ static int build_sched_domains(const struct cpumask *cpu_map,
enum s_alloc alloc_state;
struct sched_domain *sd;
struct s_data d;
struct rq *rq = NULL;
int i, ret = -ENOMEM;
alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
@ -6963,11 +7051,22 @@ static int build_sched_domains(const struct cpumask *cpu_map,
/* Attach the domains */
rcu_read_lock();
for_each_cpu(i, cpu_map) {
rq = cpu_rq(i);
sd = *per_cpu_ptr(d.sd, i);
/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
cpu_attach_domain(sd, d.rd, i);
}
rcu_read_unlock();
if (rq && sched_debug_enabled) {
pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
}
ret = 0;
error:
__free_domain_allocs(&d, alloc_state, cpu_map);
@ -7326,6 +7425,22 @@ int sched_cpu_dying(unsigned int cpu)
}
#endif
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
static void sched_init_smt(void)
{
/*
* We've enumerated all CPUs and will assume that if any CPU
* has SMT siblings, CPU0 will too.
*/
if (cpumask_weight(cpu_smt_mask(0)) > 1)
static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif
void __init sched_init_smp(void)
{
cpumask_var_t non_isolated_cpus;
@ -7355,6 +7470,9 @@ void __init sched_init_smp(void)
init_sched_rt_class();
init_sched_dl_class();
sched_init_smt();
sched_smp_initialized = true;
}
@ -7392,6 +7510,7 @@ static struct kmem_cache *task_group_cache __read_mostly;
#endif
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
void __init sched_init(void)
{
@ -7428,6 +7547,8 @@ void __init sched_init(void)
for_each_possible_cpu(i) {
per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
cpumask_size(), GFP_KERNEL, cpu_to_node(i));
per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
cpumask_size(), GFP_KERNEL, cpu_to_node(i));
}
#endif /* CONFIG_CPUMASK_OFFSTACK */
@ -7530,21 +7651,12 @@ void __init sched_init(void)
set_load_weight(&init_task);
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif
/*
* The boot idle thread does lazy MMU switching as well:
*/
atomic_inc(&init_mm.mm_count);
enter_lazy_tlb(&init_mm, current);
/*
* During early bootup we pretend to be a normal task:
*/
current->sched_class = &fair_sched_class;
/*
* Make us the idle thread. Technically, schedule() should not be
* called from this thread, however somewhere below it might be,
@ -7599,6 +7711,7 @@ EXPORT_SYMBOL(__might_sleep);
void ___might_sleep(const char *file, int line, int preempt_offset)
{
static unsigned long prev_jiffy; /* ratelimiting */
unsigned long preempt_disable_ip;
rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
@ -7609,6 +7722,9 @@ void ___might_sleep(const char *file, int line, int preempt_offset)
return;
prev_jiffy = jiffies;
/* Save this before calling printk(), since that will clobber it */
preempt_disable_ip = get_preempt_disable_ip(current);
printk(KERN_ERR
"BUG: sleeping function called from invalid context at %s:%d\n",
file, line);
@ -7623,14 +7739,14 @@ void ___might_sleep(const char *file, int line, int preempt_offset)
debug_show_held_locks(current);
if (irqs_disabled())
print_irqtrace_events(current);
#ifdef CONFIG_DEBUG_PREEMPT
if (!preempt_count_equals(preempt_offset)) {
if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
&& !preempt_count_equals(preempt_offset)) {
pr_err("Preemption disabled at:");
print_ip_sym(current->preempt_disable_ip);
print_ip_sym(preempt_disable_ip);
pr_cont("\n");
}
#endif
dump_stack();
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
}
EXPORT_SYMBOL(___might_sleep);
#endif
@ -7651,12 +7767,10 @@ void normalize_rt_tasks(void)
if (p->flags & PF_KTHREAD)
continue;
p->se.exec_start = 0;
#ifdef CONFIG_SCHEDSTATS
p->se.statistics.wait_start = 0;
p->se.statistics.sleep_start = 0;
p->se.statistics.block_start = 0;
#endif
p->se.exec_start = 0;
schedstat_set(p->se.statistics.wait_start, 0);
schedstat_set(p->se.statistics.sleep_start, 0);
schedstat_set(p->se.statistics.block_start, 0);
if (!dl_task(p) && !rt_task(p)) {
/*
@ -7717,7 +7831,7 @@ struct task_struct *curr_task(int cpu)
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
*/
void set_curr_task(int cpu, struct task_struct *p)
void ia64_set_curr_task(int cpu, struct task_struct *p)
{
cpu_curr(cpu) = p;
}
@ -7848,10 +7962,10 @@ void sched_move_task(struct task_struct *tsk)
sched_change_group(tsk, TASK_MOVE_GROUP);
if (unlikely(running))
tsk->sched_class->set_curr_task(rq);
if (queued)
enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
if (unlikely(running))
set_curr_task(rq, tsk);
task_rq_unlock(rq, tsk, &rf);
}

View File

@ -31,56 +31,81 @@ static inline int right_child(int i)
return (i << 1) + 2;
}
static void cpudl_exchange(struct cpudl *cp, int a, int b)
static void cpudl_heapify_down(struct cpudl *cp, int idx)
{
int cpu_a = cp->elements[a].cpu, cpu_b = cp->elements[b].cpu;
int l, r, largest;
swap(cp->elements[a].cpu, cp->elements[b].cpu);
swap(cp->elements[a].dl , cp->elements[b].dl );
int orig_cpu = cp->elements[idx].cpu;
u64 orig_dl = cp->elements[idx].dl;
swap(cp->elements[cpu_a].idx, cp->elements[cpu_b].idx);
if (left_child(idx) >= cp->size)
return;
/* adapted from lib/prio_heap.c */
while(1) {
u64 largest_dl;
l = left_child(idx);
r = right_child(idx);
largest = idx;
largest_dl = orig_dl;
if ((l < cp->size) && dl_time_before(orig_dl,
cp->elements[l].dl)) {
largest = l;
largest_dl = cp->elements[l].dl;
}
if ((r < cp->size) && dl_time_before(largest_dl,
cp->elements[r].dl))
largest = r;
if (largest == idx)
break;
/* pull largest child onto idx */
cp->elements[idx].cpu = cp->elements[largest].cpu;
cp->elements[idx].dl = cp->elements[largest].dl;
cp->elements[cp->elements[idx].cpu].idx = idx;
idx = largest;
}
/* actual push down of saved original values orig_* */
cp->elements[idx].cpu = orig_cpu;
cp->elements[idx].dl = orig_dl;
cp->elements[cp->elements[idx].cpu].idx = idx;
}
static void cpudl_heapify_up(struct cpudl *cp, int idx)
{
int p;
int orig_cpu = cp->elements[idx].cpu;
u64 orig_dl = cp->elements[idx].dl;
if (idx == 0)
return;
do {
p = parent(idx);
if (dl_time_before(orig_dl, cp->elements[p].dl))
break;
/* pull parent onto idx */
cp->elements[idx].cpu = cp->elements[p].cpu;
cp->elements[idx].dl = cp->elements[p].dl;
cp->elements[cp->elements[idx].cpu].idx = idx;
idx = p;
} while (idx != 0);
/* actual push up of saved original values orig_* */
cp->elements[idx].cpu = orig_cpu;
cp->elements[idx].dl = orig_dl;
cp->elements[cp->elements[idx].cpu].idx = idx;
}
static void cpudl_heapify(struct cpudl *cp, int idx)
{
int l, r, largest;
/* adapted from lib/prio_heap.c */
while(1) {
l = left_child(idx);
r = right_child(idx);
largest = idx;
if ((l < cp->size) && dl_time_before(cp->elements[idx].dl,
cp->elements[l].dl))
largest = l;
if ((r < cp->size) && dl_time_before(cp->elements[largest].dl,
cp->elements[r].dl))
largest = r;
if (largest == idx)
break;
/* Push idx down the heap one level and bump one up */
cpudl_exchange(cp, largest, idx);
idx = largest;
}
}
static void cpudl_change_key(struct cpudl *cp, int idx, u64 new_dl)
{
WARN_ON(idx == IDX_INVALID || !cpu_present(idx));
if (dl_time_before(new_dl, cp->elements[idx].dl)) {
cp->elements[idx].dl = new_dl;
cpudl_heapify(cp, idx);
} else {
cp->elements[idx].dl = new_dl;
while (idx > 0 && dl_time_before(cp->elements[parent(idx)].dl,
cp->elements[idx].dl)) {
cpudl_exchange(cp, idx, parent(idx));
idx = parent(idx);
}
}
if (idx > 0 && dl_time_before(cp->elements[parent(idx)].dl,
cp->elements[idx].dl))
cpudl_heapify_up(cp, idx);
else
cpudl_heapify_down(cp, idx);
}
static inline int cpudl_maximum(struct cpudl *cp)
@ -119,6 +144,45 @@ out:
return best_cpu;
}
/*
* cpudl_clear - remove a cpu from the cpudl max-heap
* @cp: the cpudl max-heap context
* @cpu: the target cpu
*
* Notes: assumes cpu_rq(cpu)->lock is locked
*
* Returns: (void)
*/
void cpudl_clear(struct cpudl *cp, int cpu)
{
int old_idx, new_cpu;
unsigned long flags;
WARN_ON(!cpu_present(cpu));
raw_spin_lock_irqsave(&cp->lock, flags);
old_idx = cp->elements[cpu].idx;
if (old_idx == IDX_INVALID) {
/*
* Nothing to remove if old_idx was invalid.
* This could happen if a rq_offline_dl is
* called for a CPU without -dl tasks running.
*/
} else {
new_cpu = cp->elements[cp->size - 1].cpu;
cp->elements[old_idx].dl = cp->elements[cp->size - 1].dl;
cp->elements[old_idx].cpu = new_cpu;
cp->size--;
cp->elements[new_cpu].idx = old_idx;
cp->elements[cpu].idx = IDX_INVALID;
cpudl_heapify(cp, old_idx);
cpumask_set_cpu(cpu, cp->free_cpus);
}
raw_spin_unlock_irqrestore(&cp->lock, flags);
}
/*
* cpudl_set - update the cpudl max-heap
* @cp: the cpudl max-heap context
@ -129,55 +193,28 @@ out:
*
* Returns: (void)
*/
void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid)
void cpudl_set(struct cpudl *cp, int cpu, u64 dl)
{
int old_idx, new_cpu;
int old_idx;
unsigned long flags;
WARN_ON(!cpu_present(cpu));
raw_spin_lock_irqsave(&cp->lock, flags);
old_idx = cp->elements[cpu].idx;
if (!is_valid) {
/* remove item */
if (old_idx == IDX_INVALID) {
/*
* Nothing to remove if old_idx was invalid.
* This could happen if a rq_offline_dl is
* called for a CPU without -dl tasks running.
*/
goto out;
}
new_cpu = cp->elements[cp->size - 1].cpu;
cp->elements[old_idx].dl = cp->elements[cp->size - 1].dl;
cp->elements[old_idx].cpu = new_cpu;
cp->size--;
cp->elements[new_cpu].idx = old_idx;
cp->elements[cpu].idx = IDX_INVALID;
while (old_idx > 0 && dl_time_before(
cp->elements[parent(old_idx)].dl,
cp->elements[old_idx].dl)) {
cpudl_exchange(cp, old_idx, parent(old_idx));
old_idx = parent(old_idx);
}
cpumask_set_cpu(cpu, cp->free_cpus);
cpudl_heapify(cp, old_idx);
goto out;
}
if (old_idx == IDX_INVALID) {
cp->size++;
cp->elements[cp->size - 1].dl = dl;
cp->elements[cp->size - 1].cpu = cpu;
cp->elements[cpu].idx = cp->size - 1;
cpudl_change_key(cp, cp->size - 1, dl);
int new_idx = cp->size++;
cp->elements[new_idx].dl = dl;
cp->elements[new_idx].cpu = cpu;
cp->elements[cpu].idx = new_idx;
cpudl_heapify_up(cp, new_idx);
cpumask_clear_cpu(cpu, cp->free_cpus);
} else {
cpudl_change_key(cp, old_idx, dl);
cp->elements[old_idx].dl = dl;
cpudl_heapify(cp, old_idx);
}
out:
raw_spin_unlock_irqrestore(&cp->lock, flags);
}

View File

@ -23,7 +23,8 @@ struct cpudl {
#ifdef CONFIG_SMP
int cpudl_find(struct cpudl *cp, struct task_struct *p,
struct cpumask *later_mask);
void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid);
void cpudl_set(struct cpudl *cp, int cpu, u64 dl);
void cpudl_clear(struct cpudl *cp, int cpu);
int cpudl_init(struct cpudl *cp);
void cpudl_set_freecpu(struct cpudl *cp, int cpu);
void cpudl_clear_freecpu(struct cpudl *cp, int cpu);

View File

@ -23,10 +23,8 @@
* task when irq is in progress while we read rq->clock. That is a worthy
* compromise in place of having locks on each irq in account_system_time.
*/
DEFINE_PER_CPU(u64, cpu_hardirq_time);
DEFINE_PER_CPU(u64, cpu_softirq_time);
DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;
void enable_sched_clock_irqtime(void)
@ -39,16 +37,13 @@ void disable_sched_clock_irqtime(void)
sched_clock_irqtime = 0;
}
#ifndef CONFIG_64BIT
DEFINE_PER_CPU(seqcount_t, irq_time_seq);
#endif /* CONFIG_64BIT */
/*
* Called before incrementing preempt_count on {soft,}irq_enter
* and before decrementing preempt_count on {soft,}irq_exit.
*/
void irqtime_account_irq(struct task_struct *curr)
{
struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
s64 delta;
int cpu;
@ -56,10 +51,10 @@ void irqtime_account_irq(struct task_struct *curr)
return;
cpu = smp_processor_id();
delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
__this_cpu_add(irq_start_time, delta);
delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
irqtime->irq_start_time += delta;
irq_time_write_begin();
u64_stats_update_begin(&irqtime->sync);
/*
* We do not account for softirq time from ksoftirqd here.
* We want to continue accounting softirq time to ksoftirqd thread
@ -67,42 +62,36 @@ void irqtime_account_irq(struct task_struct *curr)
* that do not consume any time, but still wants to run.
*/
if (hardirq_count())
__this_cpu_add(cpu_hardirq_time, delta);
irqtime->hardirq_time += delta;
else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
__this_cpu_add(cpu_softirq_time, delta);
irqtime->softirq_time += delta;
irq_time_write_end();
u64_stats_update_end(&irqtime->sync);
}
EXPORT_SYMBOL_GPL(irqtime_account_irq);
static cputime_t irqtime_account_hi_update(cputime_t maxtime)
static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
unsigned long flags;
cputime_t irq_cputime;
local_irq_save(flags);
irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) -
cpustat[CPUTIME_IRQ];
irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
irq_cputime = min(irq_cputime, maxtime);
cpustat[CPUTIME_IRQ] += irq_cputime;
local_irq_restore(flags);
cpustat[idx] += irq_cputime;
return irq_cputime;
}
static cputime_t irqtime_account_hi_update(cputime_t maxtime)
{
return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
CPUTIME_IRQ, maxtime);
}
static cputime_t irqtime_account_si_update(cputime_t maxtime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
unsigned long flags;
cputime_t softirq_cputime;
local_irq_save(flags);
softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) -
cpustat[CPUTIME_SOFTIRQ];
softirq_cputime = min(softirq_cputime, maxtime);
cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
local_irq_restore(flags);
return softirq_cputime;
return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
CPUTIME_SOFTIRQ, maxtime);
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
@ -295,6 +284,9 @@ static inline cputime_t account_other_time(cputime_t max)
{
cputime_t accounted;
/* Shall be converted to a lockdep-enabled lightweight check */
WARN_ON_ONCE(!irqs_disabled());
accounted = steal_account_process_time(max);
if (accounted < max)
@ -306,6 +298,26 @@ static inline cputime_t account_other_time(cputime_t max)
return accounted;
}
#ifdef CONFIG_64BIT
static inline u64 read_sum_exec_runtime(struct task_struct *t)
{
return t->se.sum_exec_runtime;
}
#else
static u64 read_sum_exec_runtime(struct task_struct *t)
{
u64 ns;
struct rq_flags rf;
struct rq *rq;
rq = task_rq_lock(t, &rf);
ns = t->se.sum_exec_runtime;
task_rq_unlock(rq, t, &rf);
return ns;
}
#endif
/*
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
* tasks (sum on group iteration) belonging to @tsk's group.
@ -318,6 +330,17 @@ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
unsigned int seq, nextseq;
unsigned long flags;
/*
* Update current task runtime to account pending time since last
* scheduler action or thread_group_cputime() call. This thread group
* might have other running tasks on different CPUs, but updating
* their runtime can affect syscall performance, so we skip account
* those pending times and rely only on values updated on tick or
* other scheduler action.
*/
if (same_thread_group(current, tsk))
(void) task_sched_runtime(current);
rcu_read_lock();
/* Attempt a lockless read on the first round. */
nextseq = 0;
@ -332,7 +355,7 @@ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
task_cputime(t, &utime, &stime);
times->utime += utime;
times->stime += stime;
times->sum_exec_runtime += task_sched_runtime(t);
times->sum_exec_runtime += read_sum_exec_runtime(t);
}
/* If lockless access failed, take the lock. */
nextseq = 1;

View File

@ -243,10 +243,8 @@ static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
{
struct rq *later_rq = NULL;
bool fallback = false;
later_rq = find_lock_later_rq(p, rq);
if (!later_rq) {
int cpu;
@ -254,7 +252,6 @@ static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p
* If we cannot preempt any rq, fall back to pick any
* online cpu.
*/
fallback = true;
cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
if (cpu >= nr_cpu_ids) {
/*
@ -274,16 +271,7 @@ static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p
double_lock_balance(rq, later_rq);
}
/*
* By now the task is replenished and enqueued; migrate it.
*/
deactivate_task(rq, p, 0);
set_task_cpu(p, later_rq->cpu);
activate_task(later_rq, p, 0);
if (!fallback)
resched_curr(later_rq);
double_unlock_balance(later_rq, rq);
return later_rq;
@ -346,12 +334,12 @@ static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
* one, and to (try to!) reconcile itself with its own scheduling
* parameters.
*/
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
struct sched_dl_entity *pi_se)
static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
{
struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
struct rq *rq = rq_of_dl_rq(dl_rq);
WARN_ON(dl_se->dl_boosted);
WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
/*
@ -367,8 +355,8 @@ static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
* future; in fact, we must consider execution overheads (time
* spent on hardirq context, etc.).
*/
dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
dl_se->runtime = pi_se->dl_runtime;
dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
dl_se->runtime = dl_se->dl_runtime;
}
/*
@ -641,6 +629,24 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
goto unlock;
}
#ifdef CONFIG_SMP
if (unlikely(!rq->online)) {
/*
* If the runqueue is no longer available, migrate the
* task elsewhere. This necessarily changes rq.
*/
lockdep_unpin_lock(&rq->lock, rf.cookie);
rq = dl_task_offline_migration(rq, p);
rf.cookie = lockdep_pin_lock(&rq->lock);
/*
* Now that the task has been migrated to the new RQ and we
* have that locked, proceed as normal and enqueue the task
* there.
*/
}
#endif
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
if (dl_task(rq->curr))
check_preempt_curr_dl(rq, p, 0);
@ -648,22 +654,6 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
resched_curr(rq);
#ifdef CONFIG_SMP
/*
* Perform balancing operations here; after the replenishments. We
* cannot drop rq->lock before this, otherwise the assertion in
* start_dl_timer() about not missing updates is not true.
*
* If we find that the rq the task was on is no longer available, we
* need to select a new rq.
*
* XXX figure out if select_task_rq_dl() deals with offline cpus.
*/
if (unlikely(!rq->online)) {
lockdep_unpin_lock(&rq->lock, rf.cookie);
rq = dl_task_offline_migration(rq, p);
rf.cookie = lockdep_pin_lock(&rq->lock);
}
/*
* Queueing this task back might have overloaded rq, check if we need
* to kick someone away.
@ -797,7 +787,7 @@ static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
if (dl_rq->earliest_dl.curr == 0 ||
dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
dl_rq->earliest_dl.curr = deadline;
cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
}
}
@ -812,14 +802,14 @@ static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
if (!dl_rq->dl_nr_running) {
dl_rq->earliest_dl.curr = 0;
dl_rq->earliest_dl.next = 0;
cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
cpudl_clear(&rq->rd->cpudl, rq->cpu);
} else {
struct rb_node *leftmost = dl_rq->rb_leftmost;
struct sched_dl_entity *entry;
entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
dl_rq->earliest_dl.curr = entry->deadline;
cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
}
}
@ -1670,7 +1660,7 @@ static void rq_online_dl(struct rq *rq)
cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
if (rq->dl.dl_nr_running > 0)
cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
}
/* Assumes rq->lock is held */
@ -1679,7 +1669,7 @@ static void rq_offline_dl(struct rq *rq)
if (rq->dl.overloaded)
dl_clear_overload(rq);
cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
cpudl_clear(&rq->rd->cpudl, rq->cpu);
cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
}
@ -1722,10 +1712,20 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
*/
static void switched_to_dl(struct rq *rq, struct task_struct *p)
{
if (dl_time_before(p->dl.deadline, rq_clock(rq)))
setup_new_dl_entity(&p->dl, &p->dl);
if (task_on_rq_queued(p) && rq->curr != p) {
/* If p is not queued we will update its parameters at next wakeup. */
if (!task_on_rq_queued(p))
return;
/*
* If p is boosted we already updated its params in
* rt_mutex_setprio()->enqueue_task(..., ENQUEUE_REPLENISH),
* p's deadline being now already after rq_clock(rq).
*/
if (dl_time_before(p->dl.deadline, rq_clock(rq)))
setup_new_dl_entity(&p->dl);
if (rq->curr != p) {
#ifdef CONFIG_SMP
if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
queue_push_tasks(rq);

View File

@ -369,8 +369,12 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
#define P(F) \
SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
#define P_SCHEDSTAT(F) \
SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
#define PN(F) \
SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN_SCHEDSTAT(F) \
SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
if (!se)
return;
@ -378,26 +382,27 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
PN(se->exec_start);
PN(se->vruntime);
PN(se->sum_exec_runtime);
#ifdef CONFIG_SCHEDSTATS
if (schedstat_enabled()) {
PN(se->statistics.wait_start);
PN(se->statistics.sleep_start);
PN(se->statistics.block_start);
PN(se->statistics.sleep_max);
PN(se->statistics.block_max);
PN(se->statistics.exec_max);
PN(se->statistics.slice_max);
PN(se->statistics.wait_max);
PN(se->statistics.wait_sum);
P(se->statistics.wait_count);
PN_SCHEDSTAT(se->statistics.wait_start);
PN_SCHEDSTAT(se->statistics.sleep_start);
PN_SCHEDSTAT(se->statistics.block_start);
PN_SCHEDSTAT(se->statistics.sleep_max);
PN_SCHEDSTAT(se->statistics.block_max);
PN_SCHEDSTAT(se->statistics.exec_max);
PN_SCHEDSTAT(se->statistics.slice_max);
PN_SCHEDSTAT(se->statistics.wait_max);
PN_SCHEDSTAT(se->statistics.wait_sum);
P_SCHEDSTAT(se->statistics.wait_count);
}
#endif
P(se->load.weight);
#ifdef CONFIG_SMP
P(se->avg.load_avg);
P(se->avg.util_avg);
#endif
#undef PN_SCHEDSTAT
#undef PN
#undef P_SCHEDSTAT
#undef P
}
#endif
@ -429,9 +434,9 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
p->prio);
SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
SPLIT_NS(schedstat_val(p, se.statistics.wait_sum)),
SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
SPLIT_NS(p->se.sum_exec_runtime),
SPLIT_NS(schedstat_val(p, se.statistics.sum_sleep_runtime)));
SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
#ifdef CONFIG_NUMA_BALANCING
SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
@ -626,9 +631,7 @@ do { \
#undef P64
#endif
#ifdef CONFIG_SCHEDSTATS
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
if (schedstat_enabled()) {
P(yld_count);
P(sched_count);
@ -636,9 +639,8 @@ do { \
P(ttwu_count);
P(ttwu_local);
}
#undef P
#endif
spin_lock_irqsave(&sched_debug_lock, flags);
print_cfs_stats(m, cpu);
print_rt_stats(m, cpu);
@ -868,10 +870,14 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
#define P(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
#define P_SCHEDSTAT(F) \
SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
#define __PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
#define PN(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
#define PN_SCHEDSTAT(F) \
SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
PN(se.exec_start);
PN(se.vruntime);
@ -881,37 +887,36 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
P(se.nr_migrations);
#ifdef CONFIG_SCHEDSTATS
if (schedstat_enabled()) {
u64 avg_atom, avg_per_cpu;
PN(se.statistics.sum_sleep_runtime);
PN(se.statistics.wait_start);
PN(se.statistics.sleep_start);
PN(se.statistics.block_start);
PN(se.statistics.sleep_max);
PN(se.statistics.block_max);
PN(se.statistics.exec_max);
PN(se.statistics.slice_max);
PN(se.statistics.wait_max);
PN(se.statistics.wait_sum);
P(se.statistics.wait_count);
PN(se.statistics.iowait_sum);
P(se.statistics.iowait_count);
P(se.statistics.nr_migrations_cold);
P(se.statistics.nr_failed_migrations_affine);
P(se.statistics.nr_failed_migrations_running);
P(se.statistics.nr_failed_migrations_hot);
P(se.statistics.nr_forced_migrations);
P(se.statistics.nr_wakeups);
P(se.statistics.nr_wakeups_sync);
P(se.statistics.nr_wakeups_migrate);
P(se.statistics.nr_wakeups_local);
P(se.statistics.nr_wakeups_remote);
P(se.statistics.nr_wakeups_affine);
P(se.statistics.nr_wakeups_affine_attempts);
P(se.statistics.nr_wakeups_passive);
P(se.statistics.nr_wakeups_idle);
PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
PN_SCHEDSTAT(se.statistics.wait_start);
PN_SCHEDSTAT(se.statistics.sleep_start);
PN_SCHEDSTAT(se.statistics.block_start);
PN_SCHEDSTAT(se.statistics.sleep_max);
PN_SCHEDSTAT(se.statistics.block_max);
PN_SCHEDSTAT(se.statistics.exec_max);
PN_SCHEDSTAT(se.statistics.slice_max);
PN_SCHEDSTAT(se.statistics.wait_max);
PN_SCHEDSTAT(se.statistics.wait_sum);
P_SCHEDSTAT(se.statistics.wait_count);
PN_SCHEDSTAT(se.statistics.iowait_sum);
P_SCHEDSTAT(se.statistics.iowait_count);
P_SCHEDSTAT(se.statistics.nr_migrations_cold);
P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
P_SCHEDSTAT(se.statistics.nr_forced_migrations);
P_SCHEDSTAT(se.statistics.nr_wakeups);
P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
P_SCHEDSTAT(se.statistics.nr_wakeups_local);
P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
avg_atom = p->se.sum_exec_runtime;
if (nr_switches)
@ -930,7 +935,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
__PN(avg_atom);
__PN(avg_per_cpu);
}
#endif
__P(nr_switches);
SEQ_printf(m, "%-45s:%21Ld\n",
"nr_voluntary_switches", (long long)p->nvcsw);
@ -947,8 +952,10 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
#endif
P(policy);
P(prio);
#undef PN_SCHEDSTAT
#undef PN
#undef __PN
#undef P_SCHEDSTAT
#undef P
#undef __P

File diff suppressed because it is too large Load Diff

View File

@ -27,8 +27,8 @@ static struct task_struct *
pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
{
put_prev_task(rq, prev);
schedstat_inc(rq, sched_goidle);
update_idle_core(rq);
schedstat_inc(rq->sched_goidle);
return rq->idle;
}

View File

@ -2,6 +2,7 @@
#include <linux/sched.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/rt.h>
#include <linux/u64_stats_sync.h>
#include <linux/sched/deadline.h>
#include <linux/binfmts.h>
#include <linux/mutex.h>
@ -15,6 +16,12 @@
#include "cpudeadline.h"
#include "cpuacct.h"
#ifdef CONFIG_SCHED_DEBUG
#define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
#else
#define SCHED_WARN_ON(x) ((void)(x))
#endif
struct rq;
struct cpuidle_state;
@ -565,6 +572,8 @@ struct root_domain {
*/
cpumask_var_t rto_mask;
struct cpupri cpupri;
unsigned long max_cpu_capacity;
};
extern struct root_domain def_root_domain;
@ -597,7 +606,6 @@ struct rq {
#ifdef CONFIG_SMP
unsigned long last_load_update_tick;
#endif /* CONFIG_SMP */
u64 nohz_stamp;
unsigned long nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */
#ifdef CONFIG_NO_HZ_FULL
@ -723,6 +731,23 @@ static inline int cpu_of(struct rq *rq)
#endif
}
#ifdef CONFIG_SCHED_SMT
extern struct static_key_false sched_smt_present;
extern void __update_idle_core(struct rq *rq);
static inline void update_idle_core(struct rq *rq)
{
if (static_branch_unlikely(&sched_smt_present))
__update_idle_core(rq);
}
#else
static inline void update_idle_core(struct rq *rq) { }
#endif
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
@ -857,8 +882,8 @@ static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
DECLARE_PER_CPU(struct sched_domain *, sd_busy);
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
struct sched_group_capacity {
@ -870,10 +895,6 @@ struct sched_group_capacity {
unsigned int capacity;
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
/*
* Number of busy cpus in this group.
*/
atomic_t nr_busy_cpus;
unsigned long cpumask[0]; /* iteration mask */
};
@ -1260,6 +1281,11 @@ static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
prev->sched_class->put_prev_task(rq, prev);
}
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
{
curr->sched_class->set_curr_task(rq);
}
#define sched_class_highest (&stop_sched_class)
#define for_each_class(class) \
for (class = sched_class_highest; class; class = class->next)
@ -1290,7 +1316,7 @@ static inline void idle_set_state(struct rq *rq,
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
WARN_ON(!rcu_read_lock_held());
SCHED_WARN_ON(!rcu_read_lock_held());
return rq->idle_state;
}
#else
@ -1710,52 +1736,28 @@ static inline void nohz_balance_exit_idle(unsigned int cpu) { }
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
struct irqtime {
u64 hardirq_time;
u64 softirq_time;
u64 irq_start_time;
struct u64_stats_sync sync;
};
DECLARE_PER_CPU(u64, cpu_hardirq_time);
DECLARE_PER_CPU(u64, cpu_softirq_time);
#ifndef CONFIG_64BIT
DECLARE_PER_CPU(seqcount_t, irq_time_seq);
static inline void irq_time_write_begin(void)
{
__this_cpu_inc(irq_time_seq.sequence);
smp_wmb();
}
static inline void irq_time_write_end(void)
{
smp_wmb();
__this_cpu_inc(irq_time_seq.sequence);
}
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
static inline u64 irq_time_read(int cpu)
{
u64 irq_time;
unsigned seq;
struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
unsigned int seq;
u64 total;
do {
seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
irq_time = per_cpu(cpu_softirq_time, cpu) +
per_cpu(cpu_hardirq_time, cpu);
} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
seq = __u64_stats_fetch_begin(&irqtime->sync);
total = irqtime->softirq_time + irqtime->hardirq_time;
} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
return irq_time;
return total;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}
static inline void irq_time_write_end(void)
{
}
static inline u64 irq_time_read(int cpu)
{
return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
#endif /* CONFIG_64BIT */
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
#ifdef CONFIG_CPU_FREQ

View File

@ -29,11 +29,12 @@ rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
if (rq)
rq->rq_sched_info.run_delay += delta;
}
# define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
# define schedstat_inc(rq, field) do { if (schedstat_enabled()) { (rq)->field++; } } while (0)
# define schedstat_add(rq, field, amt) do { if (schedstat_enabled()) { (rq)->field += (amt); } } while (0)
# define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
# define schedstat_val(rq, field) ((schedstat_enabled()) ? (rq)->field : 0)
#define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
#define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
#define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
#define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
#define schedstat_val(var) (var)
#define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
#else /* !CONFIG_SCHEDSTATS */
static inline void
@ -45,12 +46,13 @@ rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{}
# define schedstat_enabled() 0
# define schedstat_inc(rq, field) do { } while (0)
# define schedstat_add(rq, field, amt) do { } while (0)
# define schedstat_set(var, val) do { } while (0)
# define schedstat_val(rq, field) 0
#endif
#define schedstat_enabled() 0
#define schedstat_inc(var) do { } while (0)
#define schedstat_add(var, amt) do { } while (0)
#define schedstat_set(var, val) do { } while (0)
#define schedstat_val(var) 0
#define schedstat_val_or_zero(var) 0
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_SCHED_INFO
static inline void sched_info_reset_dequeued(struct task_struct *t)

View File

@ -196,27 +196,48 @@ prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
}
EXPORT_SYMBOL(prepare_to_wait_exclusive);
void init_wait_entry(wait_queue_t *wait, int flags)
{
wait->flags = flags;
wait->private = current;
wait->func = autoremove_wake_function;
INIT_LIST_HEAD(&wait->task_list);
}
EXPORT_SYMBOL(init_wait_entry);
long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
if (signal_pending_state(state, current))
return -ERESTARTSYS;
wait->private = current;
wait->func = autoremove_wake_function;
long ret = 0;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list)) {
if (wait->flags & WQ_FLAG_EXCLUSIVE)
__add_wait_queue_tail(q, wait);
else
__add_wait_queue(q, wait);
if (unlikely(signal_pending_state(state, current))) {
/*
* Exclusive waiter must not fail if it was selected by wakeup,
* it should "consume" the condition we were waiting for.
*
* The caller will recheck the condition and return success if
* we were already woken up, we can not miss the event because
* wakeup locks/unlocks the same q->lock.
*
* But we need to ensure that set-condition + wakeup after that
* can't see us, it should wake up another exclusive waiter if
* we fail.
*/
list_del_init(&wait->task_list);
ret = -ERESTARTSYS;
} else {
if (list_empty(&wait->task_list)) {
if (wait->flags & WQ_FLAG_EXCLUSIVE)
__add_wait_queue_tail(q, wait);
else
__add_wait_queue(q, wait);
}
set_current_state(state);
}
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
return 0;
return ret;
}
EXPORT_SYMBOL(prepare_to_wait_event);
@ -255,39 +276,6 @@ void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
}
EXPORT_SYMBOL(finish_wait);
/**
* abort_exclusive_wait - abort exclusive waiting in a queue
* @q: waitqueue waited on
* @wait: wait descriptor
* @mode: runstate of the waiter to be woken
* @key: key to identify a wait bit queue or %NULL
*
* Sets current thread back to running state and removes
* the wait descriptor from the given waitqueue if still
* queued.
*
* Wakes up the next waiter if the caller is concurrently
* woken up through the queue.
*
* This prevents waiter starvation where an exclusive waiter
* aborts and is woken up concurrently and no one wakes up
* the next waiter.
*/
void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
unsigned int mode, void *key)
{
unsigned long flags;
__set_current_state(TASK_RUNNING);
spin_lock_irqsave(&q->lock, flags);
if (!list_empty(&wait->task_list))
list_del_init(&wait->task_list);
else if (waitqueue_active(q))
__wake_up_locked_key(q, mode, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(abort_exclusive_wait);
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int ret = default_wake_function(wait, mode, sync, key);
@ -425,20 +413,29 @@ int __sched
__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
wait_bit_action_f *action, unsigned mode)
{
do {
int ret;
int ret = 0;
for (;;) {
prepare_to_wait_exclusive(wq, &q->wait, mode);
if (!test_bit(q->key.bit_nr, q->key.flags))
continue;
ret = action(&q->key, mode);
if (!ret)
continue;
abort_exclusive_wait(wq, &q->wait, mode, &q->key);
return ret;
} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
finish_wait(wq, &q->wait);
return 0;
if (test_bit(q->key.bit_nr, q->key.flags)) {
ret = action(&q->key, mode);
/*
* See the comment in prepare_to_wait_event().
* finish_wait() does not necessarily takes wq->lock,
* but test_and_set_bit() implies mb() which pairs with
* smp_mb__after_atomic() before wake_up_page().
*/
if (ret)
finish_wait(wq, &q->wait);
}
if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) {
if (!ret)
finish_wait(wq, &q->wait);
return 0;
} else if (ret) {
return ret;
}
}
}
EXPORT_SYMBOL(__wait_on_bit_lock);

View File

@ -122,12 +122,12 @@ static int smpboot_thread_fn(void *data)
if (kthread_should_park()) {
__set_current_state(TASK_RUNNING);
preempt_enable();
if (ht->park && td->status == HP_THREAD_ACTIVE) {
BUG_ON(td->cpu != smp_processor_id());
ht->park(td->cpu);
td->status = HP_THREAD_PARKED;
}
preempt_enable();
kthread_parkme();
/* We might have been woken for stop */
continue;

View File

@ -121,6 +121,11 @@ int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
cpu_stop_init_done(&done, 1);
if (!cpu_stop_queue_work(cpu, &work))
return -ENOENT;
/*
* In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
* cycle by doing a preemption:
*/
cond_resched();
wait_for_completion(&done.completion);
return done.ret;
}

View File

@ -1165,7 +1165,7 @@ int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
}
/* See similar comment in do_numa_page for explanation */
if (!(vma->vm_flags & VM_WRITE))
if (!pmd_write(pmd))
flags |= TNF_NO_GROUP;
/*

View File

@ -3395,7 +3395,7 @@ static int do_numa_page(struct fault_env *fe, pte_t pte)
* pte_dirty has unpredictable behaviour between PTE scan updates,
* background writeback, dirty balancing and application behaviour.
*/
if (!(vma->vm_flags & VM_WRITE))
if (!pte_write(pte))
flags |= TNF_NO_GROUP;
/*

View File

@ -175,6 +175,7 @@ static int __dead_end_function(struct objtool_file *file, struct symbol *func,
"__stack_chk_fail",
"panic",
"do_exit",
"do_task_dead",
"__module_put_and_exit",
"complete_and_exit",
"kvm_spurious_fault",