mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-17 09:43:59 +08:00
crypto: gf128mul - define gf128mul_x_* in gf128mul.h
The gf128mul_x_ble function is currently defined in gf128mul.c, because it depends on the gf128mul_table_be multiplication table. However, since the function is very small and only uses two values from the table, it is better for it to be defined as inline function in gf128mul.h. That way, the function can be inlined by the compiler for better performance. For consistency, the other gf128mul_x_* functions are also moved to the header file. In addition, the code is rewritten to be constant-time. After this change, the speed of the generic 'xts(aes)' implementation increased from ~225 MiB/s to ~235 MiB/s (measured using 'cryptsetup benchmark -c aes-xts-plain64' on an Intel system with CRYPTO_AES_X86_64 and CRYPTO_AES_NI_INTEL disabled). Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com> Reviewd-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
f275d3856c
commit
acb9b159c7
@ -130,43 +130,12 @@ static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
|
|||||||
static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
|
static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* The following functions multiply a field element by x or by x^8 in
|
* The following functions multiply a field element by x^8 in
|
||||||
* the polynomial field representation. They use 64-bit word operations
|
* the polynomial field representation. They use 64-bit word operations
|
||||||
* to gain speed but compensate for machine endianness and hence work
|
* to gain speed but compensate for machine endianness and hence work
|
||||||
* correctly on both styles of machine.
|
* correctly on both styles of machine.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
static void gf128mul_x_lle(be128 *r, const be128 *x)
|
|
||||||
{
|
|
||||||
u64 a = be64_to_cpu(x->a);
|
|
||||||
u64 b = be64_to_cpu(x->b);
|
|
||||||
u64 _tt = gf128mul_table_le[(b << 7) & 0xff];
|
|
||||||
|
|
||||||
r->b = cpu_to_be64((b >> 1) | (a << 63));
|
|
||||||
r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
|
|
||||||
}
|
|
||||||
|
|
||||||
static void gf128mul_x_bbe(be128 *r, const be128 *x)
|
|
||||||
{
|
|
||||||
u64 a = be64_to_cpu(x->a);
|
|
||||||
u64 b = be64_to_cpu(x->b);
|
|
||||||
u64 _tt = gf128mul_table_be[a >> 63];
|
|
||||||
|
|
||||||
r->a = cpu_to_be64((a << 1) | (b >> 63));
|
|
||||||
r->b = cpu_to_be64((b << 1) ^ _tt);
|
|
||||||
}
|
|
||||||
|
|
||||||
void gf128mul_x_ble(be128 *r, const be128 *x)
|
|
||||||
{
|
|
||||||
u64 a = le64_to_cpu(x->a);
|
|
||||||
u64 b = le64_to_cpu(x->b);
|
|
||||||
u64 _tt = gf128mul_table_be[b >> 63];
|
|
||||||
|
|
||||||
r->a = cpu_to_le64((a << 1) ^ _tt);
|
|
||||||
r->b = cpu_to_le64((b << 1) | (a >> 63));
|
|
||||||
}
|
|
||||||
EXPORT_SYMBOL(gf128mul_x_ble);
|
|
||||||
|
|
||||||
static void gf128mul_x8_lle(be128 *x)
|
static void gf128mul_x8_lle(be128 *x)
|
||||||
{
|
{
|
||||||
u64 a = be64_to_cpu(x->a);
|
u64 a = be64_to_cpu(x->a);
|
||||||
|
@ -49,6 +49,7 @@
|
|||||||
#ifndef _CRYPTO_GF128MUL_H
|
#ifndef _CRYPTO_GF128MUL_H
|
||||||
#define _CRYPTO_GF128MUL_H
|
#define _CRYPTO_GF128MUL_H
|
||||||
|
|
||||||
|
#include <asm/byteorder.h>
|
||||||
#include <crypto/b128ops.h>
|
#include <crypto/b128ops.h>
|
||||||
#include <linux/slab.h>
|
#include <linux/slab.h>
|
||||||
|
|
||||||
@ -163,8 +164,58 @@ void gf128mul_lle(be128 *a, const be128 *b);
|
|||||||
|
|
||||||
void gf128mul_bbe(be128 *a, const be128 *b);
|
void gf128mul_bbe(be128 *a, const be128 *b);
|
||||||
|
|
||||||
/* multiply by x in ble format, needed by XTS */
|
/*
|
||||||
void gf128mul_x_ble(be128 *a, const be128 *b);
|
* The following functions multiply a field element by x in
|
||||||
|
* the polynomial field representation. They use 64-bit word operations
|
||||||
|
* to gain speed but compensate for machine endianness and hence work
|
||||||
|
* correctly on both styles of machine.
|
||||||
|
*
|
||||||
|
* They are defined here for performance.
|
||||||
|
*/
|
||||||
|
|
||||||
|
static inline u64 gf128mul_mask_from_bit(u64 x, int which)
|
||||||
|
{
|
||||||
|
/* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */
|
||||||
|
return ((s64)(x << (63 - which)) >> 63);
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline void gf128mul_x_lle(be128 *r, const be128 *x)
|
||||||
|
{
|
||||||
|
u64 a = be64_to_cpu(x->a);
|
||||||
|
u64 b = be64_to_cpu(x->b);
|
||||||
|
|
||||||
|
/* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48
|
||||||
|
* (see crypto/gf128mul.c): */
|
||||||
|
u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56);
|
||||||
|
|
||||||
|
r->b = cpu_to_be64((b >> 1) | (a << 63));
|
||||||
|
r->a = cpu_to_be64((a >> 1) ^ _tt);
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline void gf128mul_x_bbe(be128 *r, const be128 *x)
|
||||||
|
{
|
||||||
|
u64 a = be64_to_cpu(x->a);
|
||||||
|
u64 b = be64_to_cpu(x->b);
|
||||||
|
|
||||||
|
/* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */
|
||||||
|
u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87;
|
||||||
|
|
||||||
|
r->a = cpu_to_be64((a << 1) | (b >> 63));
|
||||||
|
r->b = cpu_to_be64((b << 1) ^ _tt);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* needed by XTS */
|
||||||
|
static inline void gf128mul_x_ble(be128 *r, const be128 *x)
|
||||||
|
{
|
||||||
|
u64 a = le64_to_cpu(x->a);
|
||||||
|
u64 b = le64_to_cpu(x->b);
|
||||||
|
|
||||||
|
/* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */
|
||||||
|
u64 _tt = gf128mul_mask_from_bit(b, 63) & 0x87;
|
||||||
|
|
||||||
|
r->a = cpu_to_le64((a << 1) ^ _tt);
|
||||||
|
r->b = cpu_to_le64((b << 1) | (a >> 63));
|
||||||
|
}
|
||||||
|
|
||||||
/* 4k table optimization */
|
/* 4k table optimization */
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user