mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-19 18:53:52 +08:00
powerpc: Merge arch/ppc64/mm to arch/powerpc/mm
This moves the remaining files in arch/ppc64/mm to arch/powerpc/mm, and arranges that we use them when compiling with ARCH=ppc64. Signed-off-by: Paul Mackerras <paulus@samba.org>
This commit is contained in:
parent
70d64ceaa1
commit
ab1f9dac6e
@ -5,8 +5,14 @@
|
||||
obj-y := fault.o mem.o lmb.o
|
||||
obj-$(CONFIG_PPC32) += init_32.o pgtable_32.o mmu_context_32.o \
|
||||
tlb_32.o
|
||||
obj-$(CONFIG_PPC64) += init_64.o pgtable_64.o mmu_context_64.o
|
||||
hash-$(CONFIG_PPC_MULTIPLATFORM) := hash_native_64.o
|
||||
obj-$(CONFIG_PPC64) += init_64.o pgtable_64.o mmu_context_64.o \
|
||||
hash_utils_64.o hash_low_64.o tlb_64.o \
|
||||
slb_low.o slb.o stab.o mmap.o imalloc.o \
|
||||
$(hash-y)
|
||||
obj-$(CONFIG_PPC_STD_MMU_32) += ppc_mmu_32.o hash_low_32.o
|
||||
obj-$(CONFIG_40x) += 4xx_mmu.o
|
||||
obj-$(CONFIG_44x) += 44x_mmu.o
|
||||
obj-$(CONFIG_FSL_BOOKE) += fsl_booke_mmu.o
|
||||
obj-$(CONFIG_NEED_MULTIPLE_NODES) += numa.o
|
||||
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
|
||||
|
@ -10,7 +10,7 @@
|
||||
* described in the kernel's COPYING file.
|
||||
*/
|
||||
|
||||
#include <asm/processor.h>
|
||||
#include <asm/reg.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/mmu.h>
|
||||
#include <asm/page.h>
|
@ -78,7 +78,7 @@ extern unsigned long dart_tablebase;
|
||||
hpte_t *htab_address;
|
||||
unsigned long htab_hash_mask;
|
||||
|
||||
extern unsigned long _SDR1;
|
||||
unsigned long _SDR1;
|
||||
|
||||
#define KB (1024)
|
||||
#define MB (1024*KB)
|
@ -73,18 +73,8 @@
|
||||
#warning TASK_SIZE is smaller than it needs to be.
|
||||
#endif
|
||||
|
||||
int mem_init_done;
|
||||
unsigned long ioremap_bot = IMALLOC_BASE;
|
||||
static unsigned long phbs_io_bot = PHBS_IO_BASE;
|
||||
|
||||
extern pgd_t swapper_pg_dir[];
|
||||
extern struct task_struct *current_set[NR_CPUS];
|
||||
|
||||
unsigned long klimit = (unsigned long)_end;
|
||||
|
||||
unsigned long _SDR1=0;
|
||||
unsigned long _ASR=0;
|
||||
|
||||
/* max amount of RAM to use */
|
||||
unsigned long __max_memory;
|
||||
|
||||
@ -193,19 +183,6 @@ static int __init setup_kcore(void)
|
||||
}
|
||||
module_init(setup_kcore);
|
||||
|
||||
void __iomem * reserve_phb_iospace(unsigned long size)
|
||||
{
|
||||
void __iomem *virt_addr;
|
||||
|
||||
if (phbs_io_bot >= IMALLOC_BASE)
|
||||
panic("reserve_phb_iospace(): phb io space overflow\n");
|
||||
|
||||
virt_addr = (void __iomem *) phbs_io_bot;
|
||||
phbs_io_bot += size;
|
||||
|
||||
return virt_addr;
|
||||
}
|
||||
|
||||
static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
|
||||
{
|
||||
memset(addr, 0, kmem_cache_size(cache));
|
||||
@ -244,16 +221,3 @@ void pgtable_cache_init(void)
|
||||
name);
|
||||
}
|
||||
}
|
||||
|
||||
pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
|
||||
unsigned long size, pgprot_t vma_prot)
|
||||
{
|
||||
if (ppc_md.phys_mem_access_prot)
|
||||
return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
|
||||
|
||||
if (!page_is_ram(addr >> PAGE_SHIFT))
|
||||
vma_prot = __pgprot(pgprot_val(vma_prot)
|
||||
| _PAGE_GUARDED | _PAGE_NO_CACHE);
|
||||
return vma_prot;
|
||||
}
|
||||
EXPORT_SYMBOL(phys_mem_access_prot);
|
||||
|
@ -47,6 +47,9 @@
|
||||
#include <asm/prom.h>
|
||||
#include <asm/lmb.h>
|
||||
#include <asm/sections.h>
|
||||
#ifdef CONFIG_PPC64
|
||||
#include <asm/vdso.h>
|
||||
#endif
|
||||
|
||||
#include "mmu_decl.h"
|
||||
|
||||
@ -334,7 +337,7 @@ void flush_dcache_icache_page(struct page *page)
|
||||
void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
|
||||
__flush_dcache_icache(start);
|
||||
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
|
||||
#elif defined(CONFIG_8xx)
|
||||
#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
|
||||
/* On 8xx there is no need to kmap since highmem is not supported */
|
||||
__flush_dcache_icache(page_address(page));
|
||||
#else
|
||||
@ -463,18 +466,18 @@ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
|
||||
if (pgdir == NULL)
|
||||
return;
|
||||
|
||||
ptep = find_linux_pte(pgdir, ea);
|
||||
ptep = find_linux_pte(pgdir, address);
|
||||
if (!ptep)
|
||||
return;
|
||||
|
||||
vsid = get_vsid(vma->vm_mm->context.id, ea);
|
||||
vsid = get_vsid(vma->vm_mm->context.id, address);
|
||||
|
||||
local_irq_save(flags);
|
||||
tmp = cpumask_of_cpu(smp_processor_id());
|
||||
if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
|
||||
local = 1;
|
||||
|
||||
__hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
|
||||
__hash_page(address, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
|
||||
0x300, local);
|
||||
local_irq_restore(flags);
|
||||
#endif
|
||||
|
@ -22,11 +22,11 @@
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/mmu.h>
|
||||
|
||||
#ifdef CONFIG_PPC32
|
||||
extern void mapin_ram(void);
|
||||
extern int map_page(unsigned long va, phys_addr_t pa, int flags);
|
||||
extern void setbat(int index, unsigned long virt, unsigned long phys,
|
||||
unsigned int size, int flags);
|
||||
extern void reserve_phys_mem(unsigned long start, unsigned long size);
|
||||
extern void settlbcam(int index, unsigned long virt, phys_addr_t phys,
|
||||
unsigned int size, int flags, unsigned int pid);
|
||||
extern void invalidate_tlbcam_entry(int index);
|
||||
@ -36,16 +36,16 @@ extern unsigned long ioremap_base;
|
||||
extern unsigned long ioremap_bot;
|
||||
extern unsigned int rtas_data, rtas_size;
|
||||
|
||||
extern unsigned long __max_low_memory;
|
||||
extern unsigned long __initial_memory_limit;
|
||||
extern unsigned long total_memory;
|
||||
extern unsigned long total_lowmem;
|
||||
extern int mem_init_done;
|
||||
|
||||
extern PTE *Hash, *Hash_end;
|
||||
extern unsigned long Hash_size, Hash_mask;
|
||||
|
||||
extern unsigned int num_tlbcam_entries;
|
||||
#endif
|
||||
|
||||
extern unsigned long __max_low_memory;
|
||||
extern unsigned long __initial_memory_limit;
|
||||
extern unsigned long total_memory;
|
||||
extern unsigned long total_lowmem;
|
||||
|
||||
/* ...and now those things that may be slightly different between processor
|
||||
* architectures. -- Dan
|
||||
@ -66,8 +66,8 @@ extern void MMU_init_hw(void);
|
||||
extern unsigned long mmu_mapin_ram(void);
|
||||
extern void adjust_total_lowmem(void);
|
||||
|
||||
#else
|
||||
/* anything except 4xx or 8xx */
|
||||
#elif defined(CONFIG_PPC32)
|
||||
/* anything 32-bit except 4xx or 8xx */
|
||||
extern void MMU_init_hw(void);
|
||||
extern unsigned long mmu_mapin_ram(void);
|
||||
|
||||
|
@ -67,30 +67,9 @@
|
||||
#include <asm/vdso.h>
|
||||
#include <asm/imalloc.h>
|
||||
|
||||
#if PGTABLE_RANGE > USER_VSID_RANGE
|
||||
#warning Limited user VSID range means pagetable space is wasted
|
||||
#endif
|
||||
|
||||
#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
|
||||
#warning TASK_SIZE is smaller than it needs to be.
|
||||
#endif
|
||||
|
||||
int mem_init_done;
|
||||
unsigned long ioremap_bot = IMALLOC_BASE;
|
||||
static unsigned long phbs_io_bot = PHBS_IO_BASE;
|
||||
|
||||
extern pgd_t swapper_pg_dir[];
|
||||
extern struct task_struct *current_set[NR_CPUS];
|
||||
|
||||
unsigned long klimit = (unsigned long)_end;
|
||||
|
||||
/* max amount of RAM to use */
|
||||
unsigned long __max_memory;
|
||||
|
||||
/* info on what we think the IO hole is */
|
||||
unsigned long io_hole_start;
|
||||
unsigned long io_hole_size;
|
||||
|
||||
#ifdef CONFIG_PPC_ISERIES
|
||||
|
||||
void __iomem *ioremap(unsigned long addr, unsigned long size)
|
||||
@ -355,3 +334,16 @@ int iounmap_explicit(volatile void __iomem *start, unsigned long size)
|
||||
EXPORT_SYMBOL(ioremap);
|
||||
EXPORT_SYMBOL(__ioremap);
|
||||
EXPORT_SYMBOL(iounmap);
|
||||
|
||||
void __iomem * reserve_phb_iospace(unsigned long size)
|
||||
{
|
||||
void __iomem *virt_addr;
|
||||
|
||||
if (phbs_io_bot >= IMALLOC_BASE)
|
||||
panic("reserve_phb_iospace(): phb io space overflow\n");
|
||||
|
||||
virt_addr = (void __iomem *) phbs_io_bot;
|
||||
phbs_io_bot += size;
|
||||
|
||||
return virt_addr;
|
||||
}
|
||||
|
@ -83,7 +83,7 @@ head-y := arch/ppc64/kernel/head.o
|
||||
|
||||
libs-y += arch/ppc64/lib/
|
||||
core-y += arch/ppc64/kernel/ arch/powerpc/kernel/
|
||||
core-y += arch/ppc64/mm/
|
||||
core-y += arch/powerpc/mm/
|
||||
core-y += arch/powerpc/platforms/
|
||||
core-$(CONFIG_XMON) += arch/ppc64/xmon/
|
||||
drivers-$(CONFIG_OPROFILE) += arch/powerpc/oprofile/
|
||||
|
@ -1,11 +0,0 @@
|
||||
#
|
||||
# Makefile for the linux ppc-specific parts of the memory manager.
|
||||
#
|
||||
|
||||
EXTRA_CFLAGS += -mno-minimal-toc
|
||||
|
||||
obj-y := fault.o init.o imalloc.o hash_utils.o hash_low.o tlb.o \
|
||||
slb_low.o slb.o stab.o mmap.o
|
||||
obj-$(CONFIG_NEED_MULTIPLE_NODES) += numa.o
|
||||
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
|
||||
obj-$(CONFIG_PPC_MULTIPLATFORM) += hash_native.o
|
@ -1,333 +0,0 @@
|
||||
/*
|
||||
* arch/ppc/mm/fault.c
|
||||
*
|
||||
* PowerPC version
|
||||
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
||||
*
|
||||
* Derived from "arch/i386/mm/fault.c"
|
||||
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
||||
*
|
||||
* Modified by Cort Dougan and Paul Mackerras.
|
||||
*
|
||||
* Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version
|
||||
* 2 of the License, or (at your option) any later version.
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/signal.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/smp_lock.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kprobes.h>
|
||||
|
||||
#include <asm/page.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/mmu.h>
|
||||
#include <asm/mmu_context.h>
|
||||
#include <asm/system.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/kdebug.h>
|
||||
#include <asm/siginfo.h>
|
||||
|
||||
/*
|
||||
* Check whether the instruction at regs->nip is a store using
|
||||
* an update addressing form which will update r1.
|
||||
*/
|
||||
static int store_updates_sp(struct pt_regs *regs)
|
||||
{
|
||||
unsigned int inst;
|
||||
|
||||
if (get_user(inst, (unsigned int __user *)regs->nip))
|
||||
return 0;
|
||||
/* check for 1 in the rA field */
|
||||
if (((inst >> 16) & 0x1f) != 1)
|
||||
return 0;
|
||||
/* check major opcode */
|
||||
switch (inst >> 26) {
|
||||
case 37: /* stwu */
|
||||
case 39: /* stbu */
|
||||
case 45: /* sthu */
|
||||
case 53: /* stfsu */
|
||||
case 55: /* stfdu */
|
||||
return 1;
|
||||
case 62: /* std or stdu */
|
||||
return (inst & 3) == 1;
|
||||
case 31:
|
||||
/* check minor opcode */
|
||||
switch ((inst >> 1) & 0x3ff) {
|
||||
case 181: /* stdux */
|
||||
case 183: /* stwux */
|
||||
case 247: /* stbux */
|
||||
case 439: /* sthux */
|
||||
case 695: /* stfsux */
|
||||
case 759: /* stfdux */
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void do_dabr(struct pt_regs *regs, unsigned long error_code)
|
||||
{
|
||||
siginfo_t info;
|
||||
|
||||
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
|
||||
11, SIGSEGV) == NOTIFY_STOP)
|
||||
return;
|
||||
|
||||
if (debugger_dabr_match(regs))
|
||||
return;
|
||||
|
||||
/* Clear the DABR */
|
||||
set_dabr(0);
|
||||
|
||||
/* Deliver the signal to userspace */
|
||||
info.si_signo = SIGTRAP;
|
||||
info.si_errno = 0;
|
||||
info.si_code = TRAP_HWBKPT;
|
||||
info.si_addr = (void __user *)regs->nip;
|
||||
force_sig_info(SIGTRAP, &info, current);
|
||||
}
|
||||
|
||||
/*
|
||||
* The error_code parameter is
|
||||
* - DSISR for a non-SLB data access fault,
|
||||
* - SRR1 & 0x08000000 for a non-SLB instruction access fault
|
||||
* - 0 any SLB fault.
|
||||
* The return value is 0 if the fault was handled, or the signal
|
||||
* number if this is a kernel fault that can't be handled here.
|
||||
*/
|
||||
int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
|
||||
unsigned long error_code)
|
||||
{
|
||||
struct vm_area_struct * vma;
|
||||
struct mm_struct *mm = current->mm;
|
||||
siginfo_t info;
|
||||
unsigned long code = SEGV_MAPERR;
|
||||
unsigned long is_write = error_code & DSISR_ISSTORE;
|
||||
unsigned long trap = TRAP(regs);
|
||||
unsigned long is_exec = trap == 0x400;
|
||||
|
||||
BUG_ON((trap == 0x380) || (trap == 0x480));
|
||||
|
||||
if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
|
||||
11, SIGSEGV) == NOTIFY_STOP)
|
||||
return 0;
|
||||
|
||||
if (trap == 0x300) {
|
||||
if (debugger_fault_handler(regs))
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* On a kernel SLB miss we can only check for a valid exception entry */
|
||||
if (!user_mode(regs) && (address >= TASK_SIZE))
|
||||
return SIGSEGV;
|
||||
|
||||
if (error_code & DSISR_DABRMATCH) {
|
||||
do_dabr(regs, error_code);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (in_atomic() || mm == NULL) {
|
||||
if (!user_mode(regs))
|
||||
return SIGSEGV;
|
||||
/* in_atomic() in user mode is really bad,
|
||||
as is current->mm == NULL. */
|
||||
printk(KERN_EMERG "Page fault in user mode with"
|
||||
"in_atomic() = %d mm = %p\n", in_atomic(), mm);
|
||||
printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
|
||||
regs->nip, regs->msr);
|
||||
die("Weird page fault", regs, SIGSEGV);
|
||||
}
|
||||
|
||||
/* When running in the kernel we expect faults to occur only to
|
||||
* addresses in user space. All other faults represent errors in the
|
||||
* kernel and should generate an OOPS. Unfortunatly, in the case of an
|
||||
* erroneous fault occuring in a code path which already holds mmap_sem
|
||||
* we will deadlock attempting to validate the fault against the
|
||||
* address space. Luckily the kernel only validly references user
|
||||
* space from well defined areas of code, which are listed in the
|
||||
* exceptions table.
|
||||
*
|
||||
* As the vast majority of faults will be valid we will only perform
|
||||
* the source reference check when there is a possibilty of a deadlock.
|
||||
* Attempt to lock the address space, if we cannot we then validate the
|
||||
* source. If this is invalid we can skip the address space check,
|
||||
* thus avoiding the deadlock.
|
||||
*/
|
||||
if (!down_read_trylock(&mm->mmap_sem)) {
|
||||
if (!user_mode(regs) && !search_exception_tables(regs->nip))
|
||||
goto bad_area_nosemaphore;
|
||||
|
||||
down_read(&mm->mmap_sem);
|
||||
}
|
||||
|
||||
vma = find_vma(mm, address);
|
||||
if (!vma)
|
||||
goto bad_area;
|
||||
|
||||
if (vma->vm_start <= address) {
|
||||
goto good_area;
|
||||
}
|
||||
if (!(vma->vm_flags & VM_GROWSDOWN))
|
||||
goto bad_area;
|
||||
|
||||
/*
|
||||
* N.B. The POWER/Open ABI allows programs to access up to
|
||||
* 288 bytes below the stack pointer.
|
||||
* The kernel signal delivery code writes up to about 1.5kB
|
||||
* below the stack pointer (r1) before decrementing it.
|
||||
* The exec code can write slightly over 640kB to the stack
|
||||
* before setting the user r1. Thus we allow the stack to
|
||||
* expand to 1MB without further checks.
|
||||
*/
|
||||
if (address + 0x100000 < vma->vm_end) {
|
||||
/* get user regs even if this fault is in kernel mode */
|
||||
struct pt_regs *uregs = current->thread.regs;
|
||||
if (uregs == NULL)
|
||||
goto bad_area;
|
||||
|
||||
/*
|
||||
* A user-mode access to an address a long way below
|
||||
* the stack pointer is only valid if the instruction
|
||||
* is one which would update the stack pointer to the
|
||||
* address accessed if the instruction completed,
|
||||
* i.e. either stwu rs,n(r1) or stwux rs,r1,rb
|
||||
* (or the byte, halfword, float or double forms).
|
||||
*
|
||||
* If we don't check this then any write to the area
|
||||
* between the last mapped region and the stack will
|
||||
* expand the stack rather than segfaulting.
|
||||
*/
|
||||
if (address + 2048 < uregs->gpr[1]
|
||||
&& (!user_mode(regs) || !store_updates_sp(regs)))
|
||||
goto bad_area;
|
||||
}
|
||||
|
||||
if (expand_stack(vma, address))
|
||||
goto bad_area;
|
||||
|
||||
good_area:
|
||||
code = SEGV_ACCERR;
|
||||
|
||||
if (is_exec) {
|
||||
/* protection fault */
|
||||
if (error_code & DSISR_PROTFAULT)
|
||||
goto bad_area;
|
||||
if (!(vma->vm_flags & VM_EXEC))
|
||||
goto bad_area;
|
||||
/* a write */
|
||||
} else if (is_write) {
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
/* a read */
|
||||
} else {
|
||||
if (!(vma->vm_flags & VM_READ))
|
||||
goto bad_area;
|
||||
}
|
||||
|
||||
survive:
|
||||
/*
|
||||
* If for any reason at all we couldn't handle the fault,
|
||||
* make sure we exit gracefully rather than endlessly redo
|
||||
* the fault.
|
||||
*/
|
||||
switch (handle_mm_fault(mm, vma, address, is_write)) {
|
||||
|
||||
case VM_FAULT_MINOR:
|
||||
current->min_flt++;
|
||||
break;
|
||||
case VM_FAULT_MAJOR:
|
||||
current->maj_flt++;
|
||||
break;
|
||||
case VM_FAULT_SIGBUS:
|
||||
goto do_sigbus;
|
||||
case VM_FAULT_OOM:
|
||||
goto out_of_memory;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
|
||||
up_read(&mm->mmap_sem);
|
||||
return 0;
|
||||
|
||||
bad_area:
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
bad_area_nosemaphore:
|
||||
/* User mode accesses cause a SIGSEGV */
|
||||
if (user_mode(regs)) {
|
||||
info.si_signo = SIGSEGV;
|
||||
info.si_errno = 0;
|
||||
info.si_code = code;
|
||||
info.si_addr = (void __user *) address;
|
||||
force_sig_info(SIGSEGV, &info, current);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (trap == 0x400 && (error_code & DSISR_PROTFAULT)
|
||||
&& printk_ratelimit())
|
||||
printk(KERN_CRIT "kernel tried to execute NX-protected"
|
||||
" page (%lx) - exploit attempt? (uid: %d)\n",
|
||||
address, current->uid);
|
||||
|
||||
return SIGSEGV;
|
||||
|
||||
/*
|
||||
* We ran out of memory, or some other thing happened to us that made
|
||||
* us unable to handle the page fault gracefully.
|
||||
*/
|
||||
out_of_memory:
|
||||
up_read(&mm->mmap_sem);
|
||||
if (current->pid == 1) {
|
||||
yield();
|
||||
down_read(&mm->mmap_sem);
|
||||
goto survive;
|
||||
}
|
||||
printk("VM: killing process %s\n", current->comm);
|
||||
if (user_mode(regs))
|
||||
do_exit(SIGKILL);
|
||||
return SIGKILL;
|
||||
|
||||
do_sigbus:
|
||||
up_read(&mm->mmap_sem);
|
||||
if (user_mode(regs)) {
|
||||
info.si_signo = SIGBUS;
|
||||
info.si_errno = 0;
|
||||
info.si_code = BUS_ADRERR;
|
||||
info.si_addr = (void __user *)address;
|
||||
force_sig_info(SIGBUS, &info, current);
|
||||
return 0;
|
||||
}
|
||||
return SIGBUS;
|
||||
}
|
||||
|
||||
/*
|
||||
* bad_page_fault is called when we have a bad access from the kernel.
|
||||
* It is called from do_page_fault above and from some of the procedures
|
||||
* in traps.c.
|
||||
*/
|
||||
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
|
||||
{
|
||||
const struct exception_table_entry *entry;
|
||||
|
||||
/* Are we prepared to handle this fault? */
|
||||
if ((entry = search_exception_tables(regs->nip)) != NULL) {
|
||||
regs->nip = entry->fixup;
|
||||
return;
|
||||
}
|
||||
|
||||
/* kernel has accessed a bad area */
|
||||
die("Kernel access of bad area", regs, sig);
|
||||
}
|
@ -1,870 +0,0 @@
|
||||
/*
|
||||
* PowerPC version
|
||||
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
||||
*
|
||||
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
||||
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
||||
* Copyright (C) 1996 Paul Mackerras
|
||||
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
|
||||
*
|
||||
* Derived from "arch/i386/mm/init.c"
|
||||
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
||||
*
|
||||
* Dave Engebretsen <engebret@us.ibm.com>
|
||||
* Rework for PPC64 port.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version
|
||||
* 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/signal.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/swap.h>
|
||||
#include <linux/stddef.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/bootmem.h>
|
||||
#include <linux/highmem.h>
|
||||
#include <linux/idr.h>
|
||||
#include <linux/nodemask.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/page.h>
|
||||
#include <asm/prom.h>
|
||||
#include <asm/lmb.h>
|
||||
#include <asm/rtas.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/mmu_context.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/mmu.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/smp.h>
|
||||
#include <asm/machdep.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <asm/eeh.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/mmzone.h>
|
||||
#include <asm/cputable.h>
|
||||
#include <asm/ppcdebug.h>
|
||||
#include <asm/sections.h>
|
||||
#include <asm/system.h>
|
||||
#include <asm/iommu.h>
|
||||
#include <asm/abs_addr.h>
|
||||
#include <asm/vdso.h>
|
||||
#include <asm/imalloc.h>
|
||||
|
||||
#if PGTABLE_RANGE > USER_VSID_RANGE
|
||||
#warning Limited user VSID range means pagetable space is wasted
|
||||
#endif
|
||||
|
||||
#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
|
||||
#warning TASK_SIZE is smaller than it needs to be.
|
||||
#endif
|
||||
|
||||
int mem_init_done;
|
||||
unsigned long ioremap_bot = IMALLOC_BASE;
|
||||
static unsigned long phbs_io_bot = PHBS_IO_BASE;
|
||||
|
||||
extern pgd_t swapper_pg_dir[];
|
||||
extern struct task_struct *current_set[NR_CPUS];
|
||||
|
||||
unsigned long klimit = (unsigned long)_end;
|
||||
|
||||
unsigned long _SDR1=0;
|
||||
unsigned long _ASR=0;
|
||||
|
||||
/* max amount of RAM to use */
|
||||
unsigned long __max_memory;
|
||||
|
||||
/* info on what we think the IO hole is */
|
||||
unsigned long io_hole_start;
|
||||
unsigned long io_hole_size;
|
||||
|
||||
void show_mem(void)
|
||||
{
|
||||
unsigned long total = 0, reserved = 0;
|
||||
unsigned long shared = 0, cached = 0;
|
||||
struct page *page;
|
||||
pg_data_t *pgdat;
|
||||
unsigned long i;
|
||||
|
||||
printk("Mem-info:\n");
|
||||
show_free_areas();
|
||||
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
|
||||
for_each_pgdat(pgdat) {
|
||||
for (i = 0; i < pgdat->node_spanned_pages; i++) {
|
||||
page = pgdat_page_nr(pgdat, i);
|
||||
total++;
|
||||
if (PageReserved(page))
|
||||
reserved++;
|
||||
else if (PageSwapCache(page))
|
||||
cached++;
|
||||
else if (page_count(page))
|
||||
shared += page_count(page) - 1;
|
||||
}
|
||||
}
|
||||
printk("%ld pages of RAM\n", total);
|
||||
printk("%ld reserved pages\n", reserved);
|
||||
printk("%ld pages shared\n", shared);
|
||||
printk("%ld pages swap cached\n", cached);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PPC_ISERIES
|
||||
|
||||
void __iomem *ioremap(unsigned long addr, unsigned long size)
|
||||
{
|
||||
return (void __iomem *)addr;
|
||||
}
|
||||
|
||||
extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
|
||||
unsigned long flags)
|
||||
{
|
||||
return (void __iomem *)addr;
|
||||
}
|
||||
|
||||
void iounmap(volatile void __iomem *addr)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* map_io_page currently only called by __ioremap
|
||||
* map_io_page adds an entry to the ioremap page table
|
||||
* and adds an entry to the HPT, possibly bolting it
|
||||
*/
|
||||
static int map_io_page(unsigned long ea, unsigned long pa, int flags)
|
||||
{
|
||||
pgd_t *pgdp;
|
||||
pud_t *pudp;
|
||||
pmd_t *pmdp;
|
||||
pte_t *ptep;
|
||||
unsigned long vsid;
|
||||
|
||||
if (mem_init_done) {
|
||||
spin_lock(&init_mm.page_table_lock);
|
||||
pgdp = pgd_offset_k(ea);
|
||||
pudp = pud_alloc(&init_mm, pgdp, ea);
|
||||
if (!pudp)
|
||||
return -ENOMEM;
|
||||
pmdp = pmd_alloc(&init_mm, pudp, ea);
|
||||
if (!pmdp)
|
||||
return -ENOMEM;
|
||||
ptep = pte_alloc_kernel(&init_mm, pmdp, ea);
|
||||
if (!ptep)
|
||||
return -ENOMEM;
|
||||
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
|
||||
__pgprot(flags)));
|
||||
spin_unlock(&init_mm.page_table_lock);
|
||||
} else {
|
||||
unsigned long va, vpn, hash, hpteg;
|
||||
|
||||
/*
|
||||
* If the mm subsystem is not fully up, we cannot create a
|
||||
* linux page table entry for this mapping. Simply bolt an
|
||||
* entry in the hardware page table.
|
||||
*/
|
||||
vsid = get_kernel_vsid(ea);
|
||||
va = (vsid << 28) | (ea & 0xFFFFFFF);
|
||||
vpn = va >> PAGE_SHIFT;
|
||||
|
||||
hash = hpt_hash(vpn, 0);
|
||||
|
||||
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
|
||||
|
||||
/* Panic if a pte grpup is full */
|
||||
if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT,
|
||||
HPTE_V_BOLTED,
|
||||
_PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX)
|
||||
== -1) {
|
||||
panic("map_io_page: could not insert mapping");
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
|
||||
unsigned long ea, unsigned long size,
|
||||
unsigned long flags)
|
||||
{
|
||||
unsigned long i;
|
||||
|
||||
if ((flags & _PAGE_PRESENT) == 0)
|
||||
flags |= pgprot_val(PAGE_KERNEL);
|
||||
|
||||
for (i = 0; i < size; i += PAGE_SIZE)
|
||||
if (map_io_page(ea+i, pa+i, flags))
|
||||
return NULL;
|
||||
|
||||
return (void __iomem *) (ea + (addr & ~PAGE_MASK));
|
||||
}
|
||||
|
||||
|
||||
void __iomem *
|
||||
ioremap(unsigned long addr, unsigned long size)
|
||||
{
|
||||
return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
|
||||
}
|
||||
|
||||
void __iomem * __ioremap(unsigned long addr, unsigned long size,
|
||||
unsigned long flags)
|
||||
{
|
||||
unsigned long pa, ea;
|
||||
void __iomem *ret;
|
||||
|
||||
/*
|
||||
* Choose an address to map it to.
|
||||
* Once the imalloc system is running, we use it.
|
||||
* Before that, we map using addresses going
|
||||
* up from ioremap_bot. imalloc will use
|
||||
* the addresses from ioremap_bot through
|
||||
* IMALLOC_END
|
||||
*
|
||||
*/
|
||||
pa = addr & PAGE_MASK;
|
||||
size = PAGE_ALIGN(addr + size) - pa;
|
||||
|
||||
if (size == 0)
|
||||
return NULL;
|
||||
|
||||
if (mem_init_done) {
|
||||
struct vm_struct *area;
|
||||
area = im_get_free_area(size);
|
||||
if (area == NULL)
|
||||
return NULL;
|
||||
ea = (unsigned long)(area->addr);
|
||||
ret = __ioremap_com(addr, pa, ea, size, flags);
|
||||
if (!ret)
|
||||
im_free(area->addr);
|
||||
} else {
|
||||
ea = ioremap_bot;
|
||||
ret = __ioremap_com(addr, pa, ea, size, flags);
|
||||
if (ret)
|
||||
ioremap_bot += size;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
#define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
|
||||
|
||||
int __ioremap_explicit(unsigned long pa, unsigned long ea,
|
||||
unsigned long size, unsigned long flags)
|
||||
{
|
||||
struct vm_struct *area;
|
||||
void __iomem *ret;
|
||||
|
||||
/* For now, require page-aligned values for pa, ea, and size */
|
||||
if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
|
||||
!IS_PAGE_ALIGNED(size)) {
|
||||
printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!mem_init_done) {
|
||||
/* Two things to consider in this case:
|
||||
* 1) No records will be kept (imalloc, etc) that the region
|
||||
* has been remapped
|
||||
* 2) It won't be easy to iounmap() the region later (because
|
||||
* of 1)
|
||||
*/
|
||||
;
|
||||
} else {
|
||||
area = im_get_area(ea, size,
|
||||
IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
|
||||
if (area == NULL) {
|
||||
/* Expected when PHB-dlpar is in play */
|
||||
return 1;
|
||||
}
|
||||
if (ea != (unsigned long) area->addr) {
|
||||
printk(KERN_ERR "unexpected addr return from "
|
||||
"im_get_area\n");
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
ret = __ioremap_com(pa, pa, ea, size, flags);
|
||||
if (ret == NULL) {
|
||||
printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
|
||||
return 1;
|
||||
}
|
||||
if (ret != (void *) ea) {
|
||||
printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Unmap an IO region and remove it from imalloc'd list.
|
||||
* Access to IO memory should be serialized by driver.
|
||||
* This code is modeled after vmalloc code - unmap_vm_area()
|
||||
*
|
||||
* XXX what about calls before mem_init_done (ie python_countermeasures())
|
||||
*/
|
||||
void iounmap(volatile void __iomem *token)
|
||||
{
|
||||
void *addr;
|
||||
|
||||
if (!mem_init_done)
|
||||
return;
|
||||
|
||||
addr = (void *) ((unsigned long __force) token & PAGE_MASK);
|
||||
|
||||
im_free(addr);
|
||||
}
|
||||
|
||||
static int iounmap_subset_regions(unsigned long addr, unsigned long size)
|
||||
{
|
||||
struct vm_struct *area;
|
||||
|
||||
/* Check whether subsets of this region exist */
|
||||
area = im_get_area(addr, size, IM_REGION_SUPERSET);
|
||||
if (area == NULL)
|
||||
return 1;
|
||||
|
||||
while (area) {
|
||||
iounmap((void __iomem *) area->addr);
|
||||
area = im_get_area(addr, size,
|
||||
IM_REGION_SUPERSET);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int iounmap_explicit(volatile void __iomem *start, unsigned long size)
|
||||
{
|
||||
struct vm_struct *area;
|
||||
unsigned long addr;
|
||||
int rc;
|
||||
|
||||
addr = (unsigned long __force) start & PAGE_MASK;
|
||||
|
||||
/* Verify that the region either exists or is a subset of an existing
|
||||
* region. In the latter case, split the parent region to create
|
||||
* the exact region
|
||||
*/
|
||||
area = im_get_area(addr, size,
|
||||
IM_REGION_EXISTS | IM_REGION_SUBSET);
|
||||
if (area == NULL) {
|
||||
/* Determine whether subset regions exist. If so, unmap */
|
||||
rc = iounmap_subset_regions(addr, size);
|
||||
if (rc) {
|
||||
printk(KERN_ERR
|
||||
"%s() cannot unmap nonexistent range 0x%lx\n",
|
||||
__FUNCTION__, addr);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
iounmap((void __iomem *) area->addr);
|
||||
}
|
||||
/*
|
||||
* FIXME! This can't be right:
|
||||
iounmap(area->addr);
|
||||
* Maybe it should be "iounmap(area);"
|
||||
*/
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
EXPORT_SYMBOL(ioremap);
|
||||
EXPORT_SYMBOL(__ioremap);
|
||||
EXPORT_SYMBOL(iounmap);
|
||||
|
||||
void free_initmem(void)
|
||||
{
|
||||
unsigned long addr;
|
||||
|
||||
addr = (unsigned long)__init_begin;
|
||||
for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
|
||||
memset((void *)addr, 0xcc, PAGE_SIZE);
|
||||
ClearPageReserved(virt_to_page(addr));
|
||||
set_page_count(virt_to_page(addr), 1);
|
||||
free_page(addr);
|
||||
totalram_pages++;
|
||||
}
|
||||
printk ("Freeing unused kernel memory: %luk freed\n",
|
||||
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_BLK_DEV_INITRD
|
||||
void free_initrd_mem(unsigned long start, unsigned long end)
|
||||
{
|
||||
if (start < end)
|
||||
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
|
||||
for (; start < end; start += PAGE_SIZE) {
|
||||
ClearPageReserved(virt_to_page(start));
|
||||
set_page_count(virt_to_page(start), 1);
|
||||
free_page(start);
|
||||
totalram_pages++;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static DEFINE_SPINLOCK(mmu_context_lock);
|
||||
static DEFINE_IDR(mmu_context_idr);
|
||||
|
||||
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
||||
{
|
||||
int index;
|
||||
int err;
|
||||
|
||||
again:
|
||||
if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
|
||||
return -ENOMEM;
|
||||
|
||||
spin_lock(&mmu_context_lock);
|
||||
err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
|
||||
spin_unlock(&mmu_context_lock);
|
||||
|
||||
if (err == -EAGAIN)
|
||||
goto again;
|
||||
else if (err)
|
||||
return err;
|
||||
|
||||
if (index > MAX_CONTEXT) {
|
||||
idr_remove(&mmu_context_idr, index);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
mm->context.id = index;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void destroy_context(struct mm_struct *mm)
|
||||
{
|
||||
spin_lock(&mmu_context_lock);
|
||||
idr_remove(&mmu_context_idr, mm->context.id);
|
||||
spin_unlock(&mmu_context_lock);
|
||||
|
||||
mm->context.id = NO_CONTEXT;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do very early mm setup.
|
||||
*/
|
||||
void __init mm_init_ppc64(void)
|
||||
{
|
||||
#ifndef CONFIG_PPC_ISERIES
|
||||
unsigned long i;
|
||||
#endif
|
||||
|
||||
ppc64_boot_msg(0x100, "MM Init");
|
||||
|
||||
/* This is the story of the IO hole... please, keep seated,
|
||||
* unfortunately, we are out of oxygen masks at the moment.
|
||||
* So we need some rough way to tell where your big IO hole
|
||||
* is. On pmac, it's between 2G and 4G, on POWER3, it's around
|
||||
* that area as well, on POWER4 we don't have one, etc...
|
||||
* We need that as a "hint" when sizing the TCE table on POWER3
|
||||
* So far, the simplest way that seem work well enough for us it
|
||||
* to just assume that the first discontinuity in our physical
|
||||
* RAM layout is the IO hole. That may not be correct in the future
|
||||
* (and isn't on iSeries but then we don't care ;)
|
||||
*/
|
||||
|
||||
#ifndef CONFIG_PPC_ISERIES
|
||||
for (i = 1; i < lmb.memory.cnt; i++) {
|
||||
unsigned long base, prevbase, prevsize;
|
||||
|
||||
prevbase = lmb.memory.region[i-1].base;
|
||||
prevsize = lmb.memory.region[i-1].size;
|
||||
base = lmb.memory.region[i].base;
|
||||
if (base > (prevbase + prevsize)) {
|
||||
io_hole_start = prevbase + prevsize;
|
||||
io_hole_size = base - (prevbase + prevsize);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif /* CONFIG_PPC_ISERIES */
|
||||
if (io_hole_start)
|
||||
printk("IO Hole assumed to be %lx -> %lx\n",
|
||||
io_hole_start, io_hole_start + io_hole_size - 1);
|
||||
|
||||
ppc64_boot_msg(0x100, "MM Init Done");
|
||||
}
|
||||
|
||||
/*
|
||||
* This is called by /dev/mem to know if a given address has to
|
||||
* be mapped non-cacheable or not
|
||||
*/
|
||||
int page_is_ram(unsigned long pfn)
|
||||
{
|
||||
int i;
|
||||
unsigned long paddr = (pfn << PAGE_SHIFT);
|
||||
|
||||
for (i=0; i < lmb.memory.cnt; i++) {
|
||||
unsigned long base;
|
||||
|
||||
base = lmb.memory.region[i].base;
|
||||
|
||||
if ((paddr >= base) &&
|
||||
(paddr < (base + lmb.memory.region[i].size))) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL(page_is_ram);
|
||||
|
||||
/*
|
||||
* Initialize the bootmem system and give it all the memory we
|
||||
* have available.
|
||||
*/
|
||||
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
||||
void __init do_init_bootmem(void)
|
||||
{
|
||||
unsigned long i;
|
||||
unsigned long start, bootmap_pages;
|
||||
unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
||||
int boot_mapsize;
|
||||
|
||||
/*
|
||||
* Find an area to use for the bootmem bitmap. Calculate the size of
|
||||
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
|
||||
* Add 1 additional page in case the address isn't page-aligned.
|
||||
*/
|
||||
bootmap_pages = bootmem_bootmap_pages(total_pages);
|
||||
|
||||
start = lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
|
||||
BUG_ON(!start);
|
||||
|
||||
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
|
||||
|
||||
max_pfn = max_low_pfn;
|
||||
|
||||
/* Add all physical memory to the bootmem map, mark each area
|
||||
* present.
|
||||
*/
|
||||
for (i=0; i < lmb.memory.cnt; i++)
|
||||
free_bootmem(lmb.memory.region[i].base,
|
||||
lmb_size_bytes(&lmb.memory, i));
|
||||
|
||||
/* reserve the sections we're already using */
|
||||
for (i=0; i < lmb.reserved.cnt; i++)
|
||||
reserve_bootmem(lmb.reserved.region[i].base,
|
||||
lmb_size_bytes(&lmb.reserved, i));
|
||||
|
||||
for (i=0; i < lmb.memory.cnt; i++)
|
||||
memory_present(0, lmb_start_pfn(&lmb.memory, i),
|
||||
lmb_end_pfn(&lmb.memory, i));
|
||||
}
|
||||
|
||||
/*
|
||||
* paging_init() sets up the page tables - in fact we've already done this.
|
||||
*/
|
||||
void __init paging_init(void)
|
||||
{
|
||||
unsigned long zones_size[MAX_NR_ZONES];
|
||||
unsigned long zholes_size[MAX_NR_ZONES];
|
||||
unsigned long total_ram = lmb_phys_mem_size();
|
||||
unsigned long top_of_ram = lmb_end_of_DRAM();
|
||||
|
||||
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
|
||||
top_of_ram, total_ram);
|
||||
printk(KERN_INFO "Memory hole size: %ldMB\n",
|
||||
(top_of_ram - total_ram) >> 20);
|
||||
/*
|
||||
* All pages are DMA-able so we put them all in the DMA zone.
|
||||
*/
|
||||
memset(zones_size, 0, sizeof(zones_size));
|
||||
memset(zholes_size, 0, sizeof(zholes_size));
|
||||
|
||||
zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
|
||||
zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
|
||||
|
||||
free_area_init_node(0, NODE_DATA(0), zones_size,
|
||||
__pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
|
||||
}
|
||||
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
|
||||
|
||||
static struct kcore_list kcore_vmem;
|
||||
|
||||
static int __init setup_kcore(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i=0; i < lmb.memory.cnt; i++) {
|
||||
unsigned long base, size;
|
||||
struct kcore_list *kcore_mem;
|
||||
|
||||
base = lmb.memory.region[i].base;
|
||||
size = lmb.memory.region[i].size;
|
||||
|
||||
/* GFP_ATOMIC to avoid might_sleep warnings during boot */
|
||||
kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
|
||||
if (!kcore_mem)
|
||||
panic("mem_init: kmalloc failed\n");
|
||||
|
||||
kclist_add(kcore_mem, __va(base), size);
|
||||
}
|
||||
|
||||
kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
|
||||
|
||||
return 0;
|
||||
}
|
||||
module_init(setup_kcore);
|
||||
|
||||
void __init mem_init(void)
|
||||
{
|
||||
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
||||
int nid;
|
||||
#endif
|
||||
pg_data_t *pgdat;
|
||||
unsigned long i;
|
||||
struct page *page;
|
||||
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
|
||||
|
||||
num_physpages = max_low_pfn; /* RAM is assumed contiguous */
|
||||
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
|
||||
|
||||
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
||||
for_each_online_node(nid) {
|
||||
if (NODE_DATA(nid)->node_spanned_pages != 0) {
|
||||
printk("freeing bootmem node %x\n", nid);
|
||||
totalram_pages +=
|
||||
free_all_bootmem_node(NODE_DATA(nid));
|
||||
}
|
||||
}
|
||||
#else
|
||||
max_mapnr = num_physpages;
|
||||
totalram_pages += free_all_bootmem();
|
||||
#endif
|
||||
|
||||
for_each_pgdat(pgdat) {
|
||||
for (i = 0; i < pgdat->node_spanned_pages; i++) {
|
||||
page = pgdat_page_nr(pgdat, i);
|
||||
if (PageReserved(page))
|
||||
reservedpages++;
|
||||
}
|
||||
}
|
||||
|
||||
codesize = (unsigned long)&_etext - (unsigned long)&_stext;
|
||||
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
|
||||
datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
|
||||
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
|
||||
|
||||
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
|
||||
"%luk reserved, %luk data, %luk bss, %luk init)\n",
|
||||
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
|
||||
num_physpages << (PAGE_SHIFT-10),
|
||||
codesize >> 10,
|
||||
reservedpages << (PAGE_SHIFT-10),
|
||||
datasize >> 10,
|
||||
bsssize >> 10,
|
||||
initsize >> 10);
|
||||
|
||||
mem_init_done = 1;
|
||||
|
||||
/* Initialize the vDSO */
|
||||
vdso_init();
|
||||
}
|
||||
|
||||
/*
|
||||
* This is called when a page has been modified by the kernel.
|
||||
* It just marks the page as not i-cache clean. We do the i-cache
|
||||
* flush later when the page is given to a user process, if necessary.
|
||||
*/
|
||||
void flush_dcache_page(struct page *page)
|
||||
{
|
||||
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
||||
return;
|
||||
/* avoid an atomic op if possible */
|
||||
if (test_bit(PG_arch_1, &page->flags))
|
||||
clear_bit(PG_arch_1, &page->flags);
|
||||
}
|
||||
EXPORT_SYMBOL(flush_dcache_page);
|
||||
|
||||
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
|
||||
{
|
||||
clear_page(page);
|
||||
|
||||
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
||||
return;
|
||||
/*
|
||||
* We shouldnt have to do this, but some versions of glibc
|
||||
* require it (ld.so assumes zero filled pages are icache clean)
|
||||
* - Anton
|
||||
*/
|
||||
|
||||
/* avoid an atomic op if possible */
|
||||
if (test_bit(PG_arch_1, &pg->flags))
|
||||
clear_bit(PG_arch_1, &pg->flags);
|
||||
}
|
||||
EXPORT_SYMBOL(clear_user_page);
|
||||
|
||||
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
|
||||
struct page *pg)
|
||||
{
|
||||
copy_page(vto, vfrom);
|
||||
|
||||
/*
|
||||
* We should be able to use the following optimisation, however
|
||||
* there are two problems.
|
||||
* Firstly a bug in some versions of binutils meant PLT sections
|
||||
* were not marked executable.
|
||||
* Secondly the first word in the GOT section is blrl, used
|
||||
* to establish the GOT address. Until recently the GOT was
|
||||
* not marked executable.
|
||||
* - Anton
|
||||
*/
|
||||
#if 0
|
||||
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
|
||||
return;
|
||||
#endif
|
||||
|
||||
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
||||
return;
|
||||
|
||||
/* avoid an atomic op if possible */
|
||||
if (test_bit(PG_arch_1, &pg->flags))
|
||||
clear_bit(PG_arch_1, &pg->flags);
|
||||
}
|
||||
|
||||
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
|
||||
unsigned long addr, int len)
|
||||
{
|
||||
unsigned long maddr;
|
||||
|
||||
maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
|
||||
flush_icache_range(maddr, maddr + len);
|
||||
}
|
||||
EXPORT_SYMBOL(flush_icache_user_range);
|
||||
|
||||
/*
|
||||
* This is called at the end of handling a user page fault, when the
|
||||
* fault has been handled by updating a PTE in the linux page tables.
|
||||
* We use it to preload an HPTE into the hash table corresponding to
|
||||
* the updated linux PTE.
|
||||
*
|
||||
* This must always be called with the mm->page_table_lock held
|
||||
*/
|
||||
void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
|
||||
pte_t pte)
|
||||
{
|
||||
unsigned long vsid;
|
||||
void *pgdir;
|
||||
pte_t *ptep;
|
||||
int local = 0;
|
||||
cpumask_t tmp;
|
||||
unsigned long flags;
|
||||
|
||||
/* handle i-cache coherency */
|
||||
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
|
||||
!cpu_has_feature(CPU_FTR_NOEXECUTE)) {
|
||||
unsigned long pfn = pte_pfn(pte);
|
||||
if (pfn_valid(pfn)) {
|
||||
struct page *page = pfn_to_page(pfn);
|
||||
if (!PageReserved(page)
|
||||
&& !test_bit(PG_arch_1, &page->flags)) {
|
||||
__flush_dcache_icache(page_address(page));
|
||||
set_bit(PG_arch_1, &page->flags);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
|
||||
if (!pte_young(pte))
|
||||
return;
|
||||
|
||||
pgdir = vma->vm_mm->pgd;
|
||||
if (pgdir == NULL)
|
||||
return;
|
||||
|
||||
ptep = find_linux_pte(pgdir, ea);
|
||||
if (!ptep)
|
||||
return;
|
||||
|
||||
vsid = get_vsid(vma->vm_mm->context.id, ea);
|
||||
|
||||
local_irq_save(flags);
|
||||
tmp = cpumask_of_cpu(smp_processor_id());
|
||||
if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
|
||||
local = 1;
|
||||
|
||||
__hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
|
||||
0x300, local);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
void __iomem * reserve_phb_iospace(unsigned long size)
|
||||
{
|
||||
void __iomem *virt_addr;
|
||||
|
||||
if (phbs_io_bot >= IMALLOC_BASE)
|
||||
panic("reserve_phb_iospace(): phb io space overflow\n");
|
||||
|
||||
virt_addr = (void __iomem *) phbs_io_bot;
|
||||
phbs_io_bot += size;
|
||||
|
||||
return virt_addr;
|
||||
}
|
||||
|
||||
static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
|
||||
{
|
||||
memset(addr, 0, kmem_cache_size(cache));
|
||||
}
|
||||
|
||||
static const int pgtable_cache_size[2] = {
|
||||
PTE_TABLE_SIZE, PMD_TABLE_SIZE
|
||||
};
|
||||
static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
|
||||
"pgd_pte_cache", "pud_pmd_cache",
|
||||
};
|
||||
|
||||
kmem_cache_t *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)];
|
||||
|
||||
void pgtable_cache_init(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
BUILD_BUG_ON(PTE_TABLE_SIZE != pgtable_cache_size[PTE_CACHE_NUM]);
|
||||
BUILD_BUG_ON(PMD_TABLE_SIZE != pgtable_cache_size[PMD_CACHE_NUM]);
|
||||
BUILD_BUG_ON(PUD_TABLE_SIZE != pgtable_cache_size[PUD_CACHE_NUM]);
|
||||
BUILD_BUG_ON(PGD_TABLE_SIZE != pgtable_cache_size[PGD_CACHE_NUM]);
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) {
|
||||
int size = pgtable_cache_size[i];
|
||||
const char *name = pgtable_cache_name[i];
|
||||
|
||||
pgtable_cache[i] = kmem_cache_create(name,
|
||||
size, size,
|
||||
SLAB_HWCACHE_ALIGN
|
||||
| SLAB_MUST_HWCACHE_ALIGN,
|
||||
zero_ctor,
|
||||
NULL);
|
||||
if (! pgtable_cache[i])
|
||||
panic("pgtable_cache_init(): could not create %s!\n",
|
||||
name);
|
||||
}
|
||||
}
|
||||
|
||||
pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
|
||||
unsigned long size, pgprot_t vma_prot)
|
||||
{
|
||||
if (ppc_md.phys_mem_access_prot)
|
||||
return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
|
||||
|
||||
if (!page_is_ram(addr >> PAGE_SHIFT))
|
||||
vma_prot = __pgprot(pgprot_val(vma_prot)
|
||||
| _PAGE_GUARDED | _PAGE_NO_CACHE);
|
||||
return vma_prot;
|
||||
}
|
||||
EXPORT_SYMBOL(phys_mem_access_prot);
|
Loading…
Reference in New Issue
Block a user