2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-24 14:45:12 +08:00

rcu: Move docbook comments out of rcupdate.h

The include/linux/rcupdate.h file is included by more than 200
files, so shrinking it should provide some build-time benefits.
This commit therefore moves several docbook comments from rcupdate.h to
kernel/rcu/update.c, kernel/rcu/tree.c, and kernel/rcu/tree_plugin.h, thus
reducing the number of times that the compiler has to scan these comments.
This likely provides only a small benefit, but every little bit helps.

This commit also fixes a malformed bulleted list noted by the 0day
Test Robot.

Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit is contained in:
Paul E. McKenney 2017-05-03 08:34:57 -07:00
parent aaaad0bfac
commit a68a2bb28b
4 changed files with 89 additions and 123 deletions

View File

@ -140,115 +140,14 @@ void do_trace_rcu_torture_read(const char *rcutorturename,
/* Exported common interfaces */
#ifdef CONFIG_PREEMPT_RCU
/**
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing RCU read-side critical section. On systems with more
* than one CPU, this means that when "func()" is invoked, each CPU is
* guaranteed to have executed a full memory barrier since the end of its
* last RCU read-side critical section whose beginning preceded the call
* to call_rcu(). It also means that each CPU executing an RCU read-side
* critical section that continues beyond the start of "func()" must have
* executed a memory barrier after the call_rcu() but before the beginning
* of that RCU read-side critical section. Note that these guarantees
* include CPUs that are offline, idle, or executing in user mode, as
* well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting RCU callback function "func()", then both CPU A and CPU B are
* guaranteed to execute a full memory barrier during the time interval
* between the call to call_rcu() and the invocation of "func()" -- even
* if CPU A and CPU B are the same CPU (but again only if the system has
* more than one CPU).
*/
void call_rcu(struct rcu_head *head,
rcu_callback_t func);
void call_rcu(struct rcu_head *head, rcu_callback_t func);
#else /* #ifdef CONFIG_PREEMPT_RCU */
/* In classic RCU, call_rcu() is just call_rcu_sched(). */
#define call_rcu call_rcu_sched
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
/**
* call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_bh() assumes
* that the read-side critical sections end on completion of a softirq
* handler. This means that read-side critical sections in process
* context must not be interrupted by softirqs. This interface is to be
* used when most of the read-side critical sections are in softirq context.
* RCU read-side critical sections are delimited by :
* - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
* OR
* - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
* These may be nested.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_bh(struct rcu_head *head,
rcu_callback_t func);
/**
* call_rcu_sched() - Queue an RCU for invocation after sched grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_sched() assumes
* that the read-side critical sections end on enabling of preemption
* or on voluntary preemption.
* RCU read-side critical sections are delimited by :
* - rcu_read_lock_sched() and rcu_read_unlock_sched(),
* OR
* anything that disables preemption.
* These may be nested.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_sched(struct rcu_head *head,
rcu_callback_t func);
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func);
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func);
void synchronize_sched(void);
/**
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks() assumes
* that the read-side critical sections end at a voluntary context
* switch (not a preemption!), entry into idle, or transition to usermode
* execution. As such, there are no read-side primitives analogous to
* rcu_read_lock() and rcu_read_unlock() because this primitive is intended
* to determine that all tasks have passed through a safe state, not so
* much for data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
void synchronize_rcu_tasks(void);
void rcu_barrier_tasks(void);
@ -474,18 +373,8 @@ extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
extern struct lockdep_map rcu_callback_map;
int debug_lockdep_rcu_enabled(void);
int rcu_read_lock_held(void);
int rcu_read_lock_bh_held(void);
/**
* rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
*
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
* RCU-sched read-side critical section. In absence of
* CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
* critical section unless it can prove otherwise.
*/
int rcu_read_lock_sched_held(void);
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

View File

@ -3223,8 +3223,24 @@ __call_rcu(struct rcu_head *head, rcu_callback_t func,
local_irq_restore(flags);
}
/*
* Queue an RCU-sched callback for invocation after a grace period.
/**
* call_rcu_sched() - Queue an RCU for invocation after sched grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_sched() assumes
* that the read-side critical sections end on enabling of preemption
* or on voluntary preemption.
* RCU read-side critical sections are delimited by :
* - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
* - anything that disables preemption.
*
* These may be nested.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
{
@ -3232,8 +3248,26 @@ void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
}
EXPORT_SYMBOL_GPL(call_rcu_sched);
/*
* Queue an RCU callback for invocation after a quicker grace period.
/**
* call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_bh() assumes
* that the read-side critical sections end on completion of a softirq
* handler. This means that read-side critical sections in process
* context must not be interrupted by softirqs. This interface is to be
* used when most of the read-side critical sections are in softirq context.
* RCU read-side critical sections are delimited by :
* - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
* OR
* - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
* These may be nested.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
{

View File

@ -675,8 +675,37 @@ static void rcu_preempt_do_callbacks(void)
#endif /* #ifdef CONFIG_RCU_BOOST */
/*
* Queue a preemptible-RCU callback for invocation after a grace period.
/**
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing RCU read-side critical section. On systems with more
* than one CPU, this means that when "func()" is invoked, each CPU is
* guaranteed to have executed a full memory barrier since the end of its
* last RCU read-side critical section whose beginning preceded the call
* to call_rcu(). It also means that each CPU executing an RCU read-side
* critical section that continues beyond the start of "func()" must have
* executed a memory barrier after the call_rcu() but before the beginning
* of that RCU read-side critical section. Note that these guarantees
* include CPUs that are offline, idle, or executing in user mode, as
* well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting RCU callback function "func()", then both CPU A and CPU B are
* guaranteed to execute a full memory barrier during the time interval
* between the call to call_rcu() and the invocation of "func()" -- even
* if CPU A and CPU B are the same CPU (but again only if the system has
* more than one CPU).
*/
void call_rcu(struct rcu_head *head, rcu_callback_t func)
{

View File

@ -576,9 +576,23 @@ module_param(rcu_task_stall_timeout, int, 0644);
static void rcu_spawn_tasks_kthread(void);
static struct task_struct *rcu_tasks_kthread_ptr;
/*
* Post an RCU-tasks callback. First call must be from process context
* after the scheduler if fully operational.
/**
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
* @rhp: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_tasks() assumes
* that the read-side critical sections end at a voluntary context
* switch (not a preemption!), entry into idle, or transition to usermode
* execution. As such, there are no read-side primitives analogous to
* rcu_read_lock() and rcu_read_unlock() because this primitive is intended
* to determine that all tasks have passed through a safe state, not so
* much for data-strcuture synchronization.
*
* See the description of call_rcu() for more detailed information on
* memory ordering guarantees.
*/
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
{