2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-20 03:24:03 +08:00

pwm: sun4i: Add support to output source clock directly

PWM core has an option to bypass whole logic and output unchanged source
clock as PWM output. This is achieved by enabling bypass bit.

Note that when bypass is enabled, no other setting has any meaning, not
even enable bit.

This mode of operation is needed to achieve high enough frequency to
serve as clock source for AC200 chip which is integrated into same
package as H6 SoC.

Signed-off-by: Jernej Skrabec <jernej.skrabec@siol.net>
Signed-off-by: Clément Péron <peron.clem@gmail.com>
Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
This commit is contained in:
Jernej Skrabec 2019-11-24 18:29:07 +01:00 committed by Thierry Reding
parent fa4d817846
commit 9f28e95b52

View File

@ -3,6 +3,10 @@
* Driver for Allwinner sun4i Pulse Width Modulation Controller
*
* Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
*
* Limitations:
* - When outputing the source clock directly, the PWM logic will be bypassed
* and the currently running period is not guaranteed to be completed
*/
#include <linux/bitops.h>
@ -73,6 +77,7 @@ static const u32 prescaler_table[] = {
struct sun4i_pwm_data {
bool has_prescaler_bypass;
bool has_direct_mod_clk_output;
unsigned int npwm;
};
@ -118,6 +123,20 @@ static void sun4i_pwm_get_state(struct pwm_chip *chip,
val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
/*
* PWM chapter in H6 manual has a diagram which explains that if bypass
* bit is set, no other setting has any meaning. Even more, experiment
* proved that also enable bit is ignored in this case.
*/
if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
sun4i_pwm->data->has_direct_mod_clk_output) {
state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
state->polarity = PWM_POLARITY_NORMAL;
state->enabled = true;
return;
}
if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
sun4i_pwm->data->has_prescaler_bypass)
prescaler = 1;
@ -149,13 +168,24 @@ static void sun4i_pwm_get_state(struct pwm_chip *chip,
static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
const struct pwm_state *state,
u32 *dty, u32 *prd, unsigned int *prsclr)
u32 *dty, u32 *prd, unsigned int *prsclr,
bool *bypass)
{
u64 clk_rate, div = 0;
unsigned int pval, prescaler = 0;
clk_rate = clk_get_rate(sun4i_pwm->clk);
*bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
state->enabled &&
(state->period * clk_rate >= NSEC_PER_SEC) &&
(state->period * clk_rate < 2 * NSEC_PER_SEC) &&
(state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
/* Skip calculation of other parameters if we bypass them */
if (*bypass)
return 0;
if (sun4i_pwm->data->has_prescaler_bypass) {
/* First, test without any prescaler when available */
prescaler = PWM_PRESCAL_MASK;
@ -206,6 +236,7 @@ static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
int ret;
unsigned int delay_us, prescaler;
unsigned long now;
bool bypass;
pwm_get_state(pwm, &cstate);
@ -220,7 +251,8 @@ static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
spin_lock(&sun4i_pwm->ctrl_lock);
ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler);
ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
&bypass);
if (ret) {
dev_err(chip->dev, "period exceeds the maximum value\n");
spin_unlock(&sun4i_pwm->ctrl_lock);
@ -229,6 +261,18 @@ static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
return ret;
}
if (sun4i_pwm->data->has_direct_mod_clk_output) {
if (bypass) {
ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
/* We can skip other parameter */
sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
spin_unlock(&sun4i_pwm->ctrl_lock);
return 0;
}
ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
}
if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
/* Prescaler changed, the clock has to be gated */
ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);