2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00

[SCSI] megaraid_sas: Add 9565/9285 specific code

This patch adds MegaRAID 9265/9285 (Device id 0x5b) specific code

Signed-off-by: Adam Radford <aradford@gmail.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
This commit is contained in:
adam radford 2010-12-21 13:34:31 -08:00 committed by James Bottomley
parent cd50ba8ede
commit 9c915a8c99
6 changed files with 3751 additions and 111 deletions

View File

@ -1,4 +1,5 @@
obj-$(CONFIG_MEGARAID_MM) += megaraid_mm.o
obj-$(CONFIG_MEGARAID_MAILBOX) += megaraid_mbox.o
obj-$(CONFIG_MEGARAID_SAS) += megaraid_sas.o
megaraid_sas-objs := megaraid_sas_base.o
megaraid_sas-objs := megaraid_sas_base.o megaraid_sas_fusion.o \
megaraid_sas_fp.o

View File

@ -33,9 +33,9 @@
/*
* MegaRAID SAS Driver meta data
*/
#define MEGASAS_VERSION "00.00.04.31-rc1"
#define MEGASAS_RELDATE "May 3, 2010"
#define MEGASAS_EXT_VERSION "Mon. May 3, 11:41:51 PST 2010"
#define MEGASAS_VERSION "00.00.05.29-rc1"
#define MEGASAS_RELDATE "Dec. 7, 2010"
#define MEGASAS_EXT_VERSION "Tue. Dec. 7 17:00:00 PDT 2010"
/*
* Device IDs
@ -47,6 +47,7 @@
#define PCI_DEVICE_ID_LSI_SAS0079GEN2 0x0079
#define PCI_DEVICE_ID_LSI_SAS0073SKINNY 0x0073
#define PCI_DEVICE_ID_LSI_SAS0071SKINNY 0x0071
#define PCI_DEVICE_ID_LSI_FUSION 0x005b
/*
* =====================================
@ -436,7 +437,6 @@ struct megasas_ctrl_prop {
* Add properties that can be controlled by
* a bit in the following structure.
*/
struct {
u32 copyBackDisabled : 1;
u32 SMARTerEnabled : 1;
@ -716,6 +716,7 @@ struct megasas_ctrl_info {
#define MEGASAS_DEFAULT_INIT_ID -1
#define MEGASAS_MAX_LUN 8
#define MEGASAS_MAX_LD 64
#define MEGASAS_DEFAULT_CMD_PER_LUN 128
#define MEGASAS_MAX_PD (MEGASAS_MAX_PD_CHANNELS * \
MEGASAS_MAX_DEV_PER_CHANNEL)
#define MEGASAS_MAX_LD_IDS (MEGASAS_MAX_LD_CHANNELS * \
@ -784,7 +785,10 @@ struct megasas_ctrl_info {
*/
struct megasas_register_set {
u32 reserved_0[4]; /*0000h*/
u32 doorbell; /*0000h*/
u32 fusion_seq_offset; /*0004h*/
u32 fusion_host_diag; /*0008h*/
u32 reserved_01; /*000Ch*/
u32 inbound_msg_0; /*0010h*/
u32 inbound_msg_1; /*0014h*/
@ -804,15 +808,18 @@ struct megasas_register_set {
u32 inbound_queue_port; /*0040h*/
u32 outbound_queue_port; /*0044h*/
u32 reserved_2[22]; /*0048h*/
u32 reserved_2[9]; /*0048h*/
u32 reply_post_host_index; /*006Ch*/
u32 reserved_2_2[12]; /*0070h*/
u32 outbound_doorbell_clear; /*00A0h*/
u32 reserved_3[3]; /*00A4h*/
u32 outbound_scratch_pad ; /*00B0h*/
u32 outbound_scratch_pad_2; /*00B4h*/
u32 reserved_4[3]; /*00B4h*/
u32 reserved_4[2]; /*00B8h*/
u32 inbound_low_queue_port ; /*00C0h*/
@ -1287,6 +1294,9 @@ struct megasas_instance {
u16 max_num_sge;
u16 max_fw_cmds;
/* For Fusion its num IOCTL cmds, for others MFI based its
max_fw_cmds */
u16 max_mfi_cmds;
u32 max_sectors_per_req;
struct megasas_aen_event *ev;
@ -1336,9 +1346,15 @@ struct megasas_instance {
struct timer_list io_completion_timer;
struct list_head internal_reset_pending_q;
/* Ptr to hba specfic information */
void *ctrl_context;
u8 msi_flag;
struct msix_entry msixentry;
u64 map_id;
struct megasas_cmd *map_update_cmd;
unsigned long bar;
long reset_flags;
struct mutex reset_mutex;
};
enum {
@ -1397,7 +1413,13 @@ struct megasas_cmd {
struct list_head list;
struct scsi_cmnd *scmd;
struct megasas_instance *instance;
u32 frame_count;
union {
struct {
u16 smid;
u16 resvd;
} context;
u32 frame_count;
};
};
#define MAX_MGMT_ADAPTERS 1024

View File

@ -53,6 +53,7 @@
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "megaraid_sas_fusion.h"
#include "megaraid_sas.h"
/*
@ -81,7 +82,7 @@ MODULE_VERSION(MEGASAS_VERSION);
MODULE_AUTHOR("megaraidlinux@lsi.com");
MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
static int megasas_transition_to_ready(struct megasas_instance *instance);
int megasas_transition_to_ready(struct megasas_instance *instance);
static int megasas_get_pd_list(struct megasas_instance *instance);
static int megasas_issue_init_mfi(struct megasas_instance *instance);
static int megasas_register_aen(struct megasas_instance *instance,
@ -109,6 +110,8 @@ static struct pci_device_id megasas_pci_table[] = {
/* xscale IOP, vega */
{PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
/* xscale IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
/* Fusion */
{}
};
@ -122,15 +125,16 @@ static DEFINE_MUTEX(megasas_async_queue_mutex);
static int megasas_poll_wait_aen;
static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
static u32 support_poll_for_event;
static u32 megasas_dbg_lvl;
u32 megasas_dbg_lvl;
static u32 support_device_change;
/* define lock for aen poll */
spinlock_t poll_aen_lock;
static void
void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status);
static irqreturn_t megasas_isr(int irq, void *devp);
static u32
megasas_init_adapter_mfi(struct megasas_instance *instance);
@ -138,6 +142,23 @@ u32
megasas_build_and_issue_cmd(struct megasas_instance *instance,
struct scsi_cmnd *scmd);
static void megasas_complete_cmd_dpc(unsigned long instance_addr);
void
megasas_release_fusion(struct megasas_instance *instance);
int
megasas_ioc_init_fusion(struct megasas_instance *instance);
void
megasas_free_cmds_fusion(struct megasas_instance *instance);
u8
megasas_get_map_info(struct megasas_instance *instance);
int
megasas_sync_map_info(struct megasas_instance *instance);
int
wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd);
void megasas_reset_reply_desc(struct megasas_instance *instance);
u8 MR_ValidateMapInfo(struct MR_FW_RAID_MAP_ALL *map,
struct LD_LOAD_BALANCE_INFO *lbInfo);
int megasas_reset_fusion(struct Scsi_Host *shost);
void megasas_fusion_ocr_wq(struct work_struct *work);
void
megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
@ -152,7 +173,7 @@ megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
*
* Returns a free command from the pool
*/
static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
struct megasas_cmd *megasas_get_cmd(struct megasas_instance
*instance)
{
unsigned long flags;
@ -177,7 +198,7 @@ static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
* @instance: Adapter soft state
* @cmd: Command packet to be returned to free command pool
*/
static inline void
inline void
megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
unsigned long flags;
@ -185,6 +206,7 @@ megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
cmd->scmd = NULL;
cmd->frame_count = 0;
list_add_tail(&cmd->list, &instance->cmd_pool);
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
@ -796,6 +818,11 @@ static struct megasas_instance_template megasas_instance_template_gen2 = {
* specific to gen2 (deviceid : 0x78, 0x79) controllers
*/
/*
* Template added for TB (Fusion)
*/
extern struct megasas_instance_template megasas_instance_template_fusion;
/**
* megasas_issue_polled - Issues a polling command
* @instance: Adapter soft state
@ -803,11 +830,9 @@ static struct megasas_instance_template megasas_instance_template_gen2 = {
*
* For polling, MFI requires the cmd_status to be set to 0xFF before posting.
*/
static int
int
megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
int i;
u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
struct megasas_header *frame_hdr = &cmd->frame->hdr;
@ -817,21 +842,12 @@ megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
/*
* Issue the frame using inbound queue port
*/
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr, 0, instance->reg_set);
instance->instancet->issue_dcmd(instance, cmd);
/*
* Wait for cmd_status to change
*/
for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
rmb();
msleep(1);
}
if (frame_hdr->cmd_status == 0xff)
return -ETIME;
return 0;
return wait_and_poll(instance, cmd);
}
/**
@ -849,8 +865,7 @@ megasas_issue_blocked_cmd(struct megasas_instance *instance,
{
cmd->cmd_status = ENODATA;
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr, 0, instance->reg_set);
instance->instancet->issue_dcmd(instance, cmd);
wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA);
@ -894,8 +909,7 @@ megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
cmd->sync_cmd = 1;
cmd->cmd_status = 0xFF;
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr, 0, instance->reg_set);
instance->instancet->issue_dcmd(instance, cmd);
/*
* Wait for this cmd to complete
@ -1291,7 +1305,7 @@ megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
* Called by megasas_queue_command to find out if the command to be queued
* is a logical drive command
*/
static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
inline int megasas_is_ldio(struct scsi_cmnd *cmd)
{
if (!MEGASAS_IS_LOGICAL(cmd))
return 0;
@ -1551,15 +1565,44 @@ static int megasas_slave_alloc(struct scsi_device *sdev)
return 0;
}
static void megaraid_sas_kill_hba(struct megasas_instance *instance)
void megaraid_sas_kill_hba(struct megasas_instance *instance)
{
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
writel(MFI_STOP_ADP,
&instance->reg_set->reserved_0[0]);
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION)) {
writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
} else {
writel(MFI_STOP_ADP,
&instance->reg_set->inbound_doorbell);
writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell);
}
}
/**
* megasas_check_and_restore_queue_depth - Check if queue depth needs to be
* restored to max value
* @instance: Adapter soft state
*
*/
void
megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
{
unsigned long flags;
if (instance->flag & MEGASAS_FW_BUSY
&& time_after(jiffies, instance->last_time + 5 * HZ)
&& atomic_read(&instance->fw_outstanding) < 17) {
spin_lock_irqsave(instance->host->host_lock, flags);
instance->flag &= ~MEGASAS_FW_BUSY;
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
instance->host->can_queue =
instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
} else
instance->host->can_queue =
instance->max_fw_cmds - MEGASAS_INT_CMDS;
spin_unlock_irqrestore(instance->host->host_lock, flags);
}
}
@ -1613,24 +1656,7 @@ static void megasas_complete_cmd_dpc(unsigned long instance_addr)
/*
* Check if we can restore can_queue
*/
if (instance->flag & MEGASAS_FW_BUSY
&& time_after(jiffies, instance->last_time + 5 * HZ)
&& atomic_read(&instance->fw_outstanding) < 17) {
spin_lock_irqsave(instance->host->host_lock, flags);
instance->flag &= ~MEGASAS_FW_BUSY;
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
instance->host->can_queue =
instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
} else
instance->host->can_queue =
instance->max_fw_cmds - MEGASAS_INT_CMDS;
spin_unlock_irqrestore(instance->host->host_lock, flags);
}
megasas_check_and_restore_queue_depth(instance);
}
static void
@ -1808,7 +1834,7 @@ static int megasas_wait_for_outstanding(struct megasas_instance *instance)
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
writel(MFI_STOP_ADP,
&instance->reg_set->reserved_0[0]);
&instance->reg_set->doorbell);
} else {
writel(MFI_STOP_ADP,
&instance->reg_set->inbound_doorbell);
@ -1912,11 +1938,16 @@ static int megasas_reset_device(struct scsi_cmnd *scmd)
static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
{
int ret;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
/*
* First wait for all commands to complete
*/
ret = megasas_generic_reset(scmd);
if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION)
ret = megasas_reset_fusion(scmd->device->host);
else
ret = megasas_generic_reset(scmd);
return ret;
}
@ -2086,13 +2117,14 @@ megasas_complete_abort(struct megasas_instance *instance,
* an alternate status (as in the case of aborted
* commands)
*/
static void
void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status)
{
int exception = 0;
struct megasas_header *hdr = &cmd->frame->hdr;
unsigned long flags;
struct fusion_context *fusion = instance->ctrl_context;
/* flag for the retry reset */
cmd->retry_for_fw_reset = 0;
@ -2185,6 +2217,37 @@ megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
case MFI_CMD_SMP:
case MFI_CMD_STP:
case MFI_CMD_DCMD:
/* Check for LD map update */
if ((cmd->frame->dcmd.opcode == MR_DCMD_LD_MAP_GET_INFO) &&
(cmd->frame->dcmd.mbox.b[1] == 1)) {
spin_lock_irqsave(instance->host->host_lock, flags);
if (cmd->frame->hdr.cmd_status != 0) {
if (cmd->frame->hdr.cmd_status !=
MFI_STAT_NOT_FOUND)
printk(KERN_WARNING "megasas: map sync"
"failed, status = 0x%x.\n",
cmd->frame->hdr.cmd_status);
else {
megasas_return_cmd(instance, cmd);
spin_unlock_irqrestore(
instance->host->host_lock,
flags);
break;
}
} else
instance->map_id++;
megasas_return_cmd(instance, cmd);
if (MR_ValidateMapInfo(
fusion->ld_map[(instance->map_id & 1)],
fusion->load_balance_info))
fusion->fast_path_io = 1;
else
fusion->fast_path_io = 0;
megasas_sync_map_info(instance);
spin_unlock_irqrestore(instance->host->host_lock,
flags);
break;
}
if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) {
spin_lock_irqsave(&poll_aen_lock, flags);
@ -2523,7 +2586,7 @@ static irqreturn_t megasas_isr(int irq, void *devp)
* states, driver must take steps to bring it to ready state. Otherwise, it
* has to wait for the ready state.
*/
static int
int
megasas_transition_to_ready(struct megasas_instance* instance)
{
int i;
@ -2557,11 +2620,12 @@ megasas_transition_to_ready(struct megasas_instance* instance)
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_FUSION)) {
writel(
MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
&instance->reg_set->reserved_0[0]);
&instance->reg_set->doorbell);
} else {
writel(
MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
@ -2574,11 +2638,13 @@ megasas_transition_to_ready(struct megasas_instance* instance)
case MFI_STATE_BOOT_MESSAGE_PENDING:
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_FUSION)) {
writel(MFI_INIT_HOTPLUG,
&instance->reg_set->reserved_0[0]);
&instance->reg_set->doorbell);
} else
writel(MFI_INIT_HOTPLUG,
&instance->reg_set->inbound_doorbell);
@ -2595,9 +2661,23 @@ megasas_transition_to_ready(struct megasas_instance* instance)
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device
== PCI_DEVICE_ID_LSI_FUSION)) {
writel(MFI_RESET_FLAGS,
&instance->reg_set->reserved_0[0]);
&instance->reg_set->doorbell);
if (instance->pdev->device ==
PCI_DEVICE_ID_LSI_FUSION) {
for (i = 0; i < (10 * 1000); i += 20) {
if (readl(
&instance->
reg_set->
doorbell) & 1)
msleep(20);
else
break;
}
}
} else
writel(MFI_RESET_FLAGS,
&instance->reg_set->inbound_doorbell);
@ -2681,7 +2761,7 @@ megasas_transition_to_ready(struct megasas_instance* instance)
static void megasas_teardown_frame_pool(struct megasas_instance *instance)
{
int i;
u32 max_cmd = instance->max_fw_cmds;
u32 max_cmd = instance->max_mfi_cmds;
struct megasas_cmd *cmd;
if (!instance->frame_dma_pool)
@ -2732,7 +2812,7 @@ static int megasas_create_frame_pool(struct megasas_instance *instance)
u32 frame_count;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
max_cmd = instance->max_mfi_cmds;
/*
* Size of our frame is 64 bytes for MFI frame, followed by max SG
@ -2819,14 +2899,15 @@ static int megasas_create_frame_pool(struct megasas_instance *instance)
* megasas_free_cmds - Free all the cmds in the free cmd pool
* @instance: Adapter soft state
*/
static void megasas_free_cmds(struct megasas_instance *instance)
void megasas_free_cmds(struct megasas_instance *instance)
{
int i;
/* First free the MFI frame pool */
megasas_teardown_frame_pool(instance);
/* Free all the commands in the cmd_list */
for (i = 0; i < instance->max_fw_cmds; i++)
for (i = 0; i < instance->max_mfi_cmds; i++)
kfree(instance->cmd_list[i]);
/* Free the cmd_list buffer itself */
@ -2854,14 +2935,14 @@ static void megasas_free_cmds(struct megasas_instance *instance)
* This array is used only to look up the megasas_cmd given the context. The
* free commands themselves are maintained in a linked list called cmd_pool.
*/
static int megasas_alloc_cmds(struct megasas_instance *instance)
int megasas_alloc_cmds(struct megasas_instance *instance)
{
int i;
int j;
u32 max_cmd;
struct megasas_cmd *cmd;
max_cmd = instance->max_fw_cmds;
max_cmd = instance->max_mfi_cmds;
/*
* instance->cmd_list is an array of struct megasas_cmd pointers.
@ -2875,6 +2956,7 @@ static int megasas_alloc_cmds(struct megasas_instance *instance)
return -ENOMEM;
}
memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd);
for (i = 0; i < max_cmd; i++) {
instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
@ -3288,6 +3370,7 @@ megasas_init_adapter_mfi(struct megasas_instance *instance)
* does not exceed max cmds that the FW can support
*/
instance->max_fw_cmds = instance->max_fw_cmds-1;
instance->max_mfi_cmds = instance->max_fw_cmds;
instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
0x10;
/*
@ -3381,6 +3464,9 @@ static int megasas_init_fw(struct megasas_instance *instance)
reg_set = instance->reg_set;
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
instance->instancet = &megasas_instance_template_fusion;
break;
case PCI_DEVICE_ID_LSI_SAS1078R:
case PCI_DEVICE_ID_LSI_SAS1078DE:
instance->instancet = &megasas_instance_template_ppc;
@ -3482,9 +3568,10 @@ fail_ready_state:
*/
static void megasas_release_mfi(struct megasas_instance *instance)
{
u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
pci_free_consistent(instance->pdev, reply_q_sz,
if (instance->reply_queue)
pci_free_consistent(instance->pdev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
megasas_free_cmds(instance);
@ -3678,8 +3765,7 @@ megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
/*
* Issue the aen registration frame
*/
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr, 0, instance->reg_set);
instance->instancet->issue_dcmd(instance, cmd);
return 0;
}
@ -3756,12 +3842,18 @@ static int megasas_io_attach(struct megasas_instance *instance)
}
host->max_sectors = instance->max_sectors_per_req;
host->cmd_per_lun = 128;
host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
host->max_channel = MEGASAS_MAX_CHANNELS - 1;
host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
host->max_lun = MEGASAS_MAX_LUN;
host->max_cmd_len = 16;
/* Fusion only supports host reset */
if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) {
host->hostt->eh_device_reset_handler = NULL;
host->hostt->eh_bus_reset_handler = NULL;
}
/*
* Notify the mid-layer about the new controller
*/
@ -3846,20 +3938,45 @@ megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
instance = (struct megasas_instance *)host->hostdata;
memset(instance, 0, sizeof(*instance));
atomic_set( &instance->fw_reset_no_pci_access, 0 );
instance->pdev = pdev;
instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
&instance->producer_h);
instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
&instance->consumer_h);
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
{
struct fusion_context *fusion;
if (!instance->producer || !instance->consumer) {
printk(KERN_DEBUG "megasas: Failed to allocate memory for "
"producer, consumer\n");
goto fail_alloc_dma_buf;
instance->ctrl_context =
kzalloc(sizeof(struct fusion_context), GFP_KERNEL);
if (!instance->ctrl_context) {
printk(KERN_DEBUG "megasas: Failed to allocate "
"memory for Fusion context info\n");
goto fail_alloc_dma_buf;
}
fusion = instance->ctrl_context;
INIT_LIST_HEAD(&fusion->cmd_pool);
spin_lock_init(&fusion->cmd_pool_lock);
}
break;
default: /* For all other supported controllers */
instance->producer =
pci_alloc_consistent(pdev, sizeof(u32),
&instance->producer_h);
instance->consumer =
pci_alloc_consistent(pdev, sizeof(u32),
&instance->consumer_h);
if (!instance->producer || !instance->consumer) {
printk(KERN_DEBUG "megasas: Failed to allocate"
"memory for producer, consumer\n");
goto fail_alloc_dma_buf;
}
*instance->producer = 0;
*instance->consumer = 0;
break;
}
*instance->producer = 0;
*instance->consumer = 0;
megasas_poll_wait_aen = 0;
instance->flag_ieee = 0;
instance->ev = NULL;
@ -3895,11 +4012,11 @@ megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
spin_lock_init(&poll_aen_lock);
mutex_init(&instance->aen_mutex);
mutex_init(&instance->reset_mutex);
/*
* Initialize PCI related and misc parameters
*/
instance->pdev = pdev;
instance->host = host;
instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
instance->init_id = MEGASAS_DEFAULT_INIT_ID;
@ -3917,7 +4034,10 @@ megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
instance->last_time = 0;
instance->disableOnlineCtrlReset = 1;
INIT_WORK(&instance->work_init, process_fw_state_change_wq);
if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION)
INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
else
INIT_WORK(&instance->work_init, process_fw_state_change_wq);
/*
* Initialize MFI Firmware
@ -4000,6 +4120,8 @@ megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
megasas_release_mfi(instance);
} else {
megasas_release_fusion(instance);
}
if (instance->consumer)
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
@ -4072,7 +4194,9 @@ static void megasas_shutdown_controller(struct megasas_instance *instance,
if (instance->aen_cmd)
megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
if (instance->map_update_cmd)
megasas_issue_blocked_abort_cmd(instance,
instance->map_update_cmd);
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
@ -4177,9 +4301,6 @@ megasas_resume(struct pci_dev *pdev)
* Initialize MFI Firmware
*/
*instance->producer = 0;
*instance->consumer = 0;
atomic_set(&instance->fw_outstanding, 0);
/*
@ -4188,11 +4309,29 @@ megasas_resume(struct pci_dev *pdev)
if (megasas_transition_to_ready(instance))
goto fail_ready_state;
if (megasas_issue_init_mfi(instance))
goto fail_init_mfi;
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
{
megasas_reset_reply_desc(instance);
if (megasas_ioc_init_fusion(instance)) {
megasas_free_cmds(instance);
megasas_free_cmds_fusion(instance);
goto fail_init_mfi;
}
if (!megasas_get_map_info(instance))
megasas_sync_map_info(instance);
}
break;
default:
*instance->producer = 0;
*instance->consumer = 0;
if (megasas_issue_init_mfi(instance))
goto fail_init_mfi;
break;
}
tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
(unsigned long)instance);
tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
(unsigned long)instance);
/* Now re-enable MSI-X */
if (instance->msi_flag)
@ -4261,10 +4400,12 @@ static void __devexit megasas_detach_one(struct pci_dev *pdev)
int i;
struct Scsi_Host *host;
struct megasas_instance *instance;
struct fusion_context *fusion;
instance = pci_get_drvdata(pdev);
instance->unload = 1;
host = instance->host;
fusion = instance->ctrl_context;
if (poll_mode_io)
del_timer_sync(&instance->io_completion_timer);
@ -4306,16 +4447,32 @@ static void __devexit megasas_detach_one(struct pci_dev *pdev)
if (instance->msi_flag)
pci_disable_msix(instance->pdev);
megasas_release_mfi(instance);
pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
instance->evt_detail, instance->evt_detail_h);
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
instance->consumer_h);
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
megasas_release_fusion(instance);
for (i = 0; i < 2 ; i++)
if (fusion->ld_map[i])
dma_free_coherent(&instance->pdev->dev,
fusion->map_sz,
fusion->ld_map[i],
fusion->
ld_map_phys[i]);
kfree(instance->ctrl_context);
break;
default:
megasas_release_mfi(instance);
pci_free_consistent(pdev,
sizeof(struct megasas_evt_detail),
instance->evt_detail,
instance->evt_detail_h);
pci_free_consistent(pdev, sizeof(u32),
instance->producer,
instance->producer_h);
pci_free_consistent(pdev, sizeof(u32),
instance->consumer,
instance->consumer_h);
break;
}
scsi_host_put(host);
@ -5079,6 +5236,7 @@ megasas_aen_polling(struct work_struct *work)
break;
case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
case MR_EVT_FOREIGN_CFG_IMPORTED:
case MR_EVT_LD_STATE_CHANGE:
doscan = 1;
break;
default:

View File

@ -0,0 +1,516 @@
/*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2009-2011 LSI Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* FILE: megaraid_sas_fp.c
*
* Authors: LSI Corporation
* Sumant Patro
* Varad Talamacki
* Manoj Jose
*
* Send feedback to: <megaraidlinux@lsi.com>
*
* Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
* ATTN: Linuxraid
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/smp_lock.h>
#include <linux/uio.h>
#include <linux/uaccess.h>
#include <linux/fs.h>
#include <linux/compat.h>
#include <linux/blkdev.h>
#include <linux/poll.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "megaraid_sas_fusion.h"
#include <asm/div64.h>
#define ABS_DIFF(a, b) (((a) > (b)) ? ((a) - (b)) : ((b) - (a)))
#define MR_LD_STATE_OPTIMAL 3
#define FALSE 0
#define TRUE 1
/* Prototypes */
void
mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map,
struct LD_LOAD_BALANCE_INFO *lbInfo);
u32 mega_mod64(u64 dividend, u32 divisor)
{
u64 d;
u32 remainder;
if (!divisor)
printk(KERN_ERR "megasas : DIVISOR is zero, in div fn\n");
d = dividend;
remainder = do_div(d, divisor);
return remainder;
}
/**
* @param dividend : Dividend
* @param divisor : Divisor
*
* @return quotient
**/
u64 mega_div64_32(uint64_t dividend, uint32_t divisor)
{
u32 remainder;
u64 d;
if (!divisor)
printk(KERN_ERR "megasas : DIVISOR is zero in mod fn\n");
d = dividend;
remainder = do_div(d, divisor);
return d;
}
struct MR_LD_RAID *MR_LdRaidGet(u32 ld, struct MR_FW_RAID_MAP_ALL *map)
{
return &map->raidMap.ldSpanMap[ld].ldRaid;
}
static struct MR_SPAN_BLOCK_INFO *MR_LdSpanInfoGet(u32 ld,
struct MR_FW_RAID_MAP_ALL
*map)
{
return &map->raidMap.ldSpanMap[ld].spanBlock[0];
}
static u8 MR_LdDataArmGet(u32 ld, u32 armIdx, struct MR_FW_RAID_MAP_ALL *map)
{
return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
}
static u16 MR_ArPdGet(u32 ar, u32 arm, struct MR_FW_RAID_MAP_ALL *map)
{
return map->raidMap.arMapInfo[ar].pd[arm];
}
static u16 MR_LdSpanArrayGet(u32 ld, u32 span, struct MR_FW_RAID_MAP_ALL *map)
{
return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef;
}
static u16 MR_PdDevHandleGet(u32 pd, struct MR_FW_RAID_MAP_ALL *map)
{
return map->raidMap.devHndlInfo[pd].curDevHdl;
}
u16 MR_GetLDTgtId(u32 ld, struct MR_FW_RAID_MAP_ALL *map)
{
return map->raidMap.ldSpanMap[ld].ldRaid.targetId;
}
u16 MR_TargetIdToLdGet(u32 ldTgtId, struct MR_FW_RAID_MAP_ALL *map)
{
return map->raidMap.ldTgtIdToLd[ldTgtId];
}
static struct MR_LD_SPAN *MR_LdSpanPtrGet(u32 ld, u32 span,
struct MR_FW_RAID_MAP_ALL *map)
{
return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
}
/*
* This function will validate Map info data provided by FW
*/
u8 MR_ValidateMapInfo(struct MR_FW_RAID_MAP_ALL *map,
struct LD_LOAD_BALANCE_INFO *lbInfo)
{
struct MR_FW_RAID_MAP *pFwRaidMap = &map->raidMap;
if (pFwRaidMap->totalSize !=
(sizeof(struct MR_FW_RAID_MAP) -sizeof(struct MR_LD_SPAN_MAP) +
(sizeof(struct MR_LD_SPAN_MAP) *pFwRaidMap->ldCount))) {
printk(KERN_ERR "megasas: map info structure size 0x%x is not matching with ld count\n",
(unsigned int)((sizeof(struct MR_FW_RAID_MAP) -
sizeof(struct MR_LD_SPAN_MAP)) +
(sizeof(struct MR_LD_SPAN_MAP) *
pFwRaidMap->ldCount)));
printk(KERN_ERR "megasas: span map %x, pFwRaidMap->totalSize "
": %x\n", (unsigned int)sizeof(struct MR_LD_SPAN_MAP),
pFwRaidMap->totalSize);
return 0;
}
mr_update_load_balance_params(map, lbInfo);
return 1;
}
u32 MR_GetSpanBlock(u32 ld, u64 row, u64 *span_blk,
struct MR_FW_RAID_MAP_ALL *map, int *div_error)
{
struct MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
struct MR_QUAD_ELEMENT *quad;
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
u32 span, j;
for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
quad = &pSpanBlock->block_span_info.quad[j];
if (quad->diff == 0) {
*div_error = 1;
return span;
}
if (quad->logStart <= row && row <= quad->logEnd &&
(mega_mod64(row-quad->logStart, quad->diff)) == 0) {
if (span_blk != NULL) {
u64 blk, debugBlk;
blk =
mega_div64_32(
(row-quad->logStart),
quad->diff);
debugBlk = blk;
blk = (blk + quad->offsetInSpan) <<
raid->stripeShift;
*span_blk = blk;
}
return span;
}
}
}
return span;
}
/*
******************************************************************************
*
* This routine calculates the arm, span and block for the specified stripe and
* reference in stripe.
*
* Inputs :
*
* ld - Logical drive number
* stripRow - Stripe number
* stripRef - Reference in stripe
*
* Outputs :
*
* span - Span number
* block - Absolute Block number in the physical disk
*/
u8 MR_GetPhyParams(u32 ld, u64 stripRow, u16 stripRef, u64 *pdBlock,
u16 *pDevHandle, struct RAID_CONTEXT *pRAID_Context,
struct MR_FW_RAID_MAP_ALL *map)
{
struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
u32 pd, arRef;
u8 physArm, span;
u64 row;
u8 retval = TRUE;
int error_code = 0;
row = mega_div64_32(stripRow, raid->rowDataSize);
if (raid->level == 6) {
/* logical arm within row */
u32 logArm = mega_mod64(stripRow, raid->rowDataSize);
u32 rowMod, armQ, arm;
if (raid->rowSize == 0)
return FALSE;
/* get logical row mod */
rowMod = mega_mod64(row, raid->rowSize);
armQ = raid->rowSize-1-rowMod; /* index of Q drive */
arm = armQ+1+logArm; /* data always logically follows Q */
if (arm >= raid->rowSize) /* handle wrap condition */
arm -= raid->rowSize;
physArm = (u8)arm;
} else {
if (raid->modFactor == 0)
return FALSE;
physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow,
raid->modFactor),
map);
}
if (raid->spanDepth == 1) {
span = 0;
*pdBlock = row << raid->stripeShift;
} else {
span = (u8)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
if (error_code == 1)
return FALSE;
}
/* Get the array on which this span is present */
arRef = MR_LdSpanArrayGet(ld, span, map);
pd = MR_ArPdGet(arRef, physArm, map); /* Get the pd */
if (pd != MR_PD_INVALID)
/* Get dev handle from Pd. */
*pDevHandle = MR_PdDevHandleGet(pd, map);
else {
*pDevHandle = MR_PD_INVALID; /* set dev handle as invalid. */
if (raid->level >= 5)
pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
else if (raid->level == 1) {
/* Get alternate Pd. */
pd = MR_ArPdGet(arRef, physArm + 1, map);
if (pd != MR_PD_INVALID)
/* Get dev handle from Pd */
*pDevHandle = MR_PdDevHandleGet(pd, map);
}
retval = FALSE;
}
*pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) |
physArm;
return retval;
}
/*
******************************************************************************
*
* MR_BuildRaidContext function
*
* This function will initiate command processing. The start/end row and strip
* information is calculated then the lock is acquired.
* This function will return 0 if region lock was acquired OR return num strips
*/
u8
MR_BuildRaidContext(struct IO_REQUEST_INFO *io_info,
struct RAID_CONTEXT *pRAID_Context,
struct MR_FW_RAID_MAP_ALL *map)
{
struct MR_LD_RAID *raid;
u32 ld, stripSize, stripe_mask;
u64 endLba, endStrip, endRow, start_row, start_strip;
u64 regStart;
u32 regSize;
u8 num_strips, numRows;
u16 ref_in_start_stripe, ref_in_end_stripe;
u64 ldStartBlock;
u32 numBlocks, ldTgtId;
u8 isRead;
u8 retval = 0;
ldStartBlock = io_info->ldStartBlock;
numBlocks = io_info->numBlocks;
ldTgtId = io_info->ldTgtId;
isRead = io_info->isRead;
ld = MR_TargetIdToLdGet(ldTgtId, map);
raid = MR_LdRaidGet(ld, map);
stripSize = 1 << raid->stripeShift;
stripe_mask = stripSize-1;
/*
* calculate starting row and stripe, and number of strips and rows
*/
start_strip = ldStartBlock >> raid->stripeShift;
ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask);
endLba = ldStartBlock + numBlocks - 1;
ref_in_end_stripe = (u16)(endLba & stripe_mask);
endStrip = endLba >> raid->stripeShift;
num_strips = (u8)(endStrip - start_strip + 1); /* End strip */
if (raid->rowDataSize == 0)
return FALSE;
start_row = mega_div64_32(start_strip, raid->rowDataSize);
endRow = mega_div64_32(endStrip, raid->rowDataSize);
numRows = (u8)(endRow - start_row + 1);
/*
* calculate region info.
*/
/* assume region is at the start of the first row */
regStart = start_row << raid->stripeShift;
/* assume this IO needs the full row - we'll adjust if not true */
regSize = stripSize;
/* If IO spans more than 1 strip, fp is not possible
FP is not possible for writes on non-0 raid levels
FP is not possible if LD is not capable */
if (num_strips > 1 || (!isRead && raid->level != 0) ||
!raid->capability.fpCapable) {
io_info->fpOkForIo = FALSE;
} else {
io_info->fpOkForIo = TRUE;
}
if (numRows == 1) {
/* single-strip IOs can always lock only the data needed */
if (num_strips == 1) {
regStart += ref_in_start_stripe;
regSize = numBlocks;
}
/* multi-strip IOs always need to full stripe locked */
} else {
if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
/* If the start strip is the last in the start row */
regStart += ref_in_start_stripe;
regSize = stripSize - ref_in_start_stripe;
/* initialize count to sectors from startref to end
of strip */
}
if (numRows > 2)
/* Add complete rows in the middle of the transfer */
regSize += (numRows-2) << raid->stripeShift;
/* if IO ends within first strip of last row */
if (endStrip == endRow*raid->rowDataSize)
regSize += ref_in_end_stripe+1;
else
regSize += stripSize;
}
pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ :
raid->regTypeReqOnWrite;
pRAID_Context->VirtualDiskTgtId = raid->targetId;
pRAID_Context->regLockRowLBA = regStart;
pRAID_Context->regLockLength = regSize;
pRAID_Context->configSeqNum = raid->seqNum;
/*Get Phy Params only if FP capable, or else leave it to MR firmware
to do the calculation.*/
if (io_info->fpOkForIo) {
retval = MR_GetPhyParams(ld, start_strip, ref_in_start_stripe,
&io_info->pdBlock,
&io_info->devHandle, pRAID_Context,
map);
/* If IO on an invalid Pd, then FP i snot possible */
if (io_info->devHandle == MR_PD_INVALID)
io_info->fpOkForIo = FALSE;
return retval;
} else if (isRead) {
uint stripIdx;
for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
if (!MR_GetPhyParams(ld, start_strip + stripIdx,
ref_in_start_stripe,
&io_info->pdBlock,
&io_info->devHandle,
pRAID_Context, map))
return TRUE;
}
}
return TRUE;
}
void
mr_update_load_balance_params(struct MR_FW_RAID_MAP_ALL *map,
struct LD_LOAD_BALANCE_INFO *lbInfo)
{
int ldCount;
u16 ld;
struct MR_LD_RAID *raid;
for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
ld = MR_TargetIdToLdGet(ldCount, map);
if (ld >= MAX_LOGICAL_DRIVES) {
lbInfo[ldCount].loadBalanceFlag = 0;
continue;
}
raid = MR_LdRaidGet(ld, map);
/* Two drive Optimal RAID 1 */
if ((raid->level == 1) && (raid->rowSize == 2) &&
(raid->spanDepth == 1) && raid->ldState ==
MR_LD_STATE_OPTIMAL) {
u32 pd, arRef;
lbInfo[ldCount].loadBalanceFlag = 1;
/* Get the array on which this span is present */
arRef = MR_LdSpanArrayGet(ld, 0, map);
/* Get the Pd */
pd = MR_ArPdGet(arRef, 0, map);
/* Get dev handle from Pd */
lbInfo[ldCount].raid1DevHandle[0] =
MR_PdDevHandleGet(pd, map);
/* Get the Pd */
pd = MR_ArPdGet(arRef, 1, map);
/* Get the dev handle from Pd */
lbInfo[ldCount].raid1DevHandle[1] =
MR_PdDevHandleGet(pd, map);
} else
lbInfo[ldCount].loadBalanceFlag = 0;
}
}
u8 megasas_get_best_arm(struct LD_LOAD_BALANCE_INFO *lbInfo, u8 arm, u64 block,
u32 count)
{
u16 pend0, pend1;
u64 diff0, diff1;
u8 bestArm;
/* get the pending cmds for the data and mirror arms */
pend0 = atomic_read(&lbInfo->scsi_pending_cmds[0]);
pend1 = atomic_read(&lbInfo->scsi_pending_cmds[1]);
/* Determine the disk whose head is nearer to the req. block */
diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[0]);
diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[1]);
bestArm = (diff0 <= diff1 ? 0 : 1);
if ((bestArm == arm && pend0 > pend1 + 16) ||
(bestArm != arm && pend1 > pend0 + 16))
bestArm ^= 1;
/* Update the last accessed block on the correct pd */
lbInfo->last_accessed_block[bestArm] = block + count - 1;
return bestArm;
}
u16 get_updated_dev_handle(struct LD_LOAD_BALANCE_INFO *lbInfo,
struct IO_REQUEST_INFO *io_info)
{
u8 arm, old_arm;
u16 devHandle;
old_arm = lbInfo->raid1DevHandle[0] == io_info->devHandle ? 0 : 1;
/* get best new arm */
arm = megasas_get_best_arm(lbInfo, old_arm, io_info->ldStartBlock,
io_info->numBlocks);
devHandle = lbInfo->raid1DevHandle[arm];
atomic_inc(&lbInfo->scsi_pending_cmds[arm]);
return devHandle;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,695 @@
/*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2009-2011 LSI Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* FILE: megaraid_sas_fusion.h
*
* Authors: LSI Corporation
* Manoj Jose
* Sumant Patro
*
* Send feedback to: <megaraidlinux@lsi.com>
*
* Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
* ATTN: Linuxraid
*/
#ifndef _MEGARAID_SAS_FUSION_H_
#define _MEGARAID_SAS_FUSION_H_
/* Fusion defines */
#define MEGASAS_MAX_SZ_CHAIN_FRAME 1024
#define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000009)
#define MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE 256
#define MEGASAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST 0xF0
#define MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST 0xF1
#define MEGASAS_LOAD_BALANCE_FLAG 0x1
#define MEGASAS_DCMD_MBOX_PEND_FLAG 0x1
#define HOST_DIAG_WRITE_ENABLE 0x80
#define HOST_DIAG_RESET_ADAPTER 0x4
#define MEGASAS_FUSION_MAX_RESET_TRIES 3
/* T10 PI defines */
#define MR_PROT_INFO_TYPE_CONTROLLER 0x8
#define MEGASAS_SCSI_VARIABLE_LENGTH_CMD 0x7f
#define MEGASAS_SCSI_SERVICE_ACTION_READ32 0x9
#define MEGASAS_SCSI_SERVICE_ACTION_WRITE32 0xB
#define MEGASAS_SCSI_ADDL_CDB_LEN 0x18
#define MEGASAS_RD_WR_PROTECT_CHECK_ALL 0x20
#define MEGASAS_RD_WR_PROTECT_CHECK_NONE 0x60
#define MEGASAS_EEDPBLOCKSIZE 512
/*
* Raid context flags
*/
#define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT 0x4
#define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_MASK 0x30
enum MR_RAID_FLAGS_IO_SUB_TYPE {
MR_RAID_FLAGS_IO_SUB_TYPE_NONE = 0,
MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD = 1,
};
/*
* Request descriptor types
*/
#define MEGASAS_REQ_DESCRIPT_FLAGS_LD_IO 0x7
#define MEGASAS_REQ_DESCRIPT_FLAGS_MFA 0x1
#define MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT 1
#define MEGASAS_FP_CMD_LEN 16
#define MEGASAS_FUSION_IN_RESET 0
/*
* Raid Context structure which describes MegaRAID specific IO Paramenters
* This resides at offset 0x60 where the SGL normally starts in MPT IO Frames
*/
struct RAID_CONTEXT {
u16 resvd0;
u16 timeoutValue;
u8 regLockFlags;
u8 resvd1;
u16 VirtualDiskTgtId;
u64 regLockRowLBA;
u32 regLockLength;
u16 nextLMId;
u8 exStatus;
u8 status;
u8 RAIDFlags;
u8 numSGE;
u16 configSeqNum;
u8 spanArm;
u8 resvd2[3];
};
#define RAID_CTX_SPANARM_ARM_SHIFT (0)
#define RAID_CTX_SPANARM_ARM_MASK (0x1f)
#define RAID_CTX_SPANARM_SPAN_SHIFT (5)
#define RAID_CTX_SPANARM_SPAN_MASK (0xE0)
/*
* define region lock types
*/
enum REGION_TYPE {
REGION_TYPE_UNUSED = 0,
REGION_TYPE_SHARED_READ = 1,
REGION_TYPE_SHARED_WRITE = 2,
REGION_TYPE_EXCLUSIVE = 3,
};
/* MPI2 defines */
#define MPI2_FUNCTION_IOC_INIT (0x02) /* IOC Init */
#define MPI2_WHOINIT_HOST_DRIVER (0x04)
#define MPI2_VERSION_MAJOR (0x02)
#define MPI2_VERSION_MINOR (0x00)
#define MPI2_VERSION_MAJOR_MASK (0xFF00)
#define MPI2_VERSION_MAJOR_SHIFT (8)
#define MPI2_VERSION_MINOR_MASK (0x00FF)
#define MPI2_VERSION_MINOR_SHIFT (0)
#define MPI2_VERSION ((MPI2_VERSION_MAJOR << MPI2_VERSION_MAJOR_SHIFT) | \
MPI2_VERSION_MINOR)
#define MPI2_HEADER_VERSION_UNIT (0x10)
#define MPI2_HEADER_VERSION_DEV (0x00)
#define MPI2_HEADER_VERSION_UNIT_MASK (0xFF00)
#define MPI2_HEADER_VERSION_UNIT_SHIFT (8)
#define MPI2_HEADER_VERSION_DEV_MASK (0x00FF)
#define MPI2_HEADER_VERSION_DEV_SHIFT (0)
#define MPI2_HEADER_VERSION ((MPI2_HEADER_VERSION_UNIT << 8) | \
MPI2_HEADER_VERSION_DEV)
#define MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03)
#define MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG (0x8000)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG (0x0400)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP (0x0003)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG (0x0200)
#define MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD (0x0100)
#define MPI2_SCSIIO_EEDPFLAGS_INSERT_OP (0x0004)
#define MPI2_FUNCTION_SCSI_IO_REQUEST (0x00) /* SCSI IO */
#define MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY (0x06)
#define MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO (0x00)
#define MPI2_SGE_FLAGS_64_BIT_ADDRESSING (0x02)
#define MPI2_SCSIIO_CONTROL_WRITE (0x01000000)
#define MPI2_SCSIIO_CONTROL_READ (0x02000000)
#define MPI2_REQ_DESCRIPT_FLAGS_TYPE_MASK (0x0E)
#define MPI2_RPY_DESCRIPT_FLAGS_UNUSED (0x0F)
#define MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS (0x00)
#define MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK (0x0F)
#define MPI2_WRSEQ_FLUSH_KEY_VALUE (0x0)
#define MPI2_WRITE_SEQUENCE_OFFSET (0x00000004)
#define MPI2_WRSEQ_1ST_KEY_VALUE (0xF)
#define MPI2_WRSEQ_2ND_KEY_VALUE (0x4)
#define MPI2_WRSEQ_3RD_KEY_VALUE (0xB)
#define MPI2_WRSEQ_4TH_KEY_VALUE (0x2)
#define MPI2_WRSEQ_5TH_KEY_VALUE (0x7)
#define MPI2_WRSEQ_6TH_KEY_VALUE (0xD)
struct MPI25_IEEE_SGE_CHAIN64 {
u64 Address;
u32 Length;
u16 Reserved1;
u8 NextChainOffset;
u8 Flags;
};
struct MPI2_SGE_SIMPLE_UNION {
u32 FlagsLength;
union {
u32 Address32;
u64 Address64;
} u;
};
struct MPI2_SCSI_IO_CDB_EEDP32 {
u8 CDB[20]; /* 0x00 */
u32 PrimaryReferenceTag; /* 0x14 */
u16 PrimaryApplicationTag; /* 0x18 */
u16 PrimaryApplicationTagMask; /* 0x1A */
u32 TransferLength; /* 0x1C */
};
struct MPI2_SGE_CHAIN_UNION {
u16 Length;
u8 NextChainOffset;
u8 Flags;
union {
u32 Address32;
u64 Address64;
} u;
};
struct MPI2_IEEE_SGE_SIMPLE32 {
u32 Address;
u32 FlagsLength;
};
struct MPI2_IEEE_SGE_CHAIN32 {
u32 Address;
u32 FlagsLength;
};
struct MPI2_IEEE_SGE_SIMPLE64 {
u64 Address;
u32 Length;
u16 Reserved1;
u8 Reserved2;
u8 Flags;
};
struct MPI2_IEEE_SGE_CHAIN64 {
u64 Address;
u32 Length;
u16 Reserved1;
u8 Reserved2;
u8 Flags;
};
union MPI2_IEEE_SGE_SIMPLE_UNION {
struct MPI2_IEEE_SGE_SIMPLE32 Simple32;
struct MPI2_IEEE_SGE_SIMPLE64 Simple64;
};
union MPI2_IEEE_SGE_CHAIN_UNION {
struct MPI2_IEEE_SGE_CHAIN32 Chain32;
struct MPI2_IEEE_SGE_CHAIN64 Chain64;
};
union MPI2_SGE_IO_UNION {
struct MPI2_SGE_SIMPLE_UNION MpiSimple;
struct MPI2_SGE_CHAIN_UNION MpiChain;
union MPI2_IEEE_SGE_SIMPLE_UNION IeeeSimple;
union MPI2_IEEE_SGE_CHAIN_UNION IeeeChain;
};
union MPI2_SCSI_IO_CDB_UNION {
u8 CDB32[32];
struct MPI2_SCSI_IO_CDB_EEDP32 EEDP32;
struct MPI2_SGE_SIMPLE_UNION SGE;
};
/*
* RAID SCSI IO Request Message
* Total SGE count will be one less than _MPI2_SCSI_IO_REQUEST
*/
struct MPI2_RAID_SCSI_IO_REQUEST {
u16 DevHandle; /* 0x00 */
u8 ChainOffset; /* 0x02 */
u8 Function; /* 0x03 */
u16 Reserved1; /* 0x04 */
u8 Reserved2; /* 0x06 */
u8 MsgFlags; /* 0x07 */
u8 VP_ID; /* 0x08 */
u8 VF_ID; /* 0x09 */
u16 Reserved3; /* 0x0A */
u32 SenseBufferLowAddress; /* 0x0C */
u16 SGLFlags; /* 0x10 */
u8 SenseBufferLength; /* 0x12 */
u8 Reserved4; /* 0x13 */
u8 SGLOffset0; /* 0x14 */
u8 SGLOffset1; /* 0x15 */
u8 SGLOffset2; /* 0x16 */
u8 SGLOffset3; /* 0x17 */
u32 SkipCount; /* 0x18 */
u32 DataLength; /* 0x1C */
u32 BidirectionalDataLength; /* 0x20 */
u16 IoFlags; /* 0x24 */
u16 EEDPFlags; /* 0x26 */
u32 EEDPBlockSize; /* 0x28 */
u32 SecondaryReferenceTag; /* 0x2C */
u16 SecondaryApplicationTag; /* 0x30 */
u16 ApplicationTagTranslationMask; /* 0x32 */
u8 LUN[8]; /* 0x34 */
u32 Control; /* 0x3C */
union MPI2_SCSI_IO_CDB_UNION CDB; /* 0x40 */
struct RAID_CONTEXT RaidContext; /* 0x60 */
union MPI2_SGE_IO_UNION SGL; /* 0x80 */
};
/*
* MPT RAID MFA IO Descriptor.
*/
struct MEGASAS_RAID_MFA_IO_REQUEST_DESCRIPTOR {
u32 RequestFlags:8;
u32 MessageAddress1:24; /* bits 31:8*/
u32 MessageAddress2; /* bits 61:32 */
};
/* Default Request Descriptor */
struct MPI2_DEFAULT_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u16 LMID; /* 0x04 */
u16 DescriptorTypeDependent; /* 0x06 */
};
/* High Priority Request Descriptor */
struct MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u16 LMID; /* 0x04 */
u16 Reserved1; /* 0x06 */
};
/* SCSI IO Request Descriptor */
struct MPI2_SCSI_IO_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u16 LMID; /* 0x04 */
u16 DevHandle; /* 0x06 */
};
/* SCSI Target Request Descriptor */
struct MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u16 LMID; /* 0x04 */
u16 IoIndex; /* 0x06 */
};
/* RAID Accelerator Request Descriptor */
struct MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR {
u8 RequestFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u16 LMID; /* 0x04 */
u16 Reserved; /* 0x06 */
};
/* union of Request Descriptors */
union MEGASAS_REQUEST_DESCRIPTOR_UNION {
struct MPI2_DEFAULT_REQUEST_DESCRIPTOR Default;
struct MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR HighPriority;
struct MPI2_SCSI_IO_REQUEST_DESCRIPTOR SCSIIO;
struct MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR SCSITarget;
struct MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR RAIDAccelerator;
struct MEGASAS_RAID_MFA_IO_REQUEST_DESCRIPTOR MFAIo;
union {
struct {
u32 low;
u32 high;
} u;
u64 Words;
};
};
/* Default Reply Descriptor */
struct MPI2_DEFAULT_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 DescriptorTypeDependent1; /* 0x02 */
u32 DescriptorTypeDependent2; /* 0x04 */
};
/* Address Reply Descriptor */
struct MPI2_ADDRESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u32 ReplyFrameAddress; /* 0x04 */
};
/* SCSI IO Success Reply Descriptor */
struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u16 TaskTag; /* 0x04 */
u16 Reserved1; /* 0x06 */
};
/* TargetAssist Success Reply Descriptor */
struct MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u8 SequenceNumber; /* 0x04 */
u8 Reserved1; /* 0x05 */
u16 IoIndex; /* 0x06 */
};
/* Target Command Buffer Reply Descriptor */
struct MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u8 VP_ID; /* 0x02 */
u8 Flags; /* 0x03 */
u16 InitiatorDevHandle; /* 0x04 */
u16 IoIndex; /* 0x06 */
};
/* RAID Accelerator Success Reply Descriptor */
struct MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR {
u8 ReplyFlags; /* 0x00 */
u8 MSIxIndex; /* 0x01 */
u16 SMID; /* 0x02 */
u32 Reserved; /* 0x04 */
};
/* union of Reply Descriptors */
union MPI2_REPLY_DESCRIPTORS_UNION {
struct MPI2_DEFAULT_REPLY_DESCRIPTOR Default;
struct MPI2_ADDRESS_REPLY_DESCRIPTOR AddressReply;
struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR SCSIIOSuccess;
struct MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR TargetAssistSuccess;
struct MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR TargetCommandBuffer;
struct MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR
RAIDAcceleratorSuccess;
u64 Words;
};
/* IOCInit Request message */
struct MPI2_IOC_INIT_REQUEST {
u8 WhoInit; /* 0x00 */
u8 Reserved1; /* 0x01 */
u8 ChainOffset; /* 0x02 */
u8 Function; /* 0x03 */
u16 Reserved2; /* 0x04 */
u8 Reserved3; /* 0x06 */
u8 MsgFlags; /* 0x07 */
u8 VP_ID; /* 0x08 */
u8 VF_ID; /* 0x09 */
u16 Reserved4; /* 0x0A */
u16 MsgVersion; /* 0x0C */
u16 HeaderVersion; /* 0x0E */
u32 Reserved5; /* 0x10 */
u16 Reserved6; /* 0x14 */
u8 Reserved7; /* 0x16 */
u8 HostMSIxVectors; /* 0x17 */
u16 Reserved8; /* 0x18 */
u16 SystemRequestFrameSize; /* 0x1A */
u16 ReplyDescriptorPostQueueDepth; /* 0x1C */
u16 ReplyFreeQueueDepth; /* 0x1E */
u32 SenseBufferAddressHigh; /* 0x20 */
u32 SystemReplyAddressHigh; /* 0x24 */
u64 SystemRequestFrameBaseAddress; /* 0x28 */
u64 ReplyDescriptorPostQueueAddress;/* 0x30 */
u64 ReplyFreeQueueAddress; /* 0x38 */
u64 TimeStamp; /* 0x40 */
};
/* mrpriv defines */
#define MR_PD_INVALID 0xFFFF
#define MAX_SPAN_DEPTH 8
#define MAX_RAIDMAP_SPAN_DEPTH (MAX_SPAN_DEPTH)
#define MAX_ROW_SIZE 32
#define MAX_RAIDMAP_ROW_SIZE (MAX_ROW_SIZE)
#define MAX_LOGICAL_DRIVES 64
#define MAX_RAIDMAP_LOGICAL_DRIVES (MAX_LOGICAL_DRIVES)
#define MAX_RAIDMAP_VIEWS (MAX_LOGICAL_DRIVES)
#define MAX_ARRAYS 128
#define MAX_RAIDMAP_ARRAYS (MAX_ARRAYS)
#define MAX_PHYSICAL_DEVICES 256
#define MAX_RAIDMAP_PHYSICAL_DEVICES (MAX_PHYSICAL_DEVICES)
#define MR_DCMD_LD_MAP_GET_INFO 0x0300e101
struct MR_DEV_HANDLE_INFO {
u16 curDevHdl;
u8 validHandles;
u8 reserved;
u16 devHandle[2];
};
struct MR_ARRAY_INFO {
u16 pd[MAX_RAIDMAP_ROW_SIZE];
};
struct MR_QUAD_ELEMENT {
u64 logStart;
u64 logEnd;
u64 offsetInSpan;
u32 diff;
u32 reserved1;
};
struct MR_SPAN_INFO {
u32 noElements;
u32 reserved1;
struct MR_QUAD_ELEMENT quad[MAX_RAIDMAP_SPAN_DEPTH];
};
struct MR_LD_SPAN {
u64 startBlk;
u64 numBlks;
u16 arrayRef;
u8 reserved[6];
};
struct MR_SPAN_BLOCK_INFO {
u64 num_rows;
struct MR_LD_SPAN span;
struct MR_SPAN_INFO block_span_info;
};
struct MR_LD_RAID {
struct {
u32 fpCapable:1;
u32 reserved5:3;
u32 ldPiMode:4;
u32 pdPiMode:4;
u32 encryptionType:8;
u32 fpWriteCapable:1;
u32 fpReadCapable:1;
u32 fpWriteAcrossStripe:1;
u32 fpReadAcrossStripe:1;
u32 reserved4:8;
} capability;
u32 reserved6;
u64 size;
u8 spanDepth;
u8 level;
u8 stripeShift;
u8 rowSize;
u8 rowDataSize;
u8 writeMode;
u8 PRL;
u8 SRL;
u16 targetId;
u8 ldState;
u8 regTypeReqOnWrite;
u8 modFactor;
u8 reserved2[1];
u16 seqNum;
struct {
u32 ldSyncRequired:1;
u32 reserved:31;
} flags;
u8 reserved3[0x5C];
};
struct MR_LD_SPAN_MAP {
struct MR_LD_RAID ldRaid;
u8 dataArmMap[MAX_RAIDMAP_ROW_SIZE];
struct MR_SPAN_BLOCK_INFO spanBlock[MAX_RAIDMAP_SPAN_DEPTH];
};
struct MR_FW_RAID_MAP {
u32 totalSize;
union {
struct {
u32 maxLd;
u32 maxSpanDepth;
u32 maxRowSize;
u32 maxPdCount;
u32 maxArrays;
} validationInfo;
u32 version[5];
u32 reserved1[5];
};
u32 ldCount;
u32 Reserved1;
u8 ldTgtIdToLd[MAX_RAIDMAP_LOGICAL_DRIVES+
MAX_RAIDMAP_VIEWS];
u8 fpPdIoTimeoutSec;
u8 reserved2[7];
struct MR_ARRAY_INFO arMapInfo[MAX_RAIDMAP_ARRAYS];
struct MR_DEV_HANDLE_INFO devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES];
struct MR_LD_SPAN_MAP ldSpanMap[1];
};
struct IO_REQUEST_INFO {
u64 ldStartBlock;
u32 numBlocks;
u16 ldTgtId;
u8 isRead;
u16 devHandle;
u64 pdBlock;
u8 fpOkForIo;
};
struct MR_LD_TARGET_SYNC {
u8 targetId;
u8 reserved;
u16 seqNum;
};
#define IEEE_SGE_FLAGS_ADDR_MASK (0x03)
#define IEEE_SGE_FLAGS_SYSTEM_ADDR (0x00)
#define IEEE_SGE_FLAGS_IOCDDR_ADDR (0x01)
#define IEEE_SGE_FLAGS_IOCPLB_ADDR (0x02)
#define IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03)
#define IEEE_SGE_FLAGS_CHAIN_ELEMENT (0x80)
#define IEEE_SGE_FLAGS_END_OF_LIST (0x40)
struct megasas_register_set;
struct megasas_instance;
union desc_word {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
struct megasas_cmd_fusion {
struct MPI2_RAID_SCSI_IO_REQUEST *io_request;
dma_addr_t io_request_phys_addr;
union MPI2_SGE_IO_UNION *sg_frame;
dma_addr_t sg_frame_phys_addr;
u8 *sense;
dma_addr_t sense_phys_addr;
struct list_head list;
struct scsi_cmnd *scmd;
struct megasas_instance *instance;
u8 retry_for_fw_reset;
union MEGASAS_REQUEST_DESCRIPTOR_UNION *request_desc;
/*
* Context for a MFI frame.
* Used to get the mfi cmd from list when a MFI cmd is completed
*/
u32 sync_cmd_idx;
u32 index;
u8 flags;
};
struct LD_LOAD_BALANCE_INFO {
u8 loadBalanceFlag;
u8 reserved1;
u16 raid1DevHandle[2];
atomic_t scsi_pending_cmds[2];
u64 last_accessed_block[2];
};
struct MR_FW_RAID_MAP_ALL {
struct MR_FW_RAID_MAP raidMap;
struct MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES - 1];
} __attribute__ ((packed));
struct fusion_context {
struct megasas_cmd_fusion **cmd_list;
struct list_head cmd_pool;
spinlock_t cmd_pool_lock;
dma_addr_t req_frames_desc_phys;
u8 *req_frames_desc;
struct dma_pool *io_request_frames_pool;
dma_addr_t io_request_frames_phys;
u8 *io_request_frames;
struct dma_pool *sg_dma_pool;
struct dma_pool *sense_dma_pool;
dma_addr_t reply_frames_desc_phys;
union MPI2_REPLY_DESCRIPTORS_UNION *reply_frames_desc;
struct dma_pool *reply_frames_desc_pool;
u16 last_reply_idx;
u32 reply_q_depth;
u32 request_alloc_sz;
u32 reply_alloc_sz;
u32 io_frames_alloc_sz;
u16 max_sge_in_main_msg;
u16 max_sge_in_chain;
u8 chain_offset_io_request;
u8 chain_offset_mfi_pthru;
struct MR_FW_RAID_MAP_ALL *ld_map[2];
dma_addr_t ld_map_phys[2];
u32 map_sz;
u8 fast_path_io;
struct LD_LOAD_BALANCE_INFO load_balance_info[MAX_LOGICAL_DRIVES];
};
union desc_value {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
#endif /* _MEGARAID_SAS_FUSION_H_ */