2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 17:43:56 +08:00

cachefiles: document on-demand read mode

Document new user interface introduced by on-demand read mode.

Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20220509074028.74954-9-jefflexu@linux.alibaba.com
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
This commit is contained in:
Jeffle Xu 2022-04-25 20:21:30 +08:00 committed by Gao Xiang
parent 1519670e4f
commit 99302ebd3a

View File

@ -28,6 +28,7 @@ Cache on Already Mounted Filesystem
(*) Debugging.
(*) On-demand Read.
Overview
@ -482,3 +483,180 @@ the control file. For example::
echo $((1|4|8)) >/sys/module/cachefiles/parameters/debug
will turn on all function entry debugging.
On-demand Read
==============
When working in its original mode, CacheFiles serves as a local cache for a
remote networking fs - while in on-demand read mode, CacheFiles can boost the
scenario where on-demand read semantics are needed, e.g. container image
distribution.
The essential difference between these two modes is seen when a cache miss
occurs: In the original mode, the netfs will fetch the data from the remote
server and then write it to the cache file; in on-demand read mode, fetching
the data and writing it into the cache is delegated to a user daemon.
``CONFIG_CACHEFILES_ONDEMAND`` should be enabled to support on-demand read mode.
Protocol Communication
----------------------
The on-demand read mode uses a simple protocol for communication between kernel
and user daemon. The protocol can be modeled as::
kernel --[request]--> user daemon --[reply]--> kernel
CacheFiles will send requests to the user daemon when needed. The user daemon
should poll the devnode ('/dev/cachefiles') to check if there's a pending
request to be processed. A POLLIN event will be returned when there's a pending
request.
The user daemon then reads the devnode to fetch a request to process. It should
be noted that each read only gets one request. When it has finished processing
the request, the user daemon should write the reply to the devnode.
Each request starts with a message header of the form::
struct cachefiles_msg {
__u32 msg_id;
__u32 opcode;
__u32 len;
__u32 object_id;
__u8 data[];
};
where:
* ``msg_id`` is a unique ID identifying this request among all pending
requests.
* ``opcode`` indicates the type of this request.
* ``object_id`` is a unique ID identifying the cache file operated on.
* ``data`` indicates the payload of this request.
* ``len`` indicates the whole length of this request, including the
header and following type-specific payload.
Turning on On-demand Mode
-------------------------
An optional parameter becomes available to the "bind" command::
bind [ondemand]
When the "bind" command is given no argument, it defaults to the original mode.
When it is given the "ondemand" argument, i.e. "bind ondemand", on-demand read
mode will be enabled.
The OPEN Request
----------------
When the netfs opens a cache file for the first time, a request with the
CACHEFILES_OP_OPEN opcode, a.k.a an OPEN request will be sent to the user
daemon. The payload format is of the form::
struct cachefiles_open {
__u32 volume_key_size;
__u32 cookie_key_size;
__u32 fd;
__u32 flags;
__u8 data[];
};
where:
* ``data`` contains the volume_key followed directly by the cookie_key.
The volume key is a NUL-terminated string; the cookie key is binary
data.
* ``volume_key_size`` indicates the size of the volume key in bytes.
* ``cookie_key_size`` indicates the size of the cookie key in bytes.
* ``fd`` indicates an anonymous fd referring to the cache file, through
which the user daemon can perform write/llseek file operations on the
cache file.
The user daemon can use the given (volume_key, cookie_key) pair to distinguish
the requested cache file. With the given anonymous fd, the user daemon can
fetch the data and write it to the cache file in the background, even when
kernel has not triggered a cache miss yet.
Be noted that each cache file has a unique object_id, while it may have multiple
anonymous fds. The user daemon may duplicate anonymous fds from the initial
anonymous fd indicated by the @fd field through dup(). Thus each object_id can
be mapped to multiple anonymous fds, while the usr daemon itself needs to
maintain the mapping.
When implementing a user daemon, please be careful of RLIMIT_NOFILE,
``/proc/sys/fs/nr_open`` and ``/proc/sys/fs/file-max``. Typically these needn't
be huge since they're related to the number of open device blobs rather than
open files of each individual filesystem.
The user daemon should reply the OPEN request by issuing a "copen" (complete
open) command on the devnode::
copen <msg_id>,<cache_size>
where:
* ``msg_id`` must match the msg_id field of the OPEN request.
* When >= 0, ``cache_size`` indicates the size of the cache file;
when < 0, ``cache_size`` indicates any error code encountered by the
user daemon.
The CLOSE Request
-----------------
When a cookie withdrawn, a CLOSE request (opcode CACHEFILES_OP_CLOSE) will be
sent to the user daemon. This tells the user daemon to close all anonymous fds
associated with the given object_id. The CLOSE request has no extra payload,
and shouldn't be replied.
The READ Request
----------------
When a cache miss is encountered in on-demand read mode, CacheFiles will send a
READ request (opcode CACHEFILES_OP_READ) to the user daemon. This tells the user
daemon to fetch the contents of the requested file range. The payload is of the
form::
struct cachefiles_read {
__u64 off;
__u64 len;
};
where:
* ``off`` indicates the starting offset of the requested file range.
* ``len`` indicates the length of the requested file range.
When it receives a READ request, the user daemon should fetch the requested data
and write it to the cache file identified by object_id.
When it has finished processing the READ request, the user daemon should reply
by using the CACHEFILES_IOC_READ_COMPLETE ioctl on one of the anonymous fds
associated with the object_id given in the READ request. The ioctl is of the
form::
ioctl(fd, CACHEFILES_IOC_READ_COMPLETE, msg_id);
where:
* ``fd`` is one of the anonymous fds associated with the object_id
given.
* ``msg_id`` must match the msg_id field of the READ request.