From 95ced8a2c72dd48167adc4981c3c465c491f2f02 Mon Sep 17 00:00:00 2001 From: James Smart Date: Fri, 23 Oct 2020 15:27:51 -0700 Subject: [PATCH] nvme-fc: eliminate terminate_io use by nvme_fc_error_recovery nvme_fc_error_recovery() special cases handling when in CONNECTING state and calls __nvme_fc_terminate_io(). __nvme_fc_terminate_io() itself special cases CONNECTING state and calls the routine to abort outstanding ios. Simplify the sequence by putting the call to abort outstanding I/Os directly in nvme_fc_error_recovery. Move the location of __nvme_fc_abort_outstanding_ios(), and nvme_fc_terminate_exchange() which is called by it, to avoid adding function prototypes for nvme_fc_error_recovery(). Signed-off-by: James Smart Signed-off-by: Christoph Hellwig --- drivers/nvme/host/fc.c | 187 ++++++++++++++++++----------------------- 1 file changed, 84 insertions(+), 103 deletions(-) diff --git a/drivers/nvme/host/fc.c b/drivers/nvme/host/fc.c index 9cdb116b545b..ffbfb0533cac 100644 --- a/drivers/nvme/host/fc.c +++ b/drivers/nvme/host/fc.c @@ -2413,27 +2413,97 @@ nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) nvme_fc_ctrl_put(ctrl); } -static void __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl); +/* + * This routine is used by the transport when it needs to find active + * io on a queue that is to be terminated. The transport uses + * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke + * this routine to kill them on a 1 by 1 basis. + * + * As FC allocates FC exchange for each io, the transport must contact + * the LLDD to terminate the exchange, thus releasing the FC exchange. + * After terminating the exchange the LLDD will call the transport's + * normal io done path for the request, but it will have an aborted + * status. The done path will return the io request back to the block + * layer with an error status. + */ +static bool +nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) +{ + struct nvme_ctrl *nctrl = data; + struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); + struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); + + __nvme_fc_abort_op(ctrl, op); + return true; +} + +/* + * This routine runs through all outstanding commands on the association + * and aborts them. This routine is typically be called by the + * delete_association routine. It is also called due to an error during + * reconnect. In that scenario, it is most likely a command that initializes + * the controller, including fabric Connect commands on io queues, that + * may have timed out or failed thus the io must be killed for the connect + * thread to see the error. + */ +static void +__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) +{ + /* + * If io queues are present, stop them and terminate all outstanding + * ios on them. As FC allocates FC exchange for each io, the + * transport must contact the LLDD to terminate the exchange, + * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() + * to tell us what io's are busy and invoke a transport routine + * to kill them with the LLDD. After terminating the exchange + * the LLDD will call the transport's normal io done path, but it + * will have an aborted status. The done path will return the + * io requests back to the block layer as part of normal completions + * (but with error status). + */ + if (ctrl->ctrl.queue_count > 1) { + nvme_stop_queues(&ctrl->ctrl); + blk_mq_tagset_busy_iter(&ctrl->tag_set, + nvme_fc_terminate_exchange, &ctrl->ctrl); + blk_mq_tagset_wait_completed_request(&ctrl->tag_set); + if (start_queues) + nvme_start_queues(&ctrl->ctrl); + } + + /* + * Other transports, which don't have link-level contexts bound + * to sqe's, would try to gracefully shutdown the controller by + * writing the registers for shutdown and polling (call + * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially + * just aborted and we will wait on those contexts, and given + * there was no indication of how live the controlelr is on the + * link, don't send more io to create more contexts for the + * shutdown. Let the controller fail via keepalive failure if + * its still present. + */ + + /* + * clean up the admin queue. Same thing as above. + */ + blk_mq_quiesce_queue(ctrl->ctrl.admin_q); + blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, + nvme_fc_terminate_exchange, &ctrl->ctrl); + blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); +} static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) { /* - * if an error (io timeout, etc) while (re)connecting, - * it's an error on creating the new association. - * Start the error recovery thread if it hasn't already - * been started. It is expected there could be multiple - * ios hitting this path before things are cleaned up. + * if an error (io timeout, etc) while (re)connecting, the remote + * port requested terminating of the association (disconnect_ls) + * or an error (timeout or abort) occurred on an io while creating + * the controller. Abort any ios on the association and let the + * create_association error path resolve things. */ if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { - __nvme_fc_terminate_io(ctrl); - - /* - * Rescheduling the connection after recovering - * from the io error is left to the reconnect work - * item, which is what should have stalled waiting on - * the io that had the error that scheduled this work. - */ + __nvme_fc_abort_outstanding_ios(ctrl, true); + set_bit(ASSOC_FAILED, &ctrl->flags); return; } @@ -2747,30 +2817,6 @@ nvme_fc_complete_rq(struct request *rq) nvme_fc_ctrl_put(ctrl); } -/* - * This routine is used by the transport when it needs to find active - * io on a queue that is to be terminated. The transport uses - * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke - * this routine to kill them on a 1 by 1 basis. - * - * As FC allocates FC exchange for each io, the transport must contact - * the LLDD to terminate the exchange, thus releasing the FC exchange. - * After terminating the exchange the LLDD will call the transport's - * normal io done path for the request, but it will have an aborted - * status. The done path will return the io request back to the block - * layer with an error status. - */ -static bool -nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) -{ - struct nvme_ctrl *nctrl = data; - struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); - struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); - - __nvme_fc_abort_op(ctrl, op); - return true; -} - static const struct blk_mq_ops nvme_fc_mq_ops = { .queue_rq = nvme_fc_queue_rq, @@ -3111,60 +3157,6 @@ out_free_queue: } -/* - * This routine runs through all outstanding commands on the association - * and aborts them. This routine is typically be called by the - * delete_association routine. It is also called due to an error during - * reconnect. In that scenario, it is most likely a command that initializes - * the controller, including fabric Connect commands on io queues, that - * may have timed out or failed thus the io must be killed for the connect - * thread to see the error. - */ -static void -__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) -{ - /* - * If io queues are present, stop them and terminate all outstanding - * ios on them. As FC allocates FC exchange for each io, the - * transport must contact the LLDD to terminate the exchange, - * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() - * to tell us what io's are busy and invoke a transport routine - * to kill them with the LLDD. After terminating the exchange - * the LLDD will call the transport's normal io done path, but it - * will have an aborted status. The done path will return the - * io requests back to the block layer as part of normal completions - * (but with error status). - */ - if (ctrl->ctrl.queue_count > 1) { - nvme_stop_queues(&ctrl->ctrl); - blk_mq_tagset_busy_iter(&ctrl->tag_set, - nvme_fc_terminate_exchange, &ctrl->ctrl); - blk_mq_tagset_wait_completed_request(&ctrl->tag_set); - if (start_queues) - nvme_start_queues(&ctrl->ctrl); - } - - /* - * Other transports, which don't have link-level contexts bound - * to sqe's, would try to gracefully shutdown the controller by - * writing the registers for shutdown and polling (call - * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially - * just aborted and we will wait on those contexts, and given - * there was no indication of how live the controlelr is on the - * link, don't send more io to create more contexts for the - * shutdown. Let the controller fail via keepalive failure if - * its still present. - */ - - /* - * clean up the admin queue. Same thing as above. - */ - blk_mq_quiesce_queue(ctrl->ctrl.admin_q); - blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, - nvme_fc_terminate_exchange, &ctrl->ctrl); - blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); -} - /* * This routine stops operation of the controller on the host side. * On the host os stack side: Admin and IO queues are stopped, @@ -3297,17 +3289,6 @@ nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) static void __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl) { - /* - * if state is CONNECTING - the error occurred as part of a - * reconnect attempt. Abort any ios on the association and - * let the create_association error paths resolve things. - */ - if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { - __nvme_fc_abort_outstanding_ios(ctrl, true); - set_bit(ASSOC_FAILED, &ctrl->flags); - return; - } - /* * For any other state, kill the association. As this routine * is a common io abort routine for resetting and such, after