2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-11-17 15:14:35 +08:00

Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer updates from Thomas Gleixner:
 "The timer department delivers this time:

   - Support for cross clock domain timestamps in the core code plus a
     first user.  That allows more precise timestamping for PTP and
     later for audio and other peripherals.

     The ptp/e1000e patches have been acked by the relevant maintainers
     and are carried in the timer tree to avoid merge ordering issues.

   - Support for unregistering the current clocksource watchdog.  That
     lifts a limitation for switching clocksources which has been there
     from day 1

   - The usual pile of fixes and updates to the core and the drivers.
     Nothing outstanding and exciting"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
  time/timekeeping: Work around false positive GCC warning
  e1000e: Adds hardware supported cross timestamp on e1000e nic
  ptp: Add PTP_SYS_OFFSET_PRECISE for driver crosstimestamping
  x86/tsc: Always Running Timer (ART) correlated clocksource
  hrtimer: Revert CLOCK_MONOTONIC_RAW support
  time: Add history to cross timestamp interface supporting slower devices
  time: Add driver cross timestamp interface for higher precision time synchronization
  time: Remove duplicated code in ktime_get_raw_and_real()
  time: Add timekeeping snapshot code capturing system time and counter
  time: Add cycles to nanoseconds translation
  jiffies: Use CLOCKSOURCE_MASK instead of constant
  clocksource: Introduce clocksource_freq2mult()
  clockevents/drivers/exynos_mct: Implement ->set_state_oneshot_stopped()
  clockevents/drivers/arm_global_timer: Implement ->set_state_oneshot_stopped()
  clockevents/drivers/arm_arch_timer: Implement ->set_state_oneshot_stopped()
  clocksource/drivers/arm_global_timer: Register delay timer
  clocksource/drivers/lpc32xx: Support timer-based ARM delay
  clocksource/drivers/lpc32xx: Support periodic mode
  clocksource/drivers/lpc32xx: Don't use the prescaler counter for clockevents
  clocksource/drivers/rockchip: Add err handle for rk_timer_init
  ...
This commit is contained in:
Linus Torvalds 2016-03-15 12:13:56 -07:00
commit 8a284c062e
25 changed files with 735 additions and 113 deletions

View File

@ -277,13 +277,15 @@ int main(int argc, char *argv[])
" %d external time stamp channels\n"
" %d programmable periodic signals\n"
" %d pulse per second\n"
" %d programmable pins\n",
" %d programmable pins\n"
" %d cross timestamping\n",
caps.max_adj,
caps.n_alarm,
caps.n_ext_ts,
caps.n_per_out,
caps.pps,
caps.n_pins);
caps.n_pins,
caps.cross_timestamping);
}
}

View File

@ -85,7 +85,7 @@
#define X86_FEATURE_P4 ( 3*32+ 7) /* "" P4 */
#define X86_FEATURE_CONSTANT_TSC ( 3*32+ 8) /* TSC ticks at a constant rate */
#define X86_FEATURE_UP ( 3*32+ 9) /* smp kernel running on up */
/* free, was #define X86_FEATURE_FXSAVE_LEAK ( 3*32+10) * "" FXSAVE leaks FOP/FIP/FOP */
#define X86_FEATURE_ART ( 3*32+10) /* Platform has always running timer (ART) */
#define X86_FEATURE_ARCH_PERFMON ( 3*32+11) /* Intel Architectural PerfMon */
#define X86_FEATURE_PEBS ( 3*32+12) /* Precise-Event Based Sampling */
#define X86_FEATURE_BTS ( 3*32+13) /* Branch Trace Store */

View File

@ -29,6 +29,8 @@ static inline cycles_t get_cycles(void)
return rdtsc();
}
extern struct system_counterval_t convert_art_to_tsc(cycle_t art);
extern void tsc_init(void);
extern void mark_tsc_unstable(char *reason);
extern int unsynchronized_tsc(void);

View File

@ -43,6 +43,11 @@ static DEFINE_STATIC_KEY_FALSE(__use_tsc);
int tsc_clocksource_reliable;
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;
/*
* Use a ring-buffer like data structure, where a writer advances the head by
* writing a new data entry and a reader advances the tail when it observes a
@ -964,6 +969,37 @@ core_initcall(cpufreq_tsc);
#endif /* CONFIG_CPU_FREQ */
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)
/*
* If ART is present detect the numerator:denominator to convert to TSC
*/
static void detect_art(void)
{
unsigned int unused[2];
if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
return;
cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
&art_to_tsc_numerator, unused, unused+1);
/* Don't enable ART in a VM, non-stop TSC required */
if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
art_to_tsc_denominator < ART_MIN_DENOMINATOR)
return;
if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
return;
/* Make this sticky over multiple CPU init calls */
setup_force_cpu_cap(X86_FEATURE_ART);
}
/* clocksource code */
static struct clocksource clocksource_tsc;
@ -1071,6 +1107,25 @@ int unsynchronized_tsc(void)
return 0;
}
/*
* Convert ART to TSC given numerator/denominator found in detect_art()
*/
struct system_counterval_t convert_art_to_tsc(cycle_t art)
{
u64 tmp, res, rem;
rem = do_div(art, art_to_tsc_denominator);
res = art * art_to_tsc_numerator;
tmp = rem * art_to_tsc_numerator;
do_div(tmp, art_to_tsc_denominator);
res += tmp + art_to_tsc_offset;
return (struct system_counterval_t) {.cs = art_related_clocksource,
.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
@ -1142,6 +1197,8 @@ static void tsc_refine_calibration_work(struct work_struct *work)
(unsigned long)tsc_khz % 1000);
out:
if (boot_cpu_has(X86_FEATURE_ART))
art_related_clocksource = &clocksource_tsc;
clocksource_register_khz(&clocksource_tsc, tsc_khz);
}
@ -1235,6 +1292,8 @@ void __init tsc_init(void)
mark_tsc_unstable("TSCs unsynchronized");
check_system_tsc_reliable();
detect_art();
}
#ifdef CONFIG_SMP

View File

@ -160,6 +160,7 @@ config CLKSRC_EFM32
config CLKSRC_LPC32XX
bool "Clocksource for LPC32XX" if COMPILE_TEST
depends on GENERIC_CLOCKEVENTS && HAS_IOMEM
depends on ARM
select CLKSRC_MMIO
select CLKSRC_OF
help

View File

@ -32,6 +32,14 @@
#define CNTTIDR 0x08
#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
#define CNTACR(n) (0x40 + ((n) * 4))
#define CNTACR_RPCT BIT(0)
#define CNTACR_RVCT BIT(1)
#define CNTACR_RFRQ BIT(2)
#define CNTACR_RVOFF BIT(3)
#define CNTACR_RWVT BIT(4)
#define CNTACR_RWPT BIT(5)
#define CNTVCT_LO 0x08
#define CNTVCT_HI 0x0c
#define CNTFRQ 0x10
@ -266,10 +274,12 @@ static void __arch_timer_setup(unsigned type,
if (arch_timer_use_virtual) {
clk->irq = arch_timer_ppi[VIRT_PPI];
clk->set_state_shutdown = arch_timer_shutdown_virt;
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
clk->set_next_event = arch_timer_set_next_event_virt;
} else {
clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
clk->set_state_shutdown = arch_timer_shutdown_phys;
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
clk->set_next_event = arch_timer_set_next_event_phys;
}
} else {
@ -279,10 +289,12 @@ static void __arch_timer_setup(unsigned type,
clk->cpumask = cpu_all_mask;
if (arch_timer_mem_use_virtual) {
clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
clk->set_next_event =
arch_timer_set_next_event_virt_mem;
} else {
clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
clk->set_next_event =
arch_timer_set_next_event_phys_mem;
}
@ -757,7 +769,6 @@ static void __init arch_timer_mem_init(struct device_node *np)
}
cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
iounmap(cntctlbase);
/*
* Try to find a virtual capable frame. Otherwise fall back to a
@ -765,20 +776,31 @@ static void __init arch_timer_mem_init(struct device_node *np)
*/
for_each_available_child_of_node(np, frame) {
int n;
u32 cntacr;
if (of_property_read_u32(frame, "frame-number", &n)) {
pr_err("arch_timer: Missing frame-number\n");
of_node_put(best_frame);
of_node_put(frame);
return;
goto out;
}
if (cnttidr & CNTTIDR_VIRT(n)) {
/* Try enabling everything, and see what sticks */
cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
writel_relaxed(cntacr, cntctlbase + CNTACR(n));
cntacr = readl_relaxed(cntctlbase + CNTACR(n));
if ((cnttidr & CNTTIDR_VIRT(n)) &&
!(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
of_node_put(best_frame);
best_frame = frame;
arch_timer_mem_use_virtual = true;
break;
}
if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
continue;
of_node_put(best_frame);
best_frame = of_node_get(frame);
}
@ -786,24 +808,26 @@ static void __init arch_timer_mem_init(struct device_node *np)
base = arch_counter_base = of_iomap(best_frame, 0);
if (!base) {
pr_err("arch_timer: Can't map frame's registers\n");
of_node_put(best_frame);
return;
goto out;
}
if (arch_timer_mem_use_virtual)
irq = irq_of_parse_and_map(best_frame, 1);
else
irq = irq_of_parse_and_map(best_frame, 0);
of_node_put(best_frame);
if (!irq) {
pr_err("arch_timer: Frame missing %s irq",
arch_timer_mem_use_virtual ? "virt" : "phys");
return;
goto out;
}
arch_timer_detect_rate(base, np);
arch_timer_mem_register(base, irq);
arch_timer_common_init();
out:
iounmap(cntctlbase);
of_node_put(best_frame);
}
CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
arch_timer_mem_init);

View File

@ -16,6 +16,7 @@
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
@ -174,6 +175,7 @@ static int gt_clockevents_init(struct clock_event_device *clk)
clk->set_state_shutdown = gt_clockevent_shutdown;
clk->set_state_periodic = gt_clockevent_set_periodic;
clk->set_state_oneshot = gt_clockevent_shutdown;
clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
clk->set_next_event = gt_clockevent_set_next_event;
clk->cpumask = cpumask_of(cpu);
clk->rating = 300;
@ -221,6 +223,21 @@ static u64 notrace gt_sched_clock_read(void)
}
#endif
static unsigned long gt_read_long(void)
{
return readl_relaxed(gt_base + GT_COUNTER0);
}
static struct delay_timer gt_delay_timer = {
.read_current_timer = gt_read_long,
};
static void __init gt_delay_timer_init(void)
{
gt_delay_timer.freq = gt_clk_rate;
register_current_timer_delay(&gt_delay_timer);
}
static void __init gt_clocksource_init(void)
{
writel(0, gt_base + GT_CONTROL);
@ -317,6 +334,7 @@ static void __init global_timer_of_register(struct device_node *np)
/* Immediately configure the timer on the boot CPU */
gt_clocksource_init();
gt_clockevents_init(this_cpu_ptr(gt_evt));
gt_delay_timer_init();
return;

View File

@ -313,6 +313,7 @@ static struct clock_event_device mct_comp_device = {
.set_state_periodic = mct_set_state_periodic,
.set_state_shutdown = mct_set_state_shutdown,
.set_state_oneshot = mct_set_state_shutdown,
.set_state_oneshot_stopped = mct_set_state_shutdown,
.tick_resume = mct_set_state_shutdown,
};
@ -452,6 +453,7 @@ static int exynos4_local_timer_setup(struct mct_clock_event_device *mevt)
evt->set_state_periodic = set_state_periodic;
evt->set_state_shutdown = set_state_shutdown;
evt->set_state_oneshot = set_state_shutdown;
evt->set_state_oneshot_stopped = set_state_shutdown;
evt->tick_resume = set_state_shutdown;
evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
evt->rating = 450;

View File

@ -122,23 +122,23 @@ static void __init rk_timer_init(struct device_node *np)
pclk = of_clk_get_by_name(np, "pclk");
if (IS_ERR(pclk)) {
pr_err("Failed to get pclk for '%s'\n", TIMER_NAME);
return;
goto out_unmap;
}
if (clk_prepare_enable(pclk)) {
pr_err("Failed to enable pclk for '%s'\n", TIMER_NAME);
return;
goto out_unmap;
}
timer_clk = of_clk_get_by_name(np, "timer");
if (IS_ERR(timer_clk)) {
pr_err("Failed to get timer clock for '%s'\n", TIMER_NAME);
return;
goto out_timer_clk;
}
if (clk_prepare_enable(timer_clk)) {
pr_err("Failed to enable timer clock\n");
return;
goto out_timer_clk;
}
bc_timer.freq = clk_get_rate(timer_clk);
@ -146,7 +146,7 @@ static void __init rk_timer_init(struct device_node *np)
irq = irq_of_parse_and_map(np, 0);
if (!irq) {
pr_err("Failed to map interrupts for '%s'\n", TIMER_NAME);
return;
goto out_irq;
}
ce->name = TIMER_NAME;
@ -164,10 +164,19 @@ static void __init rk_timer_init(struct device_node *np)
ret = request_irq(irq, rk_timer_interrupt, IRQF_TIMER, TIMER_NAME, ce);
if (ret) {
pr_err("Failed to initialize '%s': %d\n", TIMER_NAME, ret);
return;
goto out_irq;
}
clockevents_config_and_register(ce, bc_timer.freq, 1, UINT_MAX);
return;
out_irq:
clk_disable_unprepare(timer_clk);
out_timer_clk:
clk_disable_unprepare(pclk);
out_unmap:
iounmap(bc_timer.base);
}
CLOCKSOURCE_OF_DECLARE(rk_timer, "rockchip,rk3288-timer", rk_timer_init);

View File

@ -18,6 +18,7 @@
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
@ -43,6 +44,7 @@
struct lpc32xx_clock_event_ddata {
struct clock_event_device evtdev;
void __iomem *base;
u32 ticks_per_jiffy;
};
/* Needed for the sched clock */
@ -53,6 +55,15 @@ static u64 notrace lpc32xx_read_sched_clock(void)
return readl(clocksource_timer_counter);
}
static unsigned long lpc32xx_delay_timer_read(void)
{
return readl(clocksource_timer_counter);
}
static struct delay_timer lpc32xx_delay_timer = {
.read_current_timer = lpc32xx_delay_timer_read,
};
static int lpc32xx_clkevt_next_event(unsigned long delta,
struct clock_event_device *evtdev)
{
@ -60,14 +71,13 @@ static int lpc32xx_clkevt_next_event(unsigned long delta,
container_of(evtdev, struct lpc32xx_clock_event_ddata, evtdev);
/*
* Place timer in reset and program the delta in the prescale
* register (PR). When the prescale counter matches the value
* in PR the counter register is incremented and the compare
* match will trigger. After setup the timer is released from
* reset and enabled.
* Place timer in reset and program the delta in the match
* channel 0 (MR0). When the timer counter matches the value
* in MR0 register the match will trigger an interrupt.
* After setup the timer is released from reset and enabled.
*/
writel_relaxed(LPC32XX_TIMER_TCR_CRST, ddata->base + LPC32XX_TIMER_TCR);
writel_relaxed(delta, ddata->base + LPC32XX_TIMER_PR);
writel_relaxed(delta, ddata->base + LPC32XX_TIMER_MR0);
writel_relaxed(LPC32XX_TIMER_TCR_CEN, ddata->base + LPC32XX_TIMER_TCR);
return 0;
@ -86,11 +96,39 @@ static int lpc32xx_clkevt_shutdown(struct clock_event_device *evtdev)
static int lpc32xx_clkevt_oneshot(struct clock_event_device *evtdev)
{
struct lpc32xx_clock_event_ddata *ddata =
container_of(evtdev, struct lpc32xx_clock_event_ddata, evtdev);
/*
* When using oneshot, we must also disable the timer
* to wait for the first call to set_next_event().
*/
return lpc32xx_clkevt_shutdown(evtdev);
writel_relaxed(0, ddata->base + LPC32XX_TIMER_TCR);
/* Enable interrupt, reset on match and stop on match (MCR). */
writel_relaxed(LPC32XX_TIMER_MCR_MR0I | LPC32XX_TIMER_MCR_MR0R |
LPC32XX_TIMER_MCR_MR0S, ddata->base + LPC32XX_TIMER_MCR);
return 0;
}
static int lpc32xx_clkevt_periodic(struct clock_event_device *evtdev)
{
struct lpc32xx_clock_event_ddata *ddata =
container_of(evtdev, struct lpc32xx_clock_event_ddata, evtdev);
/* Enable interrupt and reset on match. */
writel_relaxed(LPC32XX_TIMER_MCR_MR0I | LPC32XX_TIMER_MCR_MR0R,
ddata->base + LPC32XX_TIMER_MCR);
/*
* Place timer in reset and program the delta in the match
* channel 0 (MR0).
*/
writel_relaxed(LPC32XX_TIMER_TCR_CRST, ddata->base + LPC32XX_TIMER_TCR);
writel_relaxed(ddata->ticks_per_jiffy, ddata->base + LPC32XX_TIMER_MR0);
writel_relaxed(LPC32XX_TIMER_TCR_CEN, ddata->base + LPC32XX_TIMER_TCR);
return 0;
}
static irqreturn_t lpc32xx_clock_event_handler(int irq, void *dev_id)
@ -108,11 +146,13 @@ static irqreturn_t lpc32xx_clock_event_handler(int irq, void *dev_id)
static struct lpc32xx_clock_event_ddata lpc32xx_clk_event_ddata = {
.evtdev = {
.name = "lpc3220 clockevent",
.features = CLOCK_EVT_FEAT_ONESHOT,
.features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERIODIC,
.rating = 300,
.set_next_event = lpc32xx_clkevt_next_event,
.set_state_shutdown = lpc32xx_clkevt_shutdown,
.set_state_oneshot = lpc32xx_clkevt_oneshot,
.set_state_periodic = lpc32xx_clkevt_periodic,
},
};
@ -162,6 +202,8 @@ static int __init lpc32xx_clocksource_init(struct device_node *np)
}
clocksource_timer_counter = base + LPC32XX_TIMER_TC;
lpc32xx_delay_timer.freq = rate;
register_current_timer_delay(&lpc32xx_delay_timer);
sched_clock_register(lpc32xx_read_sched_clock, 32, rate);
return 0;
@ -210,18 +252,16 @@ static int __init lpc32xx_clockevent_init(struct device_node *np)
/*
* Disable timer and clear any pending interrupt (IR) on match
* channel 0 (MR0). Configure a compare match value of 1 on MR0
* and enable interrupt, reset on match and stop on match (MCR).
* channel 0 (MR0). Clear the prescaler as it's not used.
*/
writel_relaxed(0, base + LPC32XX_TIMER_TCR);
writel_relaxed(0, base + LPC32XX_TIMER_PR);
writel_relaxed(0, base + LPC32XX_TIMER_CTCR);
writel_relaxed(LPC32XX_TIMER_IR_MR0INT, base + LPC32XX_TIMER_IR);
writel_relaxed(1, base + LPC32XX_TIMER_MR0);
writel_relaxed(LPC32XX_TIMER_MCR_MR0I | LPC32XX_TIMER_MCR_MR0R |
LPC32XX_TIMER_MCR_MR0S, base + LPC32XX_TIMER_MCR);
rate = clk_get_rate(clk);
lpc32xx_clk_event_ddata.base = base;
lpc32xx_clk_event_ddata.ticks_per_jiffy = DIV_ROUND_CLOSEST(rate, HZ);
clockevents_config_and_register(&lpc32xx_clk_event_ddata.evtdev,
rate, 1, -1);

View File

@ -83,6 +83,15 @@ config E1000E
To compile this driver as a module, choose M here. The module
will be called e1000e.
config E1000E_HWTS
bool "Support HW cross-timestamp on PCH devices"
default y
depends on E1000E && X86
---help---
Say Y to enable hardware supported cross-timestamping on PCH
devices. The cross-timestamp is available through the PTP clock
driver precise cross-timestamp ioctl (PTP_SYS_OFFSET_PRECISE).
config IGB
tristate "Intel(R) 82575/82576 PCI-Express Gigabit Ethernet support"
depends on PCI

View File

@ -528,6 +528,11 @@
#define E1000_RXCW_C 0x20000000 /* Receive config */
#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
/* HH Time Sync */
#define E1000_TSYNCTXCTL_MAX_ALLOWED_DLY_MASK 0x0000F000 /* max delay */
#define E1000_TSYNCTXCTL_SYNC_COMP 0x40000000 /* sync complete */
#define E1000_TSYNCTXCTL_START_SYNC 0x80000000 /* initiate sync */
#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */
#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */

View File

@ -26,6 +26,12 @@
#include "e1000.h"
#ifdef CONFIG_E1000E_HWTS
#include <linux/clocksource.h>
#include <linux/ktime.h>
#include <asm/tsc.h>
#endif
/**
* e1000e_phc_adjfreq - adjust the frequency of the hardware clock
* @ptp: ptp clock structure
@ -98,6 +104,78 @@ static int e1000e_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
return 0;
}
#ifdef CONFIG_E1000E_HWTS
#define MAX_HW_WAIT_COUNT (3)
/**
* e1000e_phc_get_syncdevicetime - Callback given to timekeeping code reads system/device registers
* @device: current device time
* @system: system counter value read synchronously with device time
* @ctx: context provided by timekeeping code
*
* Read device and system (ART) clock simultaneously and return the corrected
* clock values in ns.
**/
static int e1000e_phc_get_syncdevicetime(ktime_t *device,
struct system_counterval_t *system,
void *ctx)
{
struct e1000_adapter *adapter = (struct e1000_adapter *)ctx;
struct e1000_hw *hw = &adapter->hw;
unsigned long flags;
int i;
u32 tsync_ctrl;
cycle_t dev_cycles;
cycle_t sys_cycles;
tsync_ctrl = er32(TSYNCTXCTL);
tsync_ctrl |= E1000_TSYNCTXCTL_START_SYNC |
E1000_TSYNCTXCTL_MAX_ALLOWED_DLY_MASK;
ew32(TSYNCTXCTL, tsync_ctrl);
for (i = 0; i < MAX_HW_WAIT_COUNT; ++i) {
udelay(1);
tsync_ctrl = er32(TSYNCTXCTL);
if (tsync_ctrl & E1000_TSYNCTXCTL_SYNC_COMP)
break;
}
if (i == MAX_HW_WAIT_COUNT)
return -ETIMEDOUT;
dev_cycles = er32(SYSSTMPH);
dev_cycles <<= 32;
dev_cycles |= er32(SYSSTMPL);
spin_lock_irqsave(&adapter->systim_lock, flags);
*device = ns_to_ktime(timecounter_cyc2time(&adapter->tc, dev_cycles));
spin_unlock_irqrestore(&adapter->systim_lock, flags);
sys_cycles = er32(PLTSTMPH);
sys_cycles <<= 32;
sys_cycles |= er32(PLTSTMPL);
*system = convert_art_to_tsc(sys_cycles);
return 0;
}
/**
* e1000e_phc_getsynctime - Reads the current system/device cross timestamp
* @ptp: ptp clock structure
* @cts: structure containing timestamp
*
* Read device and system (ART) clock simultaneously and return the scaled
* clock values in ns.
**/
static int e1000e_phc_getcrosststamp(struct ptp_clock_info *ptp,
struct system_device_crosststamp *xtstamp)
{
struct e1000_adapter *adapter = container_of(ptp, struct e1000_adapter,
ptp_clock_info);
return get_device_system_crosststamp(e1000e_phc_get_syncdevicetime,
adapter, NULL, xtstamp);
}
#endif/*CONFIG_E1000E_HWTS*/
/**
* e1000e_phc_gettime - Reads the current time from the hardware clock
* @ptp: ptp clock structure
@ -236,6 +314,13 @@ void e1000e_ptp_init(struct e1000_adapter *adapter)
break;
}
#ifdef CONFIG_E1000E_HWTS
/* CPU must have ART and GBe must be from Sunrise Point or greater */
if (hw->mac.type >= e1000_pch_spt && boot_cpu_has(X86_FEATURE_ART))
adapter->ptp_clock_info.getcrosststamp =
e1000e_phc_getcrosststamp;
#endif/*CONFIG_E1000E_HWTS*/
INIT_DELAYED_WORK(&adapter->systim_overflow_work,
e1000e_systim_overflow_work);

View File

@ -245,6 +245,10 @@
#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */
#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */
#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */
#define E1000_SYSSTMPL 0x0B648 /* HH Timesync system stamp low register */
#define E1000_SYSSTMPH 0x0B64C /* HH Timesync system stamp hi register */
#define E1000_PLTSTMPL 0x0B640 /* HH Timesync platform stamp low register */
#define E1000_PLTSTMPH 0x0B644 /* HH Timesync platform stamp hi register */
#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */
#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */

View File

@ -22,6 +22,7 @@
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timekeeping.h>
#include "ptp_private.h"
@ -120,11 +121,13 @@ long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long arg)
struct ptp_clock_caps caps;
struct ptp_clock_request req;
struct ptp_sys_offset *sysoff = NULL;
struct ptp_sys_offset_precise precise_offset;
struct ptp_pin_desc pd;
struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
struct ptp_clock_info *ops = ptp->info;
struct ptp_clock_time *pct;
struct timespec64 ts;
struct system_device_crosststamp xtstamp;
int enable, err = 0;
unsigned int i, pin_index;
@ -138,6 +141,7 @@ long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long arg)
caps.n_per_out = ptp->info->n_per_out;
caps.pps = ptp->info->pps;
caps.n_pins = ptp->info->n_pins;
caps.cross_timestamping = ptp->info->getcrosststamp != NULL;
if (copy_to_user((void __user *)arg, &caps, sizeof(caps)))
err = -EFAULT;
break;
@ -180,6 +184,29 @@ long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long arg)
err = ops->enable(ops, &req, enable);
break;
case PTP_SYS_OFFSET_PRECISE:
if (!ptp->info->getcrosststamp) {
err = -EOPNOTSUPP;
break;
}
err = ptp->info->getcrosststamp(ptp->info, &xtstamp);
if (err)
break;
ts = ktime_to_timespec64(xtstamp.device);
precise_offset.device.sec = ts.tv_sec;
precise_offset.device.nsec = ts.tv_nsec;
ts = ktime_to_timespec64(xtstamp.sys_realtime);
precise_offset.sys_realtime.sec = ts.tv_sec;
precise_offset.sys_realtime.nsec = ts.tv_nsec;
ts = ktime_to_timespec64(xtstamp.sys_monoraw);
precise_offset.sys_monoraw.sec = ts.tv_sec;
precise_offset.sys_monoraw.nsec = ts.tv_nsec;
if (copy_to_user((void __user *)arg, &precise_offset,
sizeof(precise_offset)))
err = -EFAULT;
break;
case PTP_SYS_OFFSET:
sysoff = kmalloc(sizeof(*sysoff), GFP_KERNEL);
if (!sysoff) {

View File

@ -190,9 +190,9 @@ extern void clockevents_config_and_register(struct clock_event_device *dev,
extern int clockevents_update_freq(struct clock_event_device *ce, u32 freq);
static inline void
clockevents_calc_mult_shift(struct clock_event_device *ce, u32 freq, u32 minsec)
clockevents_calc_mult_shift(struct clock_event_device *ce, u32 freq, u32 maxsec)
{
return clocks_calc_mult_shift(&ce->mult, &ce->shift, NSEC_PER_SEC, freq, minsec);
return clocks_calc_mult_shift(&ce->mult, &ce->shift, NSEC_PER_SEC, freq, maxsec);
}
extern void clockevents_suspend(void);

View File

@ -118,6 +118,23 @@ struct clocksource {
/* simplify initialization of mask field */
#define CLOCKSOURCE_MASK(bits) (cycle_t)((bits) < 64 ? ((1ULL<<(bits))-1) : -1)
static inline u32 clocksource_freq2mult(u32 freq, u32 shift_constant, u64 from)
{
/* freq = cyc/from
* mult/2^shift = ns/cyc
* mult = ns/cyc * 2^shift
* mult = from/freq * 2^shift
* mult = from * 2^shift / freq
* mult = (from<<shift) / freq
*/
u64 tmp = ((u64)from) << shift_constant;
tmp += freq/2; /* round for do_div */
do_div(tmp, freq);
return (u32)tmp;
}
/**
* clocksource_khz2mult - calculates mult from khz and shift
* @khz: Clocksource frequency in KHz
@ -128,19 +145,7 @@ struct clocksource {
*/
static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
{
/* khz = cyc/(Million ns)
* mult/2^shift = ns/cyc
* mult = ns/cyc * 2^shift
* mult = 1Million/khz * 2^shift
* mult = 1000000 * 2^shift / khz
* mult = (1000000<<shift) / khz
*/
u64 tmp = ((u64)1000000) << shift_constant;
tmp += khz/2; /* round for do_div */
do_div(tmp, khz);
return (u32)tmp;
return clocksource_freq2mult(khz, shift_constant, NSEC_PER_MSEC);
}
/**
@ -154,19 +159,7 @@ static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
*/
static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
{
/* hz = cyc/(Billion ns)
* mult/2^shift = ns/cyc
* mult = ns/cyc * 2^shift
* mult = 1Billion/hz * 2^shift
* mult = 1000000000 * 2^shift / hz
* mult = (1000000000<<shift) / hz
*/
u64 tmp = ((u64)1000000000) << shift_constant;
tmp += hz/2; /* round for do_div */
do_div(tmp, hz);
return (u32)tmp;
return clocksource_freq2mult(hz, shift_constant, NSEC_PER_SEC);
}
/**

View File

@ -111,22 +111,17 @@ static inline void timespec_to_pps_ktime(struct pps_ktime *kt,
kt->nsec = ts.tv_nsec;
}
static inline void pps_get_ts(struct pps_event_time *ts)
{
struct system_time_snapshot snap;
ktime_get_snapshot(&snap);
ts->ts_real = ktime_to_timespec64(snap.real);
#ifdef CONFIG_NTP_PPS
static inline void pps_get_ts(struct pps_event_time *ts)
{
ktime_get_raw_and_real_ts64(&ts->ts_raw, &ts->ts_real);
ts->ts_raw = ktime_to_timespec64(snap.raw);
#endif
}
#else /* CONFIG_NTP_PPS */
static inline void pps_get_ts(struct pps_event_time *ts)
{
ktime_get_real_ts64(&ts->ts_real);
}
#endif /* CONFIG_NTP_PPS */
/* Subtract known time delay from PPS event time(s) */
static inline void pps_sub_ts(struct pps_event_time *ts, struct timespec64 delta)
{

View File

@ -38,6 +38,7 @@ struct ptp_clock_request {
};
};
struct system_device_crosststamp;
/**
* struct ptp_clock_info - decribes a PTP hardware clock
*
@ -67,6 +68,11 @@ struct ptp_clock_request {
* @gettime64: Reads the current time from the hardware clock.
* parameter ts: Holds the result.
*
* @getcrosststamp: Reads the current time from the hardware clock and
* system clock simultaneously.
* parameter cts: Contains timestamp (device,system) pair,
* where system time is realtime and monotonic.
*
* @settime64: Set the current time on the hardware clock.
* parameter ts: Time value to set.
*
@ -105,6 +111,8 @@ struct ptp_clock_info {
int (*adjfreq)(struct ptp_clock_info *ptp, s32 delta);
int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);
int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
int (*getcrosststamp)(struct ptp_clock_info *ptp,
struct system_device_crosststamp *cts);
int (*settime64)(struct ptp_clock_info *p, const struct timespec64 *ts);
int (*enable)(struct ptp_clock_info *ptp,
struct ptp_clock_request *request, int on);

View File

@ -50,6 +50,7 @@ struct tk_read_base {
* @offs_tai: Offset clock monotonic -> clock tai
* @tai_offset: The current UTC to TAI offset in seconds
* @clock_was_set_seq: The sequence number of clock was set events
* @cs_was_changed_seq: The sequence number of clocksource change events
* @next_leap_ktime: CLOCK_MONOTONIC time value of a pending leap-second
* @raw_time: Monotonic raw base time in timespec64 format
* @cycle_interval: Number of clock cycles in one NTP interval
@ -91,6 +92,7 @@ struct timekeeper {
ktime_t offs_tai;
s32 tai_offset;
unsigned int clock_was_set_seq;
u8 cs_was_changed_seq;
ktime_t next_leap_ktime;
struct timespec64 raw_time;

View File

@ -266,6 +266,64 @@ extern void timekeeping_inject_sleeptime64(struct timespec64 *delta);
extern void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw,
struct timespec64 *ts_real);
/*
* struct system_time_snapshot - simultaneous raw/real time capture with
* counter value
* @cycles: Clocksource counter value to produce the system times
* @real: Realtime system time
* @raw: Monotonic raw system time
* @clock_was_set_seq: The sequence number of clock was set events
* @cs_was_changed_seq: The sequence number of clocksource change events
*/
struct system_time_snapshot {
cycle_t cycles;
ktime_t real;
ktime_t raw;
unsigned int clock_was_set_seq;
u8 cs_was_changed_seq;
};
/*
* struct system_device_crosststamp - system/device cross-timestamp
* (syncronized capture)
* @device: Device time
* @sys_realtime: Realtime simultaneous with device time
* @sys_monoraw: Monotonic raw simultaneous with device time
*/
struct system_device_crosststamp {
ktime_t device;
ktime_t sys_realtime;
ktime_t sys_monoraw;
};
/*
* struct system_counterval_t - system counter value with the pointer to the
* corresponding clocksource
* @cycles: System counter value
* @cs: Clocksource corresponding to system counter value. Used by
* timekeeping code to verify comparibility of two cycle values
*/
struct system_counterval_t {
cycle_t cycles;
struct clocksource *cs;
};
/*
* Get cross timestamp between system clock and device clock
*/
extern int get_device_system_crosststamp(
int (*get_time_fn)(ktime_t *device_time,
struct system_counterval_t *system_counterval,
void *ctx),
void *ctx,
struct system_time_snapshot *history,
struct system_device_crosststamp *xtstamp);
/*
* Simultaneously snapshot realtime and monotonic raw clocks
*/
extern void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot);
/*
* Persistent clock related interfaces
*/

View File

@ -51,7 +51,9 @@ struct ptp_clock_caps {
int n_per_out; /* Number of programmable periodic signals. */
int pps; /* Whether the clock supports a PPS callback. */
int n_pins; /* Number of input/output pins. */
int rsv[14]; /* Reserved for future use. */
/* Whether the clock supports precise system-device cross timestamps */
int cross_timestamping;
int rsv[13]; /* Reserved for future use. */
};
struct ptp_extts_request {
@ -81,6 +83,13 @@ struct ptp_sys_offset {
struct ptp_clock_time ts[2 * PTP_MAX_SAMPLES + 1];
};
struct ptp_sys_offset_precise {
struct ptp_clock_time device;
struct ptp_clock_time sys_realtime;
struct ptp_clock_time sys_monoraw;
unsigned int rsv[4]; /* Reserved for future use. */
};
enum ptp_pin_function {
PTP_PF_NONE,
PTP_PF_EXTTS,
@ -124,6 +133,8 @@ struct ptp_pin_desc {
#define PTP_SYS_OFFSET _IOW(PTP_CLK_MAGIC, 5, struct ptp_sys_offset)
#define PTP_PIN_GETFUNC _IOWR(PTP_CLK_MAGIC, 6, struct ptp_pin_desc)
#define PTP_PIN_SETFUNC _IOW(PTP_CLK_MAGIC, 7, struct ptp_pin_desc)
#define PTP_SYS_OFFSET_PRECISE \
_IOWR(PTP_CLK_MAGIC, 8, struct ptp_sys_offset_precise)
struct ptp_extts_event {
struct ptp_clock_time t; /* Time event occured. */

View File

@ -323,13 +323,42 @@ static void clocksource_enqueue_watchdog(struct clocksource *cs)
/* cs is a watchdog. */
if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
/* Pick the best watchdog. */
if (!watchdog || cs->rating > watchdog->rating) {
watchdog = cs;
/* Reset watchdog cycles */
clocksource_reset_watchdog();
}
}
spin_unlock_irqrestore(&watchdog_lock, flags);
}
static void clocksource_select_watchdog(bool fallback)
{
struct clocksource *cs, *old_wd;
unsigned long flags;
spin_lock_irqsave(&watchdog_lock, flags);
/* save current watchdog */
old_wd = watchdog;
if (fallback)
watchdog = NULL;
list_for_each_entry(cs, &clocksource_list, list) {
/* cs is a clocksource to be watched. */
if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
continue;
/* Skip current if we were requested for a fallback. */
if (fallback && cs == old_wd)
continue;
/* Pick the best watchdog. */
if (!watchdog || cs->rating > watchdog->rating)
watchdog = cs;
}
/* If we failed to find a fallback restore the old one. */
if (!watchdog)
watchdog = old_wd;
/* If we changed the watchdog we need to reset cycles. */
if (watchdog != old_wd)
clocksource_reset_watchdog();
/* Check if the watchdog timer needs to be started. */
clocksource_start_watchdog();
spin_unlock_irqrestore(&watchdog_lock, flags);
@ -404,6 +433,7 @@ static void clocksource_enqueue_watchdog(struct clocksource *cs)
cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
}
static void clocksource_select_watchdog(bool fallback) { }
static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
static inline void clocksource_resume_watchdog(void) { }
static inline int __clocksource_watchdog_kthread(void) { return 0; }
@ -736,6 +766,7 @@ int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
clocksource_enqueue(cs);
clocksource_enqueue_watchdog(cs);
clocksource_select();
clocksource_select_watchdog(false);
mutex_unlock(&clocksource_mutex);
return 0;
}
@ -758,6 +789,7 @@ void clocksource_change_rating(struct clocksource *cs, int rating)
mutex_lock(&clocksource_mutex);
__clocksource_change_rating(cs, rating);
clocksource_select();
clocksource_select_watchdog(false);
mutex_unlock(&clocksource_mutex);
}
EXPORT_SYMBOL(clocksource_change_rating);
@ -767,12 +799,12 @@ EXPORT_SYMBOL(clocksource_change_rating);
*/
static int clocksource_unbind(struct clocksource *cs)
{
/*
* I really can't convince myself to support this on hardware
* designed by lobotomized monkeys.
*/
if (clocksource_is_watchdog(cs))
return -EBUSY;
if (clocksource_is_watchdog(cs)) {
/* Select and try to install a replacement watchdog. */
clocksource_select_watchdog(true);
if (clocksource_is_watchdog(cs))
return -EBUSY;
}
if (cs == curr_clocksource) {
/* Select and try to install a replacement clock source */

View File

@ -68,7 +68,7 @@ static struct clocksource clocksource_jiffies = {
.name = "jiffies",
.rating = 1, /* lowest valid rating*/
.read = jiffies_read,
.mask = 0xffffffff, /*32bits*/
.mask = CLOCKSOURCE_MASK(32),
.mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
.shift = JIFFIES_SHIFT,
.max_cycles = 10,

View File

@ -233,6 +233,7 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
u64 tmp, ntpinterval;
struct clocksource *old_clock;
++tk->cs_was_changed_seq;
old_clock = tk->tkr_mono.clock;
tk->tkr_mono.clock = clock;
tk->tkr_mono.read = clock->read;
@ -298,19 +299,36 @@ u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
static inline u32 arch_gettimeoffset(void) { return 0; }
#endif
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
cycle_t delta)
{
cycle_t delta;
s64 nsec;
delta = timekeeping_get_delta(tkr);
nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
nsec = delta * tkr->mult + tkr->xtime_nsec;
nsec >>= tkr->shift;
/* If arch requires, add in get_arch_timeoffset() */
return nsec + arch_gettimeoffset();
}
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
{
cycle_t delta;
delta = timekeeping_get_delta(tkr);
return timekeeping_delta_to_ns(tkr, delta);
}
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
cycle_t cycles)
{
cycle_t delta;
/* calculate the delta since the last update_wall_time */
delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
return timekeeping_delta_to_ns(tkr, delta);
}
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tkr: Timekeeping readout base from which we take the update
@ -857,44 +875,262 @@ time64_t __ktime_get_real_seconds(void)
return tk->xtime_sec;
}
#ifdef CONFIG_NTP_PPS
/**
* ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
* @ts_raw: pointer to the timespec to be set to raw monotonic time
* @ts_real: pointer to the timespec to be set to the time of day
*
* This function reads both the time of day and raw monotonic time at the
* same time atomically and stores the resulting timestamps in timespec
* format.
* ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
* @systime_snapshot: pointer to struct receiving the system time snapshot
*/
void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long seq;
s64 nsecs_raw, nsecs_real;
ktime_t base_raw;
ktime_t base_real;
s64 nsec_raw;
s64 nsec_real;
cycle_t now;
WARN_ON_ONCE(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
*ts_raw = tk->raw_time;
ts_real->tv_sec = tk->xtime_sec;
ts_real->tv_nsec = 0;
nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
now = tk->tkr_mono.read(tk->tkr_mono.clock);
systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
} while (read_seqcount_retry(&tk_core.seq, seq));
timespec64_add_ns(ts_raw, nsecs_raw);
timespec64_add_ns(ts_real, nsecs_real);
systime_snapshot->cycles = now;
systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
#endif /* CONFIG_NTP_PPS */
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
u64 tmp, rem;
tmp = div64_u64_rem(*base, div, &rem);
if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
return -EOVERFLOW;
tmp *= mult;
rem *= mult;
do_div(rem, div);
*base = tmp + rem;
return 0;
}
/**
* adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
* @history: Snapshot representing start of history
* @partial_history_cycles: Cycle offset into history (fractional part)
* @total_history_cycles: Total history length in cycles
* @discontinuity: True indicates clock was set on history period
* @ts: Cross timestamp that should be adjusted using
* partial/total ratio
*
* Helper function used by get_device_system_crosststamp() to correct the
* crosstimestamp corresponding to the start of the current interval to the
* system counter value (timestamp point) provided by the driver. The
* total_history_* quantities are the total history starting at the provided
* reference point and ending at the start of the current interval. The cycle
* count between the driver timestamp point and the start of the current
* interval is partial_history_cycles.
*/
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
cycle_t partial_history_cycles,
cycle_t total_history_cycles,
bool discontinuity,
struct system_device_crosststamp *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
u64 corr_raw, corr_real;
bool interp_forward;
int ret;
if (total_history_cycles == 0 || partial_history_cycles == 0)
return 0;
/* Interpolate shortest distance from beginning or end of history */
interp_forward = partial_history_cycles > total_history_cycles/2 ?
true : false;
partial_history_cycles = interp_forward ?
total_history_cycles - partial_history_cycles :
partial_history_cycles;
/*
* Scale the monotonic raw time delta by:
* partial_history_cycles / total_history_cycles
*/
corr_raw = (u64)ktime_to_ns(
ktime_sub(ts->sys_monoraw, history->raw));
ret = scale64_check_overflow(partial_history_cycles,
total_history_cycles, &corr_raw);
if (ret)
return ret;
/*
* If there is a discontinuity in the history, scale monotonic raw
* correction by:
* mult(real)/mult(raw) yielding the realtime correction
* Otherwise, calculate the realtime correction similar to monotonic
* raw calculation
*/
if (discontinuity) {
corr_real = mul_u64_u32_div
(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
} else {
corr_real = (u64)ktime_to_ns(
ktime_sub(ts->sys_realtime, history->real));
ret = scale64_check_overflow(partial_history_cycles,
total_history_cycles, &corr_real);
if (ret)
return ret;
}
/* Fixup monotonic raw and real time time values */
if (interp_forward) {
ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
ts->sys_realtime = ktime_add_ns(history->real, corr_real);
} else {
ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
}
return 0;
}
/*
* cycle_between - true if test occurs chronologically between before and after
*/
static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
{
if (test > before && test < after)
return true;
if (test < before && before > after)
return true;
return false;
}
/**
* get_device_system_crosststamp - Synchronously capture system/device timestamp
* @get_time_fn: Callback to get simultaneous device time and
* system counter from the device driver
* @ctx: Context passed to get_time_fn()
* @history_begin: Historical reference point used to interpolate system
* time when counter provided by the driver is before the current interval
* @xtstamp: Receives simultaneously captured system and device time
*
* Reads a timestamp from a device and correlates it to system time
*/
int get_device_system_crosststamp(int (*get_time_fn)
(ktime_t *device_time,
struct system_counterval_t *sys_counterval,
void *ctx),
void *ctx,
struct system_time_snapshot *history_begin,
struct system_device_crosststamp *xtstamp)
{
struct system_counterval_t system_counterval;
struct timekeeper *tk = &tk_core.timekeeper;
cycle_t cycles, now, interval_start;
unsigned int clock_was_set_seq = 0;
ktime_t base_real, base_raw;
s64 nsec_real, nsec_raw;
u8 cs_was_changed_seq;
unsigned long seq;
bool do_interp;
int ret;
do {
seq = read_seqcount_begin(&tk_core.seq);
/*
* Try to synchronously capture device time and a system
* counter value calling back into the device driver
*/
ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
if (ret)
return ret;
/*
* Verify that the clocksource associated with the captured
* system counter value is the same as the currently installed
* timekeeper clocksource
*/
if (tk->tkr_mono.clock != system_counterval.cs)
return -ENODEV;
cycles = system_counterval.cycles;
/*
* Check whether the system counter value provided by the
* device driver is on the current timekeeping interval.
*/
now = tk->tkr_mono.read(tk->tkr_mono.clock);
interval_start = tk->tkr_mono.cycle_last;
if (!cycle_between(interval_start, cycles, now)) {
clock_was_set_seq = tk->clock_was_set_seq;
cs_was_changed_seq = tk->cs_was_changed_seq;
cycles = interval_start;
do_interp = true;
} else {
do_interp = false;
}
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
system_counterval.cycles);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
system_counterval.cycles);
} while (read_seqcount_retry(&tk_core.seq, seq));
xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
/*
* Interpolate if necessary, adjusting back from the start of the
* current interval
*/
if (do_interp) {
cycle_t partial_history_cycles, total_history_cycles;
bool discontinuity;
/*
* Check that the counter value occurs after the provided
* history reference and that the history doesn't cross a
* clocksource change
*/
if (!history_begin ||
!cycle_between(history_begin->cycles,
system_counterval.cycles, cycles) ||
history_begin->cs_was_changed_seq != cs_was_changed_seq)
return -EINVAL;
partial_history_cycles = cycles - system_counterval.cycles;
total_history_cycles = cycles - history_begin->cycles;
discontinuity =
history_begin->clock_was_set_seq != clock_was_set_seq;
ret = adjust_historical_crosststamp(history_begin,
partial_history_cycles,
total_history_cycles,
discontinuity, xtstamp);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
/**
* do_gettimeofday - Returns the time of day in a timeval