2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-11-29 04:54:49 +08:00

m68k: Assorted spelling fixes

- s/acccess/access/
  - s/accoding/according/
  - s/addad/added/
  - s/addreess/address/
  - s/allocatiom/allocation/
  - s/Assember/Assembler/
  - s/compactnes/compactness/
  - s/conneced/connected/
  - s/decending/descending/
  - s/diectly/directly/
  - s/diplacement/displacement/

Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
[geert: Squashed, fix arch/m68k/ifpsp060/src/pfpsp.S]
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
This commit is contained in:
Andrea Gelmini 2016-05-21 13:57:20 +02:00 committed by Geert Uytterhoeven
parent 1a695a905c
commit 86a8280a7f
11 changed files with 16 additions and 16 deletions

View File

@ -288,7 +288,7 @@ _clear_bss:
#endif
/*
* Assember start up done, start code proper.
* Assembler start up done, start code proper.
*/
jsr start_kernel /* start Linux kernel */

View File

@ -111,7 +111,7 @@ void __init config_BSP(char *commandp, int size)
/***************************************************************************/
/*
* Some 5272 based boards have the FEC ethernet diectly connected to
* Some 5272 based boards have the FEC ethernet directly connected to
* an ethernet switch. In this case we need to use the fixed phy type,
* and we need to declare it early in boot.
*/

View File

@ -42,7 +42,7 @@ static unsigned long iospace;
/*
* We need to be carefull probing on bus 0 (directly connected to host
* bridge). We should only acccess the well defined possible devices in
* bridge). We should only access the well defined possible devices in
* use, ignore aliases and the like.
*/
static unsigned char mcf_host_slot2sid[32] = {

View File

@ -10191,7 +10191,7 @@ xdnrm_con:
xdnrm_sd:
mov.l %a1,-(%sp)
tst.b LOCAL_EX(%a0) # is denorm pos or neg?
smi.b %d1 # set d0 accodingly
smi.b %d1 # set d0 accordingly
bsr.l unf_sub
mov.l (%sp)+,%a1
xdnrm_exit:
@ -10990,7 +10990,7 @@ src_qnan_m:
# routines where an instruction is selected by an index into
# a large jump table corresponding to a given instruction which
# has been decoded. Flow continues here where we now decode
# further accoding to the source operand type.
# further according to the source operand type.
#
global fsinh
@ -23196,14 +23196,14 @@ m_sign:
#
# 1. Branch on the sign of the adjusted exponent.
# 2p.(positive exp)
# 2. Check M16 and the digits in lwords 2 and 3 in decending order.
# 2. Check M16 and the digits in lwords 2 and 3 in descending order.
# 3. Add one for each zero encountered until a non-zero digit.
# 4. Subtract the count from the exp.
# 5. Check if the exp has crossed zero in #3 above; make the exp abs
# and set SE.
# 6. Multiply the mantissa by 10**count.
# 2n.(negative exp)
# 2. Check the digits in lwords 3 and 2 in decending order.
# 2. Check the digits in lwords 3 and 2 in descending order.
# 3. Add one for each zero encountered until a non-zero digit.
# 4. Add the count to the exp.
# 5. Check if the exp has crossed zero in #3 above; clear SE.

View File

@ -13156,14 +13156,14 @@ m_sign:
#
# 1. Branch on the sign of the adjusted exponent.
# 2p.(positive exp)
# 2. Check M16 and the digits in lwords 2 and 3 in decending order.
# 2. Check M16 and the digits in lwords 2 and 3 in descending order.
# 3. Add one for each zero encountered until a non-zero digit.
# 4. Subtract the count from the exp.
# 5. Check if the exp has crossed zero in #3 above; make the exp abs
# and set SE.
# 6. Multiply the mantissa by 10**count.
# 2n.(negative exp)
# 2. Check the digits in lwords 3 and 2 in decending order.
# 2. Check the digits in lwords 3 and 2 in descending order.
# 3. Add one for each zero encountered until a non-zero digit.
# 4. Add the count to the exp.
# 5. Check if the exp has crossed zero in #3 above; clear SE.

View File

@ -18,7 +18,7 @@
* AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000
* Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
*
* AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000
* AUG/25/2000 : added support for 8, 16 and 32-bit Single-Address-Mode (K)2000
* Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
*
* APR/18/2002 : added proper support for MCF5272 DMA controller.

View File

@ -123,10 +123,10 @@
/*
* I2C module.
*/
#define MCFI2C_BASE0 (MCF_MBAR + 0x280) /* Base addreess I2C0 */
#define MCFI2C_BASE0 (MCF_MBAR + 0x280) /* Base address I2C0 */
#define MCFI2C_SIZE0 0x20 /* Register set size */
#define MCFI2C_BASE1 (MCF_MBAR2 + 0x440) /* Base addreess I2C1 */
#define MCFI2C_BASE1 (MCF_MBAR2 + 0x440) /* Base address I2C1 */
#define MCFI2C_SIZE1 0x20 /* Register set size */
/*

View File

@ -38,7 +38,7 @@
/*
* MMU Operation register.
*/
#define MMUOR_UAA 0x00000001 /* Update allocatiom address */
#define MMUOR_UAA 0x00000001 /* Update allocation address */
#define MMUOR_ACC 0x00000002 /* TLB access */
#define MMUOR_RD 0x00000004 /* TLB access read */
#define MMUOR_WR 0x00000000 /* TLB access write */

View File

@ -1,6 +1,6 @@
/*
* Q40 master Chip Control
* RTC stuff merged for compactnes..
* RTC stuff merged for compactness.
*/
#ifndef _Q40_MASTER_H

View File

@ -60,7 +60,7 @@
*
* The host talks to the IOPs using a rather simple message-passing scheme via
* a shared memory area in the IOP RAM. Each IOP has seven "channels"; each
* channel is conneced to a specific software driver on the IOP. For example
* channel is connected to a specific software driver on the IOP. For example
* on the SCC IOP there is one channel for each serial port. Each channel has
* an incoming and and outgoing message queue with a depth of one.
*

View File

@ -130,7 +130,7 @@ do_fscc=0
bfextu %d2{#13,#3},%d0
.endm
| decode the 8bit diplacement from the brief extension word
| decode the 8bit displacement from the brief extension word
.macro fp_decode_disp8
move.b %d2,%d0
ext.w %d0