2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 02:54:00 +08:00

f2fs: adjust free mem size to flush dentry blocks

If so many dirty dentry blocks are cached, not reached to the flush condition,
we should fall into livelock in balance_dirty_pages.
So, let's consider the mem size for the condition.

Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
This commit is contained in:
Jaegeuk Kim 2014-04-16 10:47:06 +09:00
parent e8271fa390
commit 6fb03f3a40
4 changed files with 32 additions and 21 deletions

View File

@ -863,7 +863,8 @@ static int f2fs_write_data_pages(struct address_space *mapping,
return 0;
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
get_dirty_dents(inode) < nr_pages_to_skip(sbi, DATA))
get_dirty_dents(inode) < nr_pages_to_skip(sbi, DATA) &&
available_free_memory(sbi, DIRTY_DENTS))
goto skip_write;
diff = nr_pages_to_write(sbi, DATA, wbc);

View File

@ -1143,6 +1143,7 @@ f2fs_hash_t f2fs_dentry_hash(const char *, size_t);
struct dnode_of_data;
struct node_info;
bool available_free_memory(struct f2fs_sb_info *, int);
int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
bool fsync_mark_done(struct f2fs_sb_info *, nid_t);
void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);

View File

@ -26,20 +26,26 @@
static struct kmem_cache *nat_entry_slab;
static struct kmem_cache *free_nid_slab;
static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
bool available_free_memory(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct sysinfo val;
unsigned long mem_size = 0;
bool res = false;
si_meminfo(&val);
if (type == FREE_NIDS)
mem_size = nm_i->fcnt * sizeof(struct free_nid);
else if (type == NAT_ENTRIES)
mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
mem_size >>= 12;
/* give 50:50 memory for free nids and nat caches respectively */
return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
/* give 25%, 25%, 50% memory for each components respectively */
if (type == FREE_NIDS) {
mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
} else if (type == NAT_ENTRIES) {
mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
} else if (type == DIRTY_DENTS) {
mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
}
return res;
}
static void clear_node_page_dirty(struct page *page)
@ -241,7 +247,7 @@ int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
if (available_free_memory(nm_i, NAT_ENTRIES))
if (available_free_memory(sbi, NAT_ENTRIES))
return 0;
write_lock(&nm_i->nat_tree_lock);
@ -1310,13 +1316,14 @@ static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
radix_tree_delete(&nm_i->free_nid_root, i->nid);
}
static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i;
struct nat_entry *ne;
bool allocated = false;
if (!available_free_memory(nm_i, FREE_NIDS))
if (!available_free_memory(sbi, FREE_NIDS))
return -1;
/* 0 nid should not be used */
@ -1369,9 +1376,10 @@ static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
kmem_cache_free(free_nid_slab, i);
}
static void scan_nat_page(struct f2fs_nm_info *nm_i,
static void scan_nat_page(struct f2fs_sb_info *sbi,
struct page *nat_page, nid_t start_nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct f2fs_nat_block *nat_blk = page_address(nat_page);
block_t blk_addr;
int i;
@ -1386,7 +1394,7 @@ static void scan_nat_page(struct f2fs_nm_info *nm_i,
blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
f2fs_bug_on(blk_addr == NEW_ADDR);
if (blk_addr == NULL_ADDR) {
if (add_free_nid(nm_i, start_nid, true) < 0)
if (add_free_nid(sbi, start_nid, true) < 0)
break;
}
}
@ -1410,7 +1418,7 @@ static void build_free_nids(struct f2fs_sb_info *sbi)
while (1) {
struct page *page = get_current_nat_page(sbi, nid);
scan_nat_page(nm_i, page, nid);
scan_nat_page(sbi, page, nid);
f2fs_put_page(page, 1);
nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
@ -1430,7 +1438,7 @@ static void build_free_nids(struct f2fs_sb_info *sbi)
block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
nid = le32_to_cpu(nid_in_journal(sum, i));
if (addr == NULL_ADDR)
add_free_nid(nm_i, nid, true);
add_free_nid(sbi, nid, true);
else
remove_free_nid(nm_i, nid);
}
@ -1507,7 +1515,7 @@ void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
spin_lock(&nm_i->free_nid_list_lock);
i = __lookup_free_nid_list(nm_i, nid);
f2fs_bug_on(!i || i->state != NID_ALLOC);
if (!available_free_memory(nm_i, FREE_NIDS)) {
if (!available_free_memory(sbi, FREE_NIDS)) {
__del_from_free_nid_list(nm_i, i);
need_free = true;
} else {
@ -1835,7 +1843,7 @@ flush_now:
}
if (nat_get_blkaddr(ne) == NULL_ADDR &&
add_free_nid(NM_I(sbi), nid, false) <= 0) {
add_free_nid(sbi, nid, false) <= 0) {
write_lock(&nm_i->nat_tree_lock);
__del_from_nat_cache(nm_i, ne);
write_unlock(&nm_i->nat_tree_lock);

View File

@ -83,9 +83,10 @@ static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
raw_ne->version = ni->version;
}
enum nid_type {
enum mem_type {
FREE_NIDS, /* indicates the free nid list */
NAT_ENTRIES /* indicates the cached nat entry */
NAT_ENTRIES, /* indicates the cached nat entry */
DIRTY_DENTS /* indicates dirty dentry pages */
};
/*