2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 21:24:00 +08:00

ARM: sun8i: smp: Add support for A83T

Add the support for A83T.

A83T SoC has an additional register than A80 to handle CPU configurations:
R_CPUS_CFG. Information about the register comes from Allwinner's BSP
driver.
An important difference is the Power Off Gating register for clusters
which is BIT(4) in case of SUN9I-A80 and BIT(0) in case of SUN8I-A83T.
There is also a bit swap between sun8i-a83t and sun9i-a80 that must be
handled.

Signed-off-by: Mylène Josserand <mylene.josserand@bootlin.com>
Acked-by: Maxime Ripard <maxime.ripard@bootlin.com>
Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com>
This commit is contained in:
Mylène Josserand 2018-05-04 21:05:43 +02:00 committed by Maxime Ripard
parent 1631090e34
commit 6961275e72
2 changed files with 137 additions and 16 deletions

View File

@ -51,7 +51,7 @@ config MACH_SUN9I
config ARCH_SUNXI_MC_SMP config ARCH_SUNXI_MC_SMP
bool bool
depends on SMP depends on SMP
default MACH_SUN9I default MACH_SUN9I || MACH_SUN8I
select ARM_CCI400_PORT_CTRL select ARM_CCI400_PORT_CTRL
select ARM_CPU_SUSPEND select ARM_CPU_SUSPEND

View File

@ -55,22 +55,31 @@
#define CPUCFG_CX_RST_CTRL_L2_RST BIT(8) #define CPUCFG_CX_RST_CTRL_L2_RST BIT(8)
#define CPUCFG_CX_RST_CTRL_CX_RST(n) BIT(4 + (n)) #define CPUCFG_CX_RST_CTRL_CX_RST(n) BIT(4 + (n))
#define CPUCFG_CX_RST_CTRL_CORE_RST(n) BIT(n) #define CPUCFG_CX_RST_CTRL_CORE_RST(n) BIT(n)
#define CPUCFG_CX_RST_CTRL_CORE_RST_ALL (0xf << 0)
#define PRCM_CPU_PO_RST_CTRL(c) (0x4 + 0x4 * (c)) #define PRCM_CPU_PO_RST_CTRL(c) (0x4 + 0x4 * (c))
#define PRCM_CPU_PO_RST_CTRL_CORE(n) BIT(n) #define PRCM_CPU_PO_RST_CTRL_CORE(n) BIT(n)
#define PRCM_CPU_PO_RST_CTRL_CORE_ALL 0xf #define PRCM_CPU_PO_RST_CTRL_CORE_ALL 0xf
#define PRCM_PWROFF_GATING_REG(c) (0x100 + 0x4 * (c)) #define PRCM_PWROFF_GATING_REG(c) (0x100 + 0x4 * (c))
/* The power off register for clusters are different from a80 and a83t */
#define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I BIT(0)
#define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I BIT(4) #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I BIT(4)
#define PRCM_PWROFF_GATING_REG_CORE(n) BIT(n) #define PRCM_PWROFF_GATING_REG_CORE(n) BIT(n)
#define PRCM_PWR_SWITCH_REG(c, cpu) (0x140 + 0x10 * (c) + 0x4 * (cpu)) #define PRCM_PWR_SWITCH_REG(c, cpu) (0x140 + 0x10 * (c) + 0x4 * (cpu))
#define PRCM_CPU_SOFT_ENTRY_REG 0x164 #define PRCM_CPU_SOFT_ENTRY_REG 0x164
/* R_CPUCFG registers, specific to sun8i-a83t */
#define R_CPUCFG_CLUSTER_PO_RST_CTRL(c) (0x30 + (c) * 0x4)
#define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n) BIT(n)
#define R_CPUCFG_CPU_SOFT_ENTRY_REG 0x01a4
#define CPU0_SUPPORT_HOTPLUG_MAGIC0 0xFA50392F #define CPU0_SUPPORT_HOTPLUG_MAGIC0 0xFA50392F
#define CPU0_SUPPORT_HOTPLUG_MAGIC1 0x790DCA3A #define CPU0_SUPPORT_HOTPLUG_MAGIC1 0x790DCA3A
static void __iomem *cpucfg_base; static void __iomem *cpucfg_base;
static void __iomem *prcm_base; static void __iomem *prcm_base;
static void __iomem *sram_b_smp_base; static void __iomem *sram_b_smp_base;
static void __iomem *r_cpucfg_base;
extern void sunxi_mc_smp_secondary_startup(void); extern void sunxi_mc_smp_secondary_startup(void);
extern void sunxi_mc_smp_resume(void); extern void sunxi_mc_smp_resume(void);
@ -161,6 +170,16 @@ static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu); reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu);
writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
if (is_a83t) {
/* assert cpu power-on reset */
reg = readl(r_cpucfg_base +
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
reg &= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu));
writel(reg, r_cpucfg_base +
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
udelay(10);
}
/* Cortex-A7: hold L1 reset disable signal low */ /* Cortex-A7: hold L1 reset disable signal low */
if (!sunxi_core_is_cortex_a15(cpu, cluster)) { if (!sunxi_core_is_cortex_a15(cpu, cluster)) {
reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
@ -184,17 +203,38 @@ static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
/* open power switch */ /* open power switch */
sunxi_cpu_power_switch_set(cpu, cluster, true); sunxi_cpu_power_switch_set(cpu, cluster, true);
/* Handle A83T bit swap */
if (is_a83t) {
if (cpu == 0)
cpu = 4;
}
/* clear processor power gate */ /* clear processor power gate */
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu); reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu);
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
udelay(20); udelay(20);
/* Handle A83T bit swap */
if (is_a83t) {
if (cpu == 4)
cpu = 0;
}
/* de-assert processor power-on reset */ /* de-assert processor power-on reset */
reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu); reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu);
writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
if (is_a83t) {
reg = readl(r_cpucfg_base +
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
reg |= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu);
writel(reg, r_cpucfg_base +
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
udelay(10);
}
/* de-assert all processor resets */ /* de-assert all processor resets */
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu); reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
@ -216,6 +256,14 @@ static int sunxi_cluster_powerup(unsigned int cluster)
if (cluster >= SUNXI_NR_CLUSTERS) if (cluster >= SUNXI_NR_CLUSTERS)
return -EINVAL; return -EINVAL;
/* For A83T, assert cluster cores resets */
if (is_a83t) {
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL; /* Core Reset */
writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
udelay(10);
}
/* assert ACINACTM */ /* assert ACINACTM */
reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
reg |= CPUCFG_CX_CTRL_REG1_ACINACTM; reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
@ -226,6 +274,16 @@ static int sunxi_cluster_powerup(unsigned int cluster)
reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL; reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL;
writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
/* assert cluster cores resets */
if (is_a83t) {
reg = readl(r_cpucfg_base +
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;
writel(reg, r_cpucfg_base +
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
udelay(10);
}
/* assert cluster resets */ /* assert cluster resets */
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST; reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
@ -256,6 +314,9 @@ static int sunxi_cluster_powerup(unsigned int cluster)
/* clear cluster power gate */ /* clear cluster power gate */
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
if (is_a83t)
reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
else
reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I; reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
udelay(20); udelay(20);
@ -453,6 +514,9 @@ static int sunxi_cluster_powerdown(unsigned int cluster)
/* gate cluster power */ /* gate cluster power */
pr_debug("%s: gate cluster power\n", __func__); pr_debug("%s: gate cluster power\n", __func__);
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
if (is_a83t)
reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
else
reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I; reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
udelay(20); udelay(20);
@ -535,8 +599,12 @@ out:
return !ret; return !ret;
} }
static bool sunxi_mc_smp_cpu_can_disable(unsigned int __unused) static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu)
{ {
/* CPU0 hotplug not handled for sun8i-a83t */
if (is_a83t)
if (cpu == 0)
return false;
return true; return true;
} }
#endif #endif
@ -619,6 +687,7 @@ struct sunxi_mc_smp_nodes {
struct device_node *prcm_node; struct device_node *prcm_node;
struct device_node *cpucfg_node; struct device_node *cpucfg_node;
struct device_node *sram_node; struct device_node *sram_node;
struct device_node *r_cpucfg_node;
}; };
/* This structure holds SoC-specific bits tied to an enable-method string. */ /* This structure holds SoC-specific bits tied to an enable-method string. */
@ -633,6 +702,7 @@ static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes)
of_node_put(nodes->prcm_node); of_node_put(nodes->prcm_node);
of_node_put(nodes->cpucfg_node); of_node_put(nodes->cpucfg_node);
of_node_put(nodes->sram_node); of_node_put(nodes->sram_node);
of_node_put(nodes->r_cpucfg_node);
memset(nodes, 0, sizeof(*nodes)); memset(nodes, 0, sizeof(*nodes));
} }
@ -662,11 +732,42 @@ static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
return 0; return 0;
} }
static int __init sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
{
nodes->prcm_node = of_find_compatible_node(NULL, NULL,
"allwinner,sun8i-a83t-r-ccu");
if (!nodes->prcm_node) {
pr_err("%s: PRCM not available\n", __func__);
return -ENODEV;
}
nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
"allwinner,sun8i-a83t-cpucfg");
if (!nodes->cpucfg_node) {
pr_err("%s: CPUCFG not available\n", __func__);
return -ENODEV;
}
nodes->r_cpucfg_node = of_find_compatible_node(NULL, NULL,
"allwinner,sun8i-a83t-r-cpucfg");
if (!nodes->r_cpucfg_node) {
pr_err("%s: RCPUCFG not available\n", __func__);
return -ENODEV;
}
return 0;
}
static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = { static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = {
{ {
.enable_method = "allwinner,sun9i-a80-smp", .enable_method = "allwinner,sun9i-a80-smp",
.get_smp_nodes = sun9i_a80_get_smp_nodes, .get_smp_nodes = sun9i_a80_get_smp_nodes,
}, },
{
.enable_method = "allwinner,sun8i-a83t-smp",
.get_smp_nodes = sun8i_a83t_get_smp_nodes,
.is_a83t = true,
},
}; };
static int __init sunxi_mc_smp_init(void) static int __init sunxi_mc_smp_init(void)
@ -674,6 +775,7 @@ static int __init sunxi_mc_smp_init(void)
struct sunxi_mc_smp_nodes nodes = { 0 }; struct sunxi_mc_smp_nodes nodes = { 0 };
struct device_node *node; struct device_node *node;
struct resource res; struct resource res;
void __iomem *addr;
int i, ret; int i, ret;
/* /*
@ -738,6 +840,16 @@ static int __init sunxi_mc_smp_init(void)
goto err_unmap_prcm; goto err_unmap_prcm;
} }
if (is_a83t) {
r_cpucfg_base = of_io_request_and_map(nodes.r_cpucfg_node,
0, "sunxi-mc-smp");
if (IS_ERR(r_cpucfg_base)) {
ret = PTR_ERR(r_cpucfg_base);
pr_err("%s: failed to map R-CPUCFG registers\n",
__func__);
goto err_unmap_release_cpucfg;
}
} else {
sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0, sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0,
"sunxi-mc-smp"); "sunxi-mc-smp");
if (IS_ERR(sram_b_smp_base)) { if (IS_ERR(sram_b_smp_base)) {
@ -745,21 +857,25 @@ static int __init sunxi_mc_smp_init(void)
pr_err("%s: failed to map secure SRAM\n", __func__); pr_err("%s: failed to map secure SRAM\n", __func__);
goto err_unmap_release_cpucfg; goto err_unmap_release_cpucfg;
} }
}
/* Configure CCI-400 for boot cluster */ /* Configure CCI-400 for boot cluster */
ret = sunxi_mc_smp_loopback(); ret = sunxi_mc_smp_loopback();
if (ret) { if (ret) {
pr_err("%s: failed to configure boot cluster: %d\n", pr_err("%s: failed to configure boot cluster: %d\n",
__func__, ret); __func__, ret);
goto err_unmap_release_secure_sram; goto err_unmap_release_sram_rcpucfg;
} }
/* We don't need the device nodes anymore */ /* We don't need the device nodes anymore */
sunxi_mc_smp_put_nodes(&nodes); sunxi_mc_smp_put_nodes(&nodes);
/* Set the hardware entry point address */ /* Set the hardware entry point address */
writel(__pa_symbol(sunxi_mc_smp_secondary_startup), if (is_a83t)
prcm_base + PRCM_CPU_SOFT_ENTRY_REG); addr = r_cpucfg_base + R_CPUCFG_CPU_SOFT_ENTRY_REG;
else
addr = prcm_base + PRCM_CPU_SOFT_ENTRY_REG;
writel(__pa_symbol(sunxi_mc_smp_secondary_startup), addr);
/* Actually enable multi cluster SMP */ /* Actually enable multi cluster SMP */
smp_set_ops(&sunxi_mc_smp_smp_ops); smp_set_ops(&sunxi_mc_smp_smp_ops);
@ -768,9 +884,14 @@ static int __init sunxi_mc_smp_init(void)
return 0; return 0;
err_unmap_release_secure_sram: err_unmap_release_sram_rcpucfg:
if (is_a83t) {
iounmap(r_cpucfg_base);
of_address_to_resource(nodes.r_cpucfg_node, 0, &res);
} else {
iounmap(sram_b_smp_base); iounmap(sram_b_smp_base);
of_address_to_resource(nodes.sram_node, 0, &res); of_address_to_resource(nodes.sram_node, 0, &res);
}
release_mem_region(res.start, resource_size(&res)); release_mem_region(res.start, resource_size(&res));
err_unmap_release_cpucfg: err_unmap_release_cpucfg:
iounmap(cpucfg_base); iounmap(cpucfg_base);