2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 02:24:21 +08:00

Merge back earlier cpufreq material.

Conflicts:
	arch/mips/loongson/lemote-2f/clock.c
	drivers/cpufreq/intel_pstate.c
This commit is contained in:
Rafael J. Wysocki 2014-06-03 15:03:27 +02:00
commit 5ece239918
46 changed files with 576 additions and 556 deletions

View File

@ -128,7 +128,7 @@ Description: Discover cpuidle policy and mechanism
What: /sys/devices/system/cpu/cpu#/cpufreq/*
Date: pre-git history
Contact: cpufreq@vger.kernel.org
Contact: linux-pm@vger.kernel.org
Description: Discover and change clock speed of CPUs
Clock scaling allows you to change the clock speed of the
@ -146,7 +146,7 @@ Description: Discover and change clock speed of CPUs
What: /sys/devices/system/cpu/cpu#/cpufreq/freqdomain_cpus
Date: June 2013
Contact: cpufreq@vger.kernel.org
Contact: linux-pm@vger.kernel.org
Description: Discover CPUs in the same CPU frequency coordination domain
freqdomain_cpus is the list of CPUs (online+offline) that share

View File

@ -20,6 +20,7 @@ Contents:
---------
1. CPUFreq core and interfaces
2. CPUFreq notifiers
3. CPUFreq Table Generation with Operating Performance Point (OPP)
1. General Information
=======================
@ -92,3 +93,31 @@ values:
cpu - number of the affected CPU
old - old frequency
new - new frequency
3. CPUFreq Table Generation with Operating Performance Point (OPP)
==================================================================
For details about OPP, see Documentation/power/opp.txt
dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with
cpufreq_frequency_table_cpuinfo which is provided with the list of
frequencies that are available for operation. This function provides
a ready to use conversion routine to translate the OPP layer's internal
information about the available frequencies into a format readily
providable to cpufreq.
WARNING: Do not use this function in interrupt context.
Example:
soc_pm_init()
{
/* Do things */
r = dev_pm_opp_init_cpufreq_table(dev, &freq_table);
if (!r)
cpufreq_frequency_table_cpuinfo(policy, freq_table);
/* Do other things */
}
NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
addition to CONFIG_PM_OPP.
dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table

View File

@ -228,3 +228,22 @@ is the corresponding frequency table helper for the ->target
stage. Just pass the values to this function, and the unsigned int
index returns the number of the frequency table entry which contains
the frequency the CPU shall be set to.
The following macros can be used as iterators over cpufreq_frequency_table:
cpufreq_for_each_entry(pos, table) - iterates over all entries of frequency
table.
cpufreq-for_each_valid_entry(pos, table) - iterates over all entries,
excluding CPUFREQ_ENTRY_INVALID frequencies.
Use arguments "pos" - a cpufreq_frequency_table * as a loop cursor and
"table" - the cpufreq_frequency_table * you want to iterate over.
For example:
struct cpufreq_frequency_table *pos, *driver_freq_table;
cpufreq_for_each_entry(pos, driver_freq_table) {
/* Do something with pos */
pos->frequency = ...
}

View File

@ -35,8 +35,8 @@ Mailing List
------------
There is a CPU frequency changing CVS commit and general list where
you can report bugs, problems or submit patches. To post a message,
send an email to cpufreq@vger.kernel.org, to subscribe go to
http://vger.kernel.org/vger-lists.html#cpufreq and follow the
send an email to linux-pm@vger.kernel.org, to subscribe go to
http://vger.kernel.org/vger-lists.html#linux-pm and follow the
instructions there.
Links

View File

@ -10,8 +10,7 @@ Contents
3. OPP Search Functions
4. OPP Availability Control Functions
5. OPP Data Retrieval Functions
6. Cpufreq Table Generation
7. Data Structures
6. Data Structures
1. Introduction
===============
@ -72,7 +71,6 @@ operations until that OPP could be re-enabled if possible.
OPP library facilitates this concept in it's implementation. The following
operational functions operate only on available opps:
opp_find_freq_{ceil, floor}, dev_pm_opp_get_voltage, dev_pm_opp_get_freq, dev_pm_opp_get_opp_count
and dev_pm_opp_init_cpufreq_table
dev_pm_opp_find_freq_exact is meant to be used to find the opp pointer which can then
be used for dev_pm_opp_enable/disable functions to make an opp available as required.
@ -96,10 +94,9 @@ using RCU read locks. The opp_find_freq_{exact,ceil,floor},
opp_get_{voltage, freq, opp_count} fall into this category.
opp_{add,enable,disable} are updaters which use mutex and implement it's own
RCU locking mechanisms. dev_pm_opp_init_cpufreq_table acts as an updater and uses
mutex to implment RCU updater strategy. These functions should *NOT* be called
under RCU locks and other contexts that prevent blocking functions in RCU or
mutex operations from working.
RCU locking mechanisms. These functions should *NOT* be called under RCU locks
and other contexts that prevent blocking functions in RCU or mutex operations
from working.
2. Initial OPP List Registration
================================
@ -311,34 +308,7 @@ dev_pm_opp_get_opp_count - Retrieve the number of available opps for a device
/* Do other things */
}
6. Cpufreq Table Generation
===========================
dev_pm_opp_init_cpufreq_table - cpufreq framework typically is initialized with
cpufreq_frequency_table_cpuinfo which is provided with the list of
frequencies that are available for operation. This function provides
a ready to use conversion routine to translate the OPP layer's internal
information about the available frequencies into a format readily
providable to cpufreq.
WARNING: Do not use this function in interrupt context.
Example:
soc_pm_init()
{
/* Do things */
r = dev_pm_opp_init_cpufreq_table(dev, &freq_table);
if (!r)
cpufreq_frequency_table_cpuinfo(policy, freq_table);
/* Do other things */
}
NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
addition to CONFIG_PM as power management feature is required to
dynamically scale voltage and frequency in a system.
dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table
7. Data Structures
6. Data Structures
==================
Typically an SoC contains multiple voltage domains which are variable. Each
domain is represented by a device pointer. The relationship to OPP can be

View File

@ -2410,7 +2410,6 @@ F: drivers/net/ethernet/ti/cpmac.c
CPU FREQUENCY DRIVERS
M: Rafael J. Wysocki <rjw@rjwysocki.net>
M: Viresh Kumar <viresh.kumar@linaro.org>
L: cpufreq@vger.kernel.org
L: linux-pm@vger.kernel.org
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm.git
@ -2421,7 +2420,6 @@ F: include/linux/cpufreq.h
CPU FREQUENCY DRIVERS - ARM BIG LITTLE
M: Viresh Kumar <viresh.kumar@linaro.org>
M: Sudeep Holla <sudeep.holla@arm.com>
L: cpufreq@vger.kernel.org
L: linux-pm@vger.kernel.org
W: http://www.arm.com/products/processors/technologies/biglittleprocessing.php
S: Maintained

View File

@ -1092,20 +1092,21 @@ int da850_register_cpufreq(char *async_clk)
static int da850_round_armrate(struct clk *clk, unsigned long rate)
{
int i, ret = 0, diff;
int ret = 0, diff;
unsigned int best = (unsigned int) -1;
struct cpufreq_frequency_table *table = cpufreq_info.freq_table;
struct cpufreq_frequency_table *pos;
rate /= 1000; /* convert to kHz */
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
diff = table[i].frequency - rate;
cpufreq_for_each_entry(pos, table) {
diff = pos->frequency - rate;
if (diff < 0)
diff = -diff;
if (diff < best) {
best = diff;
ret = table[i].frequency;
ret = pos->frequency;
}
}

View File

@ -91,10 +91,9 @@ EXPORT_SYMBOL(clk_put);
int clk_set_rate(struct clk *clk, unsigned long rate)
{
unsigned int rate_khz = rate / 1000;
struct cpufreq_frequency_table *pos;
int ret = 0;
int regval;
int i;
if (likely(clk->ops && clk->ops->set_rate)) {
unsigned long flags;
@ -107,22 +106,16 @@ int clk_set_rate(struct clk *clk, unsigned long rate)
if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
propagate_rate(clk);
for (i = 0; loongson2_clockmod_table[i].frequency != CPUFREQ_TABLE_END;
i++) {
if (loongson2_clockmod_table[i].frequency ==
CPUFREQ_ENTRY_INVALID)
continue;
if (rate_khz == loongson2_clockmod_table[i].frequency)
cpufreq_for_each_valid_entry(pos, loongson2_clockmod_table)
if (rate == pos->frequency)
break;
}
if (rate_khz != loongson2_clockmod_table[i].frequency)
if (rate != pos->frequency)
return -ENOTSUPP;
clk->rate = rate;
regval = LOONGSON_CHIPCFG0;
regval = (regval & ~0x7) |
(loongson2_clockmod_table[i].driver_data - 1);
regval = (regval & ~0x7) | (pos->driver_data - 1);
LOONGSON_CHIPCFG0 = regval;
return ret;

View File

@ -15,7 +15,6 @@
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/rculist.h>
@ -596,96 +595,6 @@ int dev_pm_opp_disable(struct device *dev, unsigned long freq)
}
EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
#ifdef CONFIG_CPU_FREQ
/**
* dev_pm_opp_init_cpufreq_table() - create a cpufreq table for a device
* @dev: device for which we do this operation
* @table: Cpufreq table returned back to caller
*
* Generate a cpufreq table for a provided device- this assumes that the
* opp list is already initialized and ready for usage.
*
* This function allocates required memory for the cpufreq table. It is
* expected that the caller does the required maintenance such as freeing
* the table as required.
*
* Returns -EINVAL for bad pointers, -ENODEV if the device is not found, -ENOMEM
* if no memory available for the operation (table is not populated), returns 0
* if successful and table is populated.
*
* WARNING: It is important for the callers to ensure refreshing their copy of
* the table if any of the mentioned functions have been invoked in the interim.
*
* Locking: The internal device_opp and opp structures are RCU protected.
* To simplify the logic, we pretend we are updater and hold relevant mutex here
* Callers should ensure that this function is *NOT* called under RCU protection
* or in contexts where mutex locking cannot be used.
*/
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
struct device_opp *dev_opp;
struct dev_pm_opp *opp;
struct cpufreq_frequency_table *freq_table;
int i = 0;
/* Pretend as if I am an updater */
mutex_lock(&dev_opp_list_lock);
dev_opp = find_device_opp(dev);
if (IS_ERR(dev_opp)) {
int r = PTR_ERR(dev_opp);
mutex_unlock(&dev_opp_list_lock);
dev_err(dev, "%s: Device OPP not found (%d)\n", __func__, r);
return r;
}
freq_table = kzalloc(sizeof(struct cpufreq_frequency_table) *
(dev_pm_opp_get_opp_count(dev) + 1), GFP_KERNEL);
if (!freq_table) {
mutex_unlock(&dev_opp_list_lock);
dev_warn(dev, "%s: Unable to allocate frequency table\n",
__func__);
return -ENOMEM;
}
list_for_each_entry(opp, &dev_opp->opp_list, node) {
if (opp->available) {
freq_table[i].driver_data = i;
freq_table[i].frequency = opp->rate / 1000;
i++;
}
}
mutex_unlock(&dev_opp_list_lock);
freq_table[i].driver_data = i;
freq_table[i].frequency = CPUFREQ_TABLE_END;
*table = &freq_table[0];
return 0;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_init_cpufreq_table);
/**
* dev_pm_opp_free_cpufreq_table() - free the cpufreq table
* @dev: device for which we do this operation
* @table: table to free
*
* Free up the table allocated by dev_pm_opp_init_cpufreq_table
*/
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
if (!table)
return;
kfree(*table);
*table = NULL;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_free_cpufreq_table);
#endif /* CONFIG_CPU_FREQ */
/**
* dev_pm_opp_get_notifier() - find notifier_head of the device with opp
* @dev: device pointer used to lookup device OPPs.

View File

@ -5,7 +5,8 @@
# big LITTLE core layer and glue drivers
config ARM_BIG_LITTLE_CPUFREQ
tristate "Generic ARM big LITTLE CPUfreq driver"
depends on ARM && BIG_LITTLE && ARM_CPU_TOPOLOGY && HAVE_CLK
depends on (BIG_LITTLE && ARM_CPU_TOPOLOGY) || (ARM64 && SMP)
depends on HAVE_CLK
select PM_OPP
help
This enables the Generic CPUfreq driver for ARM big.LITTLE platforms.
@ -85,7 +86,7 @@ config ARM_EXYNOS_CPU_FREQ_BOOST_SW
It allows usage of special frequencies for Samsung Exynos
processors if thermal conditions are appropriate.
It reguires, for safe operation, thermal framework with properly
It requires, for safe operation, thermal framework with properly
defined trip points.
If in doubt, say N.
@ -186,7 +187,7 @@ config ARM_S3C2416_CPUFREQ
S3C2450 SoC. The S3C2416 supports changing the rate of the
armdiv clock source and also entering a so called dynamic
voltage scaling mode in which it is possible to reduce the
core voltage of the cpu.
core voltage of the CPU.
If in doubt, say N.

View File

@ -10,7 +10,7 @@ config X86_INTEL_PSTATE
The driver implements an internal governor and will become
the scaling driver and governor for Sandy bridge processors.
When this driver is enabled it will become the perferred
When this driver is enabled it will become the preferred
scaling driver for Sandy bridge processors.
If in doubt, say N.
@ -52,7 +52,7 @@ config X86_ACPI_CPUFREQ_CPB
help
The powernow-k8 driver used to provide a sysfs knob called "cpb"
to disable the Core Performance Boosting feature of AMD CPUs. This
file has now been superseeded by the more generic "boost" entry.
file has now been superseded by the more generic "boost" entry.
By enabling this option the acpi_cpufreq driver provides the old
entry in addition to the new boost ones, for compatibility reasons.

View File

@ -1,5 +1,7 @@
# CPUfreq core
obj-$(CONFIG_CPU_FREQ) += cpufreq.o freq_table.o
obj-$(CONFIG_PM_OPP) += cpufreq_opp.o
# CPUfreq stats
obj-$(CONFIG_CPU_FREQ_STAT) += cpufreq_stats.o

View File

@ -213,7 +213,7 @@ static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
{
int i;
struct cpufreq_frequency_table *pos;
struct acpi_processor_performance *perf;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
@ -223,10 +223,9 @@ static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
perf = data->acpi_data;
for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
if (msr == perf->states[data->freq_table[i].driver_data].status)
return data->freq_table[i].frequency;
}
cpufreq_for_each_entry(pos, data->freq_table)
if (msr == perf->states[pos->driver_data].status)
return pos->frequency;
return data->freq_table[0].frequency;
}

View File

@ -226,22 +226,22 @@ static inline u32 get_table_count(struct cpufreq_frequency_table *table)
/* get the minimum frequency in the cpufreq_frequency_table */
static inline u32 get_table_min(struct cpufreq_frequency_table *table)
{
int i;
struct cpufreq_frequency_table *pos;
uint32_t min_freq = ~0;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
if (table[i].frequency < min_freq)
min_freq = table[i].frequency;
cpufreq_for_each_entry(pos, table)
if (pos->frequency < min_freq)
min_freq = pos->frequency;
return min_freq;
}
/* get the maximum frequency in the cpufreq_frequency_table */
static inline u32 get_table_max(struct cpufreq_frequency_table *table)
{
int i;
struct cpufreq_frequency_table *pos;
uint32_t max_freq = 0;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
if (table[i].frequency > max_freq)
max_freq = table[i].frequency;
cpufreq_for_each_entry(pos, table)
if (pos->frequency > max_freq)
max_freq = pos->frequency;
return max_freq;
}

View File

@ -379,7 +379,7 @@ static struct cpufreq_driver nforce2_driver = {
};
#ifdef MODULE
static DEFINE_PCI_DEVICE_TABLE(nforce2_ids) = {
static const struct pci_device_id nforce2_ids[] = {
{ PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2 },
{}
};

View File

@ -354,6 +354,18 @@ static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs)
{
/*
* Catch double invocations of _begin() which lead to self-deadlock.
* ASYNC_NOTIFICATION drivers are left out because the cpufreq core
* doesn't invoke _begin() on their behalf, and hence the chances of
* double invocations are very low. Moreover, there are scenarios
* where these checks can emit false-positive warnings in these
* drivers; so we avoid that by skipping them altogether.
*/
WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
&& current == policy->transition_task);
wait:
wait_event(policy->transition_wait, !policy->transition_ongoing);
@ -365,6 +377,7 @@ wait:
}
policy->transition_ongoing = true;
policy->transition_task = current;
spin_unlock(&policy->transition_lock);
@ -381,6 +394,7 @@ void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
cpufreq_notify_post_transition(policy, freqs, transition_failed);
policy->transition_ongoing = false;
policy->transition_task = NULL;
wake_up(&policy->transition_wait);
}
@ -1802,12 +1816,43 @@ EXPORT_SYMBOL(cpufreq_unregister_notifier);
* GOVERNORS *
*********************************************************************/
static int __target_index(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *freq_table, int index)
{
struct cpufreq_freqs freqs;
int retval = -EINVAL;
bool notify;
notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
if (notify) {
freqs.old = policy->cur;
freqs.new = freq_table[index].frequency;
freqs.flags = 0;
pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
__func__, policy->cpu, freqs.old, freqs.new);
cpufreq_freq_transition_begin(policy, &freqs);
}
retval = cpufreq_driver->target_index(policy, index);
if (retval)
pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
retval);
if (notify)
cpufreq_freq_transition_end(policy, &freqs, retval);
return retval;
}
int __cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
int retval = -EINVAL;
unsigned int old_target_freq = target_freq;
int retval = -EINVAL;
if (cpufreq_disabled())
return -ENODEV;
@ -1834,8 +1879,6 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy,
retval = cpufreq_driver->target(policy, target_freq, relation);
else if (cpufreq_driver->target_index) {
struct cpufreq_frequency_table *freq_table;
struct cpufreq_freqs freqs;
bool notify;
int index;
freq_table = cpufreq_frequency_get_table(policy->cpu);
@ -1856,26 +1899,7 @@ int __cpufreq_driver_target(struct cpufreq_policy *policy,
goto out;
}
notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
if (notify) {
freqs.old = policy->cur;
freqs.new = freq_table[index].frequency;
freqs.flags = 0;
pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
__func__, policy->cpu, freqs.old, freqs.new);
cpufreq_freq_transition_begin(policy, &freqs);
}
retval = cpufreq_driver->target_index(policy, index);
if (retval)
pr_err("%s: Failed to change cpu frequency: %d\n",
__func__, retval);
if (notify)
cpufreq_freq_transition_end(policy, &freqs, retval);
retval = __target_index(policy, freq_table, index);
}
out:

View File

@ -0,0 +1,110 @@
/*
* Generic OPP helper interface for CPUFreq drivers
*
* Copyright (C) 2009-2014 Texas Instruments Incorporated.
* Nishanth Menon
* Romit Dasgupta
* Kevin Hilman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/pm_opp.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
/**
* dev_pm_opp_init_cpufreq_table() - create a cpufreq table for a device
* @dev: device for which we do this operation
* @table: Cpufreq table returned back to caller
*
* Generate a cpufreq table for a provided device- this assumes that the
* opp list is already initialized and ready for usage.
*
* This function allocates required memory for the cpufreq table. It is
* expected that the caller does the required maintenance such as freeing
* the table as required.
*
* Returns -EINVAL for bad pointers, -ENODEV if the device is not found, -ENOMEM
* if no memory available for the operation (table is not populated), returns 0
* if successful and table is populated.
*
* WARNING: It is important for the callers to ensure refreshing their copy of
* the table if any of the mentioned functions have been invoked in the interim.
*
* Locking: The internal device_opp and opp structures are RCU protected.
* Since we just use the regular accessor functions to access the internal data
* structures, we use RCU read lock inside this function. As a result, users of
* this function DONOT need to use explicit locks for invoking.
*/
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
struct dev_pm_opp *opp;
struct cpufreq_frequency_table *freq_table = NULL;
int i, max_opps, ret = 0;
unsigned long rate;
rcu_read_lock();
max_opps = dev_pm_opp_get_opp_count(dev);
if (max_opps <= 0) {
ret = max_opps ? max_opps : -ENODATA;
goto out;
}
freq_table = kzalloc(sizeof(*freq_table) * (max_opps + 1), GFP_KERNEL);
if (!freq_table) {
ret = -ENOMEM;
goto out;
}
for (i = 0, rate = 0; i < max_opps; i++, rate++) {
/* find next rate */
opp = dev_pm_opp_find_freq_ceil(dev, &rate);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
goto out;
}
freq_table[i].driver_data = i;
freq_table[i].frequency = rate / 1000;
}
freq_table[i].driver_data = i;
freq_table[i].frequency = CPUFREQ_TABLE_END;
*table = &freq_table[0];
out:
rcu_read_unlock();
if (ret)
kfree(freq_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_init_cpufreq_table);
/**
* dev_pm_opp_free_cpufreq_table() - free the cpufreq table
* @dev: device for which we do this operation
* @table: table to free
*
* Free up the table allocated by dev_pm_opp_init_cpufreq_table
*/
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
if (!table)
return;
kfree(*table);
*table = NULL;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_free_cpufreq_table);

View File

@ -182,11 +182,11 @@ static void cpufreq_stats_free_table(unsigned int cpu)
static int __cpufreq_stats_create_table(struct cpufreq_policy *policy)
{
unsigned int i, j, count = 0, ret = 0;
unsigned int i, count = 0, ret = 0;
struct cpufreq_stats *stat;
unsigned int alloc_size;
unsigned int cpu = policy->cpu;
struct cpufreq_frequency_table *table;
struct cpufreq_frequency_table *pos, *table;
table = cpufreq_frequency_get_table(cpu);
if (unlikely(!table))
@ -205,12 +205,8 @@ static int __cpufreq_stats_create_table(struct cpufreq_policy *policy)
stat->cpu = cpu;
per_cpu(cpufreq_stats_table, cpu) = stat;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table)
count++;
}
alloc_size = count * sizeof(int) + count * sizeof(u64);
@ -228,15 +224,11 @@ static int __cpufreq_stats_create_table(struct cpufreq_policy *policy)
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
stat->trans_table = stat->freq_table + count;
#endif
j = 0;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
if (freq_table_get_index(stat, freq) == -1)
stat->freq_table[j++] = freq;
}
stat->state_num = j;
i = 0;
cpufreq_for_each_valid_entry(pos, table)
if (freq_table_get_index(stat, pos->frequency) == -1)
stat->freq_table[i++] = pos->frequency;
stat->state_num = i;
spin_lock(&cpufreq_stats_lock);
stat->last_time = get_jiffies_64();
stat->last_index = freq_table_get_index(stat, policy->cur);

View File

@ -45,7 +45,7 @@ static struct cpufreq_driver dbx500_cpufreq_driver = {
static int dbx500_cpufreq_probe(struct platform_device *pdev)
{
int i = 0;
struct cpufreq_frequency_table *pos;
freq_table = dev_get_platdata(&pdev->dev);
if (!freq_table) {
@ -60,10 +60,8 @@ static int dbx500_cpufreq_probe(struct platform_device *pdev)
}
pr_info("dbx500-cpufreq: Available frequencies:\n");
while (freq_table[i].frequency != CPUFREQ_TABLE_END) {
pr_info(" %d Mhz\n", freq_table[i].frequency/1000);
i++;
}
cpufreq_for_each_entry(pos, freq_table)
pr_info(" %d Mhz\n", pos->frequency / 1000);
return cpufreq_register_driver(&dbx500_cpufreq_driver);
}

View File

@ -147,7 +147,7 @@ static int elanfreq_target(struct cpufreq_policy *policy,
static int elanfreq_cpu_init(struct cpufreq_policy *policy)
{
struct cpuinfo_x86 *c = &cpu_data(0);
unsigned int i;
struct cpufreq_frequency_table *pos;
/* capability check */
if ((c->x86_vendor != X86_VENDOR_AMD) ||
@ -159,10 +159,9 @@ static int elanfreq_cpu_init(struct cpufreq_policy *policy)
max_freq = elanfreq_get_cpu_frequency(0);
/* table init */
for (i = 0; (elanfreq_table[i].frequency != CPUFREQ_TABLE_END); i++) {
if (elanfreq_table[i].frequency > max_freq)
elanfreq_table[i].frequency = CPUFREQ_ENTRY_INVALID;
}
cpufreq_for_each_entry(pos, elanfreq_table)
if (pos->frequency > max_freq)
pos->frequency = CPUFREQ_ENTRY_INVALID;
/* cpuinfo and default policy values */
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;

View File

@ -29,17 +29,16 @@ static unsigned int locking_frequency;
static int exynos_cpufreq_get_index(unsigned int freq)
{
struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
int index;
struct cpufreq_frequency_table *pos;
for (index = 0;
freq_table[index].frequency != CPUFREQ_TABLE_END; index++)
if (freq_table[index].frequency == freq)
cpufreq_for_each_entry(pos, freq_table)
if (pos->frequency == freq)
break;
if (freq_table[index].frequency == CPUFREQ_TABLE_END)
if (pos->frequency == CPUFREQ_TABLE_END)
return -EINVAL;
return index;
return pos - freq_table;
}
static int exynos_cpufreq_scale(unsigned int target_freq)
@ -49,6 +48,7 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
struct cpufreq_policy *policy = cpufreq_cpu_get(0);
unsigned int arm_volt, safe_arm_volt = 0;
unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
struct device *dev = exynos_info->dev;
unsigned int old_freq;
int index, old_index;
int ret = 0;
@ -90,8 +90,8 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
/* Firstly, voltage up to increase frequency */
ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
if (ret) {
pr_err("%s: failed to set cpu voltage to %d\n",
__func__, arm_volt);
dev_err(dev, "failed to set cpu voltage to %d\n",
arm_volt);
return ret;
}
}
@ -100,8 +100,8 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
ret = regulator_set_voltage(arm_regulator, safe_arm_volt,
safe_arm_volt);
if (ret) {
pr_err("%s: failed to set cpu voltage to %d\n",
__func__, safe_arm_volt);
dev_err(dev, "failed to set cpu voltage to %d\n",
safe_arm_volt);
return ret;
}
}
@ -115,8 +115,8 @@ static int exynos_cpufreq_scale(unsigned int target_freq)
ret = regulator_set_voltage(arm_regulator, arm_volt,
arm_volt);
if (ret) {
pr_err("%s: failed to set cpu voltage to %d\n",
__func__, arm_volt);
dev_err(dev, "failed to set cpu voltage to %d\n",
arm_volt);
goto out;
}
}
@ -163,6 +163,8 @@ static int exynos_cpufreq_probe(struct platform_device *pdev)
if (!exynos_info)
return -ENOMEM;
exynos_info->dev = &pdev->dev;
if (soc_is_exynos4210())
ret = exynos4210_cpufreq_init(exynos_info);
else if (soc_is_exynos4212() || soc_is_exynos4412())
@ -176,13 +178,13 @@ static int exynos_cpufreq_probe(struct platform_device *pdev)
goto err_vdd_arm;
if (exynos_info->set_freq == NULL) {
pr_err("%s: No set_freq function (ERR)\n", __func__);
dev_err(&pdev->dev, "No set_freq function (ERR)\n");
goto err_vdd_arm;
}
arm_regulator = regulator_get(NULL, "vdd_arm");
if (IS_ERR(arm_regulator)) {
pr_err("%s: failed to get resource vdd_arm\n", __func__);
dev_err(&pdev->dev, "failed to get resource vdd_arm\n");
goto err_vdd_arm;
}
@ -192,7 +194,7 @@ static int exynos_cpufreq_probe(struct platform_device *pdev)
if (!cpufreq_register_driver(&exynos_driver))
return 0;
pr_err("%s: failed to register cpufreq driver\n", __func__);
dev_err(&pdev->dev, "failed to register cpufreq driver\n");
regulator_put(arm_regulator);
err_vdd_arm:
kfree(exynos_info);

View File

@ -34,6 +34,7 @@ struct apll_freq {
};
struct exynos_dvfs_info {
struct device *dev;
unsigned long mpll_freq_khz;
unsigned int pll_safe_idx;
struct clk *cpu_clk;

View File

@ -114,25 +114,23 @@ static struct cpufreq_freqs freqs;
static int init_div_table(void)
{
struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table;
struct cpufreq_frequency_table *pos, *freq_tbl = dvfs_info->freq_table;
unsigned int tmp, clk_div, ema_div, freq, volt_id;
int i = 0;
struct dev_pm_opp *opp;
rcu_read_lock();
for (i = 0; freq_tbl[i].frequency != CPUFREQ_TABLE_END; i++) {
cpufreq_for_each_entry(pos, freq_tbl) {
opp = dev_pm_opp_find_freq_exact(dvfs_info->dev,
freq_tbl[i].frequency * 1000, true);
pos->frequency * 1000, true);
if (IS_ERR(opp)) {
rcu_read_unlock();
dev_err(dvfs_info->dev,
"failed to find valid OPP for %u KHZ\n",
freq_tbl[i].frequency);
pos->frequency);
return PTR_ERR(opp);
}
freq = freq_tbl[i].frequency / 1000; /* In MHZ */
freq = pos->frequency / 1000; /* In MHZ */
clk_div = ((freq / CPU_DIV_FREQ_MAX) & P0_7_CPUCLKDEV_MASK)
<< P0_7_CPUCLKDEV_SHIFT;
clk_div |= ((freq / CPU_ATB_FREQ_MAX) & P0_7_ATBCLKDEV_MASK)
@ -157,7 +155,8 @@ static int init_div_table(void)
tmp = (clk_div | ema_div | (volt_id << P0_7_VDD_SHIFT)
| ((freq / FREQ_UNIT) << P0_7_FREQ_SHIFT));
__raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 * i);
__raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 *
(pos - freq_tbl));
}
rcu_read_unlock();
@ -166,8 +165,9 @@ static int init_div_table(void)
static void exynos_enable_dvfs(unsigned int cur_frequency)
{
unsigned int tmp, i, cpu;
unsigned int tmp, cpu;
struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
struct cpufreq_frequency_table *pos;
/* Disable DVFS */
__raw_writel(0, dvfs_info->base + XMU_DVFS_CTRL);
@ -182,15 +182,15 @@ static void exynos_enable_dvfs(unsigned int cur_frequency)
__raw_writel(tmp, dvfs_info->base + XMU_PMUIRQEN);
/* Set initial performance index */
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
if (freq_table[i].frequency == cur_frequency)
cpufreq_for_each_entry(pos, freq_table)
if (pos->frequency == cur_frequency)
break;
if (freq_table[i].frequency == CPUFREQ_TABLE_END) {
if (pos->frequency == CPUFREQ_TABLE_END) {
dev_crit(dvfs_info->dev, "Boot up frequency not supported\n");
/* Assign the highest frequency */
i = 0;
cur_frequency = freq_table[i].frequency;
pos = freq_table;
cur_frequency = pos->frequency;
}
dev_info(dvfs_info->dev, "Setting dvfs initial frequency = %uKHZ",
@ -199,7 +199,7 @@ static void exynos_enable_dvfs(unsigned int cur_frequency)
for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) {
tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
tmp |= (i << C0_3_PSTATE_NEW_SHIFT);
tmp |= ((pos - freq_table) << C0_3_PSTATE_NEW_SHIFT);
__raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
}

View File

@ -21,22 +21,19 @@
int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table)
{
struct cpufreq_frequency_table *pos;
unsigned int min_freq = ~0;
unsigned int max_freq = 0;
unsigned int i;
unsigned int freq;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID) {
pr_debug("table entry %u is invalid, skipping\n", i);
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
continue;
}
if (!cpufreq_boost_enabled()
&& (table[i].flags & CPUFREQ_BOOST_FREQ))
&& (pos->flags & CPUFREQ_BOOST_FREQ))
continue;
pr_debug("table entry %u: %u kHz\n", i, freq);
pr_debug("table entry %u: %u kHz\n", (int)(pos - table), freq);
if (freq < min_freq)
min_freq = freq;
if (freq > max_freq)
@ -57,7 +54,8 @@ EXPORT_SYMBOL_GPL(cpufreq_frequency_table_cpuinfo);
int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table)
{
unsigned int next_larger = ~0, freq, i = 0;
struct cpufreq_frequency_table *pos;
unsigned int freq, next_larger = ~0;
bool found = false;
pr_debug("request for verification of policy (%u - %u kHz) for cpu %u\n",
@ -65,9 +63,9 @@ int cpufreq_frequency_table_verify(struct cpufreq_policy *policy,
cpufreq_verify_within_cpu_limits(policy);
for (; freq = table[i].frequency, freq != CPUFREQ_TABLE_END; i++) {
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if ((freq >= policy->min) && (freq <= policy->max)) {
found = true;
break;
@ -118,7 +116,8 @@ int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
.driver_data = ~0,
.frequency = 0,
};
unsigned int i;
struct cpufreq_frequency_table *pos;
unsigned int freq, i = 0;
pr_debug("request for target %u kHz (relation: %u) for cpu %u\n",
target_freq, relation, policy->cpu);
@ -132,15 +131,19 @@ int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
break;
}
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
unsigned int freq = table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
i = pos - table;
if ((freq < policy->min) || (freq > policy->max))
continue;
if (freq == target_freq) {
optimal.driver_data = i;
break;
}
switch (relation) {
case CPUFREQ_RELATION_H:
if (freq <= target_freq) {
if (freq < target_freq) {
if (freq >= optimal.frequency) {
optimal.frequency = freq;
optimal.driver_data = i;
@ -153,7 +156,7 @@ int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
}
break;
case CPUFREQ_RELATION_L:
if (freq >= target_freq) {
if (freq > target_freq) {
if (freq <= optimal.frequency) {
optimal.frequency = freq;
optimal.driver_data = i;
@ -184,8 +187,7 @@ EXPORT_SYMBOL_GPL(cpufreq_frequency_table_target);
int cpufreq_frequency_table_get_index(struct cpufreq_policy *policy,
unsigned int freq)
{
struct cpufreq_frequency_table *table;
int i;
struct cpufreq_frequency_table *pos, *table;
table = cpufreq_frequency_get_table(policy->cpu);
if (unlikely(!table)) {
@ -193,10 +195,9 @@ int cpufreq_frequency_table_get_index(struct cpufreq_policy *policy,
return -ENOENT;
}
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
if (table[i].frequency == freq)
return i;
}
cpufreq_for_each_valid_entry(pos, table)
if (pos->frequency == freq)
return pos - table;
return -EINVAL;
}
@ -208,16 +209,13 @@ EXPORT_SYMBOL_GPL(cpufreq_frequency_table_get_index);
static ssize_t show_available_freqs(struct cpufreq_policy *policy, char *buf,
bool show_boost)
{
unsigned int i = 0;
ssize_t count = 0;
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *table = policy->freq_table;
if (!table)
return -ENODEV;
for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++) {
if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
/*
* show_boost = true and driver_data = BOOST freq
* display BOOST freqs
@ -229,10 +227,10 @@ static ssize_t show_available_freqs(struct cpufreq_policy *policy, char *buf,
* show_boost = false and driver_data != BOOST freq
* display NON BOOST freqs
*/
if (show_boost ^ (table[i].flags & CPUFREQ_BOOST_FREQ))
if (show_boost ^ (pos->flags & CPUFREQ_BOOST_FREQ))
continue;
count += sprintf(&buf[count], "%d ", table[i].frequency);
count += sprintf(&buf[count], "%d ", pos->frequency);
}
count += sprintf(&buf[count], "\n");

View File

@ -9,7 +9,6 @@
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/of.h>
@ -170,25 +169,25 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
return -ENOENT;
}
arm_clk = devm_clk_get(cpu_dev, "arm");
pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
step_clk = devm_clk_get(cpu_dev, "step");
pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
arm_clk = clk_get(cpu_dev, "arm");
pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
step_clk = clk_get(cpu_dev, "step");
pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
dev_err(cpu_dev, "failed to get clocks\n");
ret = -ENOENT;
goto put_node;
goto put_clk;
}
arm_reg = devm_regulator_get(cpu_dev, "arm");
pu_reg = devm_regulator_get(cpu_dev, "pu");
soc_reg = devm_regulator_get(cpu_dev, "soc");
arm_reg = regulator_get(cpu_dev, "arm");
pu_reg = regulator_get(cpu_dev, "pu");
soc_reg = regulator_get(cpu_dev, "soc");
if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
dev_err(cpu_dev, "failed to get regulators\n");
ret = -ENOENT;
goto put_node;
goto put_reg;
}
/*
@ -201,21 +200,21 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
ret = of_init_opp_table(cpu_dev);
if (ret < 0) {
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
goto put_node;
goto put_reg;
}
num = dev_pm_opp_get_opp_count(cpu_dev);
if (num < 0) {
ret = num;
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
goto put_node;
goto put_reg;
}
}
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
if (ret) {
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
goto put_node;
goto put_reg;
}
/* Make imx6_soc_volt array's size same as arm opp number */
@ -301,7 +300,24 @@ soc_opp_out:
free_freq_table:
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
put_node:
put_reg:
if (!IS_ERR(arm_reg))
regulator_put(arm_reg);
if (!IS_ERR(pu_reg))
regulator_put(pu_reg);
if (!IS_ERR(soc_reg))
regulator_put(soc_reg);
put_clk:
if (!IS_ERR(arm_clk))
clk_put(arm_clk);
if (!IS_ERR(pll1_sys_clk))
clk_put(pll1_sys_clk);
if (!IS_ERR(pll1_sw_clk))
clk_put(pll1_sw_clk);
if (!IS_ERR(step_clk))
clk_put(step_clk);
if (!IS_ERR(pll2_pfd2_396m_clk))
clk_put(pll2_pfd2_396m_clk);
of_node_put(np);
return ret;
}
@ -310,6 +326,14 @@ static int imx6q_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
regulator_put(arm_reg);
regulator_put(pu_reg);
regulator_put(soc_reg);
clk_put(arm_clk);
clk_put(pll1_sys_clk);
clk_put(pll1_sw_clk);
clk_put(step_clk);
clk_put(pll2_pfd2_396m_clk);
return 0;
}

View File

@ -32,8 +32,6 @@
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
#define SAMPLE_COUNT 3
#define BYT_RATIOS 0x66a
#define BYT_VIDS 0x66b
#define BYT_TURBO_RATIOS 0x66c
@ -90,8 +88,6 @@ struct _pid {
struct cpudata {
int cpu;
char name[64];
struct timer_list timer;
struct pstate_data pstate;
@ -549,8 +545,6 @@ static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
sprintf(cpu->name, "Intel 2nd generation core");
cpu->pstate.min_pstate = pstate_funcs.get_min();
cpu->pstate.max_pstate = pstate_funcs.get_max();
cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
@ -560,9 +554,9 @@ static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}
static inline void intel_pstate_calc_busy(struct cpudata *cpu,
struct sample *sample)
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
int64_t core_pct;
int32_t rem;
@ -595,7 +589,7 @@ static inline void intel_pstate_sample(struct cpudata *cpu)
cpu->sample.aperf -= cpu->prev_aperf;
cpu->sample.mperf -= cpu->prev_mperf;
intel_pstate_calc_busy(cpu, &cpu->sample);
intel_pstate_calc_busy(cpu);
cpu->prev_aperf = aperf;
cpu->prev_mperf = mperf;
@ -684,10 +678,13 @@ static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
ICPU(0x37, byt_params),
ICPU(0x3a, core_params),
ICPU(0x3c, core_params),
ICPU(0x3d, core_params),
ICPU(0x3e, core_params),
ICPU(0x3f, core_params),
ICPU(0x45, core_params),
ICPU(0x46, core_params),
ICPU(0x4f, core_params),
ICPU(0x56, core_params),
{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

View File

@ -530,6 +530,7 @@ static int longhaul_get_ranges(void)
static void longhaul_setup_voltagescaling(void)
{
struct cpufreq_frequency_table *freq_pos;
union msr_longhaul longhaul;
struct mV_pos minvid, maxvid, vid;
unsigned int j, speed, pos, kHz_step, numvscales;
@ -608,18 +609,16 @@ static void longhaul_setup_voltagescaling(void)
/* Calculate kHz for one voltage step */
kHz_step = (highest_speed - min_vid_speed) / numvscales;
j = 0;
while (longhaul_table[j].frequency != CPUFREQ_TABLE_END) {
speed = longhaul_table[j].frequency;
cpufreq_for_each_entry(freq_pos, longhaul_table) {
speed = freq_pos->frequency;
if (speed > min_vid_speed)
pos = (speed - min_vid_speed) / kHz_step + minvid.pos;
else
pos = minvid.pos;
longhaul_table[j].driver_data |= mV_vrm_table[pos] << 8;
freq_pos->driver_data |= mV_vrm_table[pos] << 8;
vid = vrm_mV_table[mV_vrm_table[pos]];
printk(KERN_INFO PFX "f: %d kHz, index: %d, vid: %d mV\n",
speed, j, vid.mV);
j++;
speed, (int)(freq_pos - longhaul_table), vid.mV);
}
can_scale_voltage = 1;

View File

@ -136,9 +136,10 @@ void restore_astate(int cpu)
static int pas_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pos;
const u32 *max_freqp;
u32 max_freq;
int i, cur_astate;
int cur_astate;
struct resource res;
struct device_node *cpu, *dn;
int err = -ENODEV;
@ -197,10 +198,9 @@ static int pas_cpufreq_cpu_init(struct cpufreq_policy *policy)
pr_debug("initializing frequency table\n");
/* initialize frequency table */
for (i=0; pas_freqs[i].frequency!=CPUFREQ_TABLE_END; i++) {
pas_freqs[i].frequency =
get_astate_freq(pas_freqs[i].driver_data) * 100000;
pr_debug("%d: %d\n", i, pas_freqs[i].frequency);
cpufreq_for_each_entry(pos, pas_freqs) {
pos->frequency = get_astate_freq(pos->driver_data) * 100000;
pr_debug("%d: %d\n", (int)(pos - pas_freqs), pos->frequency);
}
cur_astate = get_cur_astate(policy->cpu);

View File

@ -151,6 +151,7 @@ static int powernow_k6_target(struct cpufreq_policy *policy,
static int powernow_k6_cpu_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pos;
unsigned int i, f;
unsigned khz;
@ -168,12 +169,11 @@ static int powernow_k6_cpu_init(struct cpufreq_policy *policy)
}
}
if (param_max_multiplier) {
for (i = 0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) {
if (clock_ratio[i].driver_data == param_max_multiplier) {
cpufreq_for_each_entry(pos, clock_ratio)
if (pos->driver_data == param_max_multiplier) {
max_multiplier = param_max_multiplier;
goto have_max_multiplier;
}
}
printk(KERN_ERR "powernow-k6: invalid max_multiplier parameter, valid parameters 20, 30, 35, 40, 45, 50, 55, 60\n");
return -EINVAL;
}
@ -201,12 +201,12 @@ have_busfreq:
param_busfreq = busfreq * 10;
/* table init */
for (i = 0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) {
f = clock_ratio[i].driver_data;
cpufreq_for_each_entry(pos, clock_ratio) {
f = pos->driver_data;
if (f > max_multiplier)
clock_ratio[i].frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency = CPUFREQ_ENTRY_INVALID;
else
clock_ratio[i].frequency = busfreq * f;
pos->frequency = busfreq * f;
}
/* cpuinfo and default policy values */

View File

@ -27,6 +27,8 @@
* power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/module.h>
@ -45,7 +47,6 @@
#include <linux/mutex.h>
#include <acpi/processor.h>
#define PFX "powernow-k8: "
#define VERSION "version 2.20.00"
#include "powernow-k8.h"
@ -161,7 +162,7 @@ static int write_new_fid(struct powernow_k8_data *data, u32 fid)
u32 i = 0;
if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
printk(KERN_ERR PFX "internal error - overflow on fid write\n");
pr_err("internal error - overflow on fid write\n");
return 1;
}
@ -175,9 +176,7 @@ static int write_new_fid(struct powernow_k8_data *data, u32 fid)
do {
wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
if (i++ > 100) {
printk(KERN_ERR PFX
"Hardware error - pending bit very stuck - "
"no further pstate changes possible\n");
pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n");
return 1;
}
} while (query_current_values_with_pending_wait(data));
@ -185,15 +184,13 @@ static int write_new_fid(struct powernow_k8_data *data, u32 fid)
count_off_irt(data);
if (savevid != data->currvid) {
printk(KERN_ERR PFX
"vid change on fid trans, old 0x%x, new 0x%x\n",
savevid, data->currvid);
pr_err("vid change on fid trans, old 0x%x, new 0x%x\n",
savevid, data->currvid);
return 1;
}
if (fid != data->currfid) {
printk(KERN_ERR PFX
"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid,
data->currfid);
return 1;
}
@ -209,7 +206,7 @@ static int write_new_vid(struct powernow_k8_data *data, u32 vid)
int i = 0;
if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
printk(KERN_ERR PFX "internal error - overflow on vid write\n");
pr_err("internal error - overflow on vid write\n");
return 1;
}
@ -223,23 +220,19 @@ static int write_new_vid(struct powernow_k8_data *data, u32 vid)
do {
wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
if (i++ > 100) {
printk(KERN_ERR PFX "internal error - pending bit "
"very stuck - no further pstate "
"changes possible\n");
pr_err("internal error - pending bit very stuck - no further pstate changes possible\n");
return 1;
}
} while (query_current_values_with_pending_wait(data));
if (savefid != data->currfid) {
printk(KERN_ERR PFX "fid changed on vid trans, old "
"0x%x new 0x%x\n",
savefid, data->currfid);
pr_err("fid changed on vid trans, old 0x%x new 0x%x\n",
savefid, data->currfid);
return 1;
}
if (vid != data->currvid) {
printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
"curr 0x%x\n",
pr_err("vid trans failed, vid 0x%x, curr 0x%x\n",
vid, data->currvid);
return 1;
}
@ -283,8 +276,7 @@ static int transition_fid_vid(struct powernow_k8_data *data,
return 1;
if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
"curr 0x%x 0x%x\n",
pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
smp_processor_id(),
reqfid, reqvid, data->currfid, data->currvid);
return 1;
@ -304,8 +296,7 @@ static int core_voltage_pre_transition(struct powernow_k8_data *data,
u32 savefid = data->currfid;
u32 maxvid, lo, rvomult = 1;
pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
"reqvid 0x%x, rvo 0x%x\n",
pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
smp_processor_id(),
data->currfid, data->currvid, reqvid, data->rvo);
@ -342,8 +333,7 @@ static int core_voltage_pre_transition(struct powernow_k8_data *data,
return 1;
if (savefid != data->currfid) {
printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
data->currfid);
pr_err("ph1 err, currfid changed 0x%x\n", data->currfid);
return 1;
}
@ -360,13 +350,11 @@ static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
u32 fid_interval, savevid = data->currvid;
if (data->currfid == reqfid) {
printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
data->currfid);
pr_err("ph2 null fid transition 0x%x\n", data->currfid);
return 0;
}
pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
"reqfid 0x%x\n",
pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
smp_processor_id(),
data->currfid, data->currvid, reqfid);
@ -409,15 +397,13 @@ static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
return 1;
if (data->currfid != reqfid) {
printk(KERN_ERR PFX
"ph2: mismatch, failed fid transition, "
"curr 0x%x, req 0x%x\n",
pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
data->currfid, reqfid);
return 1;
}
if (savevid != data->currvid) {
printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n",
savevid, data->currvid);
return 1;
}
@ -444,17 +430,14 @@ static int core_voltage_post_transition(struct powernow_k8_data *data,
return 1;
if (savefid != data->currfid) {
printk(KERN_ERR PFX
"ph3: bad fid change, save 0x%x, curr 0x%x\n",
savefid, data->currfid);
pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n",
savefid, data->currfid);
return 1;
}
if (data->currvid != reqvid) {
printk(KERN_ERR PFX
"ph3: failed vid transition\n, "
"req 0x%x, curr 0x%x",
reqvid, data->currvid);
pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x",
reqvid, data->currvid);
return 1;
}
}
@ -498,23 +481,20 @@ static void check_supported_cpu(void *_rc)
if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
printk(KERN_INFO PFX
"Processor cpuid %x not supported\n", eax);
pr_info("Processor cpuid %x not supported\n", eax);
return;
}
eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
printk(KERN_INFO PFX
"No frequency change capabilities detected\n");
pr_info("No frequency change capabilities detected\n");
return;
}
cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
if ((edx & P_STATE_TRANSITION_CAPABLE)
!= P_STATE_TRANSITION_CAPABLE) {
printk(KERN_INFO PFX
"Power state transitions not supported\n");
pr_info("Power state transitions not supported\n");
return;
}
*rc = 0;
@ -529,43 +509,39 @@ static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
for (j = 0; j < data->numps; j++) {
if (pst[j].vid > LEAST_VID) {
printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
j, pst[j].vid);
pr_err(FW_BUG "vid %d invalid : 0x%x\n", j,
pst[j].vid);
return -EINVAL;
}
if (pst[j].vid < data->rvo) {
/* vid + rvo >= 0 */
printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
" %d\n", j);
pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j);
return -ENODEV;
}
if (pst[j].vid < maxvid + data->rvo) {
/* vid + rvo >= maxvid */
printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
" %d\n", j);
pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j);
return -ENODEV;
}
if (pst[j].fid > MAX_FID) {
printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
" %d\n", j);
pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j);
return -ENODEV;
}
if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
/* Only first fid is allowed to be in "low" range */
printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
"0x%x\n", j, pst[j].fid);
pr_err(FW_BUG "two low fids - %d : 0x%x\n", j,
pst[j].fid);
return -EINVAL;
}
if (pst[j].fid < lastfid)
lastfid = pst[j].fid;
}
if (lastfid & 1) {
printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
pr_err(FW_BUG "lastfid invalid\n");
return -EINVAL;
}
if (lastfid > LO_FID_TABLE_TOP)
printk(KERN_INFO FW_BUG PFX
"first fid not from lo freq table\n");
pr_info(FW_BUG "first fid not from lo freq table\n");
return 0;
}
@ -582,16 +558,14 @@ static void print_basics(struct powernow_k8_data *data)
for (j = 0; j < data->numps; j++) {
if (data->powernow_table[j].frequency !=
CPUFREQ_ENTRY_INVALID) {
printk(KERN_INFO PFX
"fid 0x%x (%d MHz), vid 0x%x\n",
data->powernow_table[j].driver_data & 0xff,
data->powernow_table[j].frequency/1000,
data->powernow_table[j].driver_data >> 8);
pr_info("fid 0x%x (%d MHz), vid 0x%x\n",
data->powernow_table[j].driver_data & 0xff,
data->powernow_table[j].frequency/1000,
data->powernow_table[j].driver_data >> 8);
}
}
if (data->batps)
printk(KERN_INFO PFX "Only %d pstates on battery\n",
data->batps);
pr_info("Only %d pstates on battery\n", data->batps);
}
static int fill_powernow_table(struct powernow_k8_data *data,
@ -602,21 +576,20 @@ static int fill_powernow_table(struct powernow_k8_data *data,
if (data->batps) {
/* use ACPI support to get full speed on mains power */
printk(KERN_WARNING PFX
"Only %d pstates usable (use ACPI driver for full "
"range\n", data->batps);
pr_warn("Only %d pstates usable (use ACPI driver for full range\n",
data->batps);
data->numps = data->batps;
}
for (j = 1; j < data->numps; j++) {
if (pst[j-1].fid >= pst[j].fid) {
printk(KERN_ERR PFX "PST out of sequence\n");
pr_err("PST out of sequence\n");
return -EINVAL;
}
}
if (data->numps < 2) {
printk(KERN_ERR PFX "no p states to transition\n");
pr_err("no p states to transition\n");
return -ENODEV;
}
@ -626,7 +599,7 @@ static int fill_powernow_table(struct powernow_k8_data *data,
powernow_table = kzalloc((sizeof(*powernow_table)
* (data->numps + 1)), GFP_KERNEL);
if (!powernow_table) {
printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
pr_err("powernow_table memory alloc failure\n");
return -ENOMEM;
}
@ -681,13 +654,13 @@ static int find_psb_table(struct powernow_k8_data *data)
pr_debug("table vers: 0x%x\n", psb->tableversion);
if (psb->tableversion != PSB_VERSION_1_4) {
printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
pr_err(FW_BUG "PSB table is not v1.4\n");
return -ENODEV;
}
pr_debug("flags: 0x%x\n", psb->flags1);
if (psb->flags1) {
printk(KERN_ERR FW_BUG PFX "unknown flags\n");
pr_err(FW_BUG "unknown flags\n");
return -ENODEV;
}
@ -716,7 +689,7 @@ static int find_psb_table(struct powernow_k8_data *data)
cpst = 1;
}
if (cpst != 1) {
printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
pr_err(FW_BUG "numpst must be 1\n");
return -ENODEV;
}
@ -742,9 +715,8 @@ static int find_psb_table(struct powernow_k8_data *data)
* BIOS and Kernel Developer's Guide, which is available on
* www.amd.com
*/
printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
" and Cool'N'Quiet support is enabled in BIOS setup\n");
pr_err(FW_BUG "No PSB or ACPI _PSS objects\n");
pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n");
return -ENODEV;
}
@ -819,8 +791,7 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
acpi_processor_notify_smm(THIS_MODULE);
if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
printk(KERN_ERR PFX
"unable to alloc powernow_k8_data cpumask\n");
pr_err("unable to alloc powernow_k8_data cpumask\n");
ret_val = -ENOMEM;
goto err_out_mem;
}
@ -885,9 +856,8 @@ static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
}
if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
printk(KERN_INFO PFX "invalid freq entries "
"%u kHz vs. %u kHz\n", freq,
(unsigned int)
pr_info("invalid freq entries %u kHz vs. %u kHz\n",
freq, (unsigned int)
(data->acpi_data.states[i].core_frequency
* 1000));
invalidate_entry(powernow_table, i);
@ -916,7 +886,7 @@ static int get_transition_latency(struct powernow_k8_data *data)
max_latency = cur_latency;
}
if (max_latency == 0) {
pr_err(FW_WARN PFX "Invalid zero transition latency\n");
pr_err(FW_WARN "Invalid zero transition latency\n");
max_latency = 1;
}
/* value in usecs, needs to be in nanoseconds */
@ -991,7 +961,7 @@ static long powernowk8_target_fn(void *arg)
checkvid = data->currvid;
if (pending_bit_stuck()) {
printk(KERN_ERR PFX "failing targ, change pending bit set\n");
pr_err("failing targ, change pending bit set\n");
return -EIO;
}
@ -1003,12 +973,11 @@ static long powernowk8_target_fn(void *arg)
return -EIO;
pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
data->currfid, data->currvid);
data->currfid, data->currvid);
if ((checkvid != data->currvid) ||
(checkfid != data->currfid)) {
pr_info(PFX
"error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
checkfid, data->currfid,
checkvid, data->currvid);
}
@ -1020,7 +989,7 @@ static long powernowk8_target_fn(void *arg)
ret = transition_frequency_fidvid(data, newstate);
if (ret) {
printk(KERN_ERR PFX "transition frequency failed\n");
pr_err("transition frequency failed\n");
mutex_unlock(&fidvid_mutex);
return 1;
}
@ -1049,7 +1018,7 @@ static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
struct init_on_cpu *init_on_cpu = _init_on_cpu;
if (pending_bit_stuck()) {
printk(KERN_ERR PFX "failing init, change pending bit set\n");
pr_err("failing init, change pending bit set\n");
init_on_cpu->rc = -ENODEV;
return;
}
@ -1064,11 +1033,10 @@ static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
init_on_cpu->rc = 0;
}
static const char missing_pss_msg[] =
KERN_ERR
FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
FW_BUG PFX "First, make sure Cool'N'Quiet is enabled in the BIOS.\n"
FW_BUG PFX "If that doesn't help, try upgrading your BIOS.\n";
#define MISSING_PSS_MSG \
FW_BUG "No compatible ACPI _PSS objects found.\n" \
FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \
FW_BUG "If that doesn't help, try upgrading your BIOS.\n"
/* per CPU init entry point to the driver */
static int powernowk8_cpu_init(struct cpufreq_policy *pol)
@ -1083,7 +1051,7 @@ static int powernowk8_cpu_init(struct cpufreq_policy *pol)
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
pr_err("unable to alloc powernow_k8_data");
return -ENOMEM;
}
@ -1095,13 +1063,11 @@ static int powernowk8_cpu_init(struct cpufreq_policy *pol)
* an UP version, and is deprecated by AMD.
*/
if (num_online_cpus() != 1) {
printk_once(missing_pss_msg);
pr_err_once(MISSING_PSS_MSG);
goto err_out;
}
if (pol->cpu != 0) {
printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
"CPU other than CPU0. Complain to your BIOS "
"vendor.\n");
pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n");
goto err_out;
}
rc = find_psb_table(data);
@ -1129,7 +1095,7 @@ static int powernowk8_cpu_init(struct cpufreq_policy *pol)
/* min/max the cpu is capable of */
if (cpufreq_table_validate_and_show(pol, data->powernow_table)) {
printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
pr_err(FW_BUG "invalid powernow_table\n");
powernow_k8_cpu_exit_acpi(data);
kfree(data->powernow_table);
kfree(data);
@ -1137,7 +1103,7 @@ static int powernowk8_cpu_init(struct cpufreq_policy *pol)
}
pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
data->currfid, data->currvid);
data->currfid, data->currvid);
/* Point all the CPUs in this policy to the same data */
for_each_cpu(cpu, pol->cpus)
@ -1220,12 +1186,12 @@ static void __request_acpi_cpufreq(void)
goto request;
if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
pr_warn(PFX "WTF driver: %s\n", cur_drv);
pr_warn("WTF driver: %s\n", cur_drv);
return;
request:
pr_warn(PFX "This CPU is not supported anymore, using acpi-cpufreq instead.\n");
pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n");
request_module(drv);
}
@ -1260,7 +1226,7 @@ static int powernowk8_init(void)
if (ret)
return ret;
pr_info(PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n",
num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
return ret;
@ -1274,8 +1240,8 @@ static void __exit powernowk8_exit(void)
cpufreq_unregister_driver(&cpufreq_amd64_driver);
}
MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
"Mark Langsdorf <mark.langsdorf@amd.com>");
MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>");
MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>");
MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
MODULE_LICENSE("GPL");

View File

@ -19,7 +19,7 @@ struct powernow_k8_data {
u32 vidmvs; /* usable value calculated from mvs */
u32 vstable; /* voltage stabilization time, units 20 us */
u32 plllock; /* pll lock time, units 1 us */
u32 exttype; /* extended interface = 1 */
u32 exttype; /* extended interface = 1 */
/* keep track of the current fid / vid or pstate */
u32 currvid;

View File

@ -235,7 +235,7 @@ static void powernv_read_cpu_freq(void *arg)
* firmware for CPU 'cpu'. This value is reported through the sysfs
* file cpuinfo_cur_freq.
*/
unsigned int powernv_cpufreq_get(unsigned int cpu)
static unsigned int powernv_cpufreq_get(unsigned int cpu)
{
struct powernv_smp_call_data freq_data;

View File

@ -67,9 +67,10 @@ static int set_pmode(unsigned int cpu, unsigned int slow_mode)
static int cbe_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pos;
const u32 *max_freqp;
u32 max_freq;
int i, cur_pmode;
int cur_pmode;
struct device_node *cpu;
cpu = of_get_cpu_node(policy->cpu, NULL);
@ -102,9 +103,9 @@ static int cbe_cpufreq_cpu_init(struct cpufreq_policy *policy)
pr_debug("initializing frequency table\n");
/* initialize frequency table */
for (i=0; cbe_freqs[i].frequency!=CPUFREQ_TABLE_END; i++) {
cbe_freqs[i].frequency = max_freq / cbe_freqs[i].driver_data;
pr_debug("%d: %d\n", i, cbe_freqs[i].frequency);
cpufreq_for_each_entry(pos, cbe_freqs) {
pos->frequency = max_freq / pos->driver_data;
pr_debug("%d: %d\n", (int)(pos - cbe_freqs), pos->frequency);
}
/* if DEBUG is enabled set_pmode() measures the latency

View File

@ -266,7 +266,7 @@ out:
static void __init s3c2416_cpufreq_cfg_regulator(struct s3c2416_data *s3c_freq)
{
int count, v, i, found;
struct cpufreq_frequency_table *freq;
struct cpufreq_frequency_table *pos;
struct s3c2416_dvfs *dvfs;
count = regulator_count_voltages(s3c_freq->vddarm);
@ -275,12 +275,11 @@ static void __init s3c2416_cpufreq_cfg_regulator(struct s3c2416_data *s3c_freq)
return;
}
freq = s3c_freq->freq_table;
while (count > 0 && freq->frequency != CPUFREQ_TABLE_END) {
if (freq->frequency == CPUFREQ_ENTRY_INVALID)
continue;
if (!count)
goto out;
dvfs = &s3c2416_dvfs_table[freq->driver_data];
cpufreq_for_each_valid_entry(pos, s3c_freq->freq_table) {
dvfs = &s3c2416_dvfs_table[pos->driver_data];
found = 0;
/* Check only the min-voltage, more is always ok on S3C2416 */
@ -292,13 +291,12 @@ static void __init s3c2416_cpufreq_cfg_regulator(struct s3c2416_data *s3c_freq)
if (!found) {
pr_debug("cpufreq: %dkHz unsupported by regulator\n",
freq->frequency);
freq->frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency);
pos->frequency = CPUFREQ_ENTRY_INVALID;
}
freq++;
}
out:
/* Guessed */
s3c_freq->regulator_latency = 1 * 1000 * 1000;
}
@ -338,7 +336,7 @@ static struct notifier_block s3c2416_cpufreq_reboot_notifier = {
static int __init s3c2416_cpufreq_driver_init(struct cpufreq_policy *policy)
{
struct s3c2416_data *s3c_freq = &s3c2416_cpufreq;
struct cpufreq_frequency_table *freq;
struct cpufreq_frequency_table *pos;
struct clk *msysclk;
unsigned long rate;
int ret;
@ -427,31 +425,27 @@ static int __init s3c2416_cpufreq_driver_init(struct cpufreq_policy *policy)
s3c_freq->regulator_latency = 0;
#endif
freq = s3c_freq->freq_table;
while (freq->frequency != CPUFREQ_TABLE_END) {
cpufreq_for_each_entry(pos, s3c_freq->freq_table) {
/* special handling for dvs mode */
if (freq->driver_data == 0) {
if (pos->driver_data == 0) {
if (!s3c_freq->hclk) {
pr_debug("cpufreq: %dkHz unsupported as it would need unavailable dvs mode\n",
freq->frequency);
freq->frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency);
pos->frequency = CPUFREQ_ENTRY_INVALID;
} else {
freq++;
continue;
}
}
/* Check for frequencies we can generate */
rate = clk_round_rate(s3c_freq->armdiv,
freq->frequency * 1000);
pos->frequency * 1000);
rate /= 1000;
if (rate != freq->frequency) {
if (rate != pos->frequency) {
pr_debug("cpufreq: %dkHz unsupported by clock (clk_round_rate return %lu)\n",
freq->frequency, rate);
freq->frequency = CPUFREQ_ENTRY_INVALID;
pos->frequency, rate);
pos->frequency = CPUFREQ_ENTRY_INVALID;
}
freq++;
}
/* Datasheet says PLL stabalisation time must be at least 300us,

View File

@ -118,11 +118,10 @@ static void __init s3c64xx_cpufreq_config_regulator(void)
pr_err("Unable to check supported voltages\n");
}
freq = s3c64xx_freq_table;
while (count > 0 && freq->frequency != CPUFREQ_TABLE_END) {
if (freq->frequency == CPUFREQ_ENTRY_INVALID)
continue;
if (!count)
goto out;
cpufreq_for_each_valid_entry(freq, s3c64xx_freq_table) {
dvfs = &s3c64xx_dvfs_table[freq->driver_data];
found = 0;
@ -137,10 +136,9 @@ static void __init s3c64xx_cpufreq_config_regulator(void)
freq->frequency);
freq->frequency = CPUFREQ_ENTRY_INVALID;
}
freq++;
}
out:
/* Guess based on having to do an I2C/SPI write; in future we
* will be able to query the regulator performance here. */
regulator_latency = 1 * 1000 * 1000;
@ -179,8 +177,7 @@ static int s3c64xx_cpufreq_driver_init(struct cpufreq_policy *policy)
}
#endif
freq = s3c64xx_freq_table;
while (freq->frequency != CPUFREQ_TABLE_END) {
cpufreq_for_each_entry(freq, s3c64xx_freq_table) {
unsigned long r;
/* Check for frequencies we can generate */
@ -196,8 +193,6 @@ static int s3c64xx_cpufreq_driver_init(struct cpufreq_policy *policy)
* frequency is the maximum we can support. */
if (!vddarm && freq->frequency > clk_get_rate(policy->clk) / 1000)
freq->frequency = CPUFREQ_ENTRY_INVALID;
freq++;
}
/* Datasheet says PLL stabalisation time (if we were to use

View File

@ -175,10 +175,8 @@ static int s5pv210_target(struct cpufreq_policy *policy, unsigned int index)
mutex_lock(&set_freq_lock);
if (no_cpufreq_access) {
#ifdef CONFIG_PM_VERBOSE
pr_err("%s:%d denied access to %s as it is disabled"
"temporarily\n", __FILE__, __LINE__, __func__);
#endif
pr_err("Denied access to %s as it is disabled temporarily\n",
__func__);
ret = -EINVAL;
goto exit;
}

View File

@ -28,7 +28,7 @@
#include <asm/cpu_device_id.h>
#define PFX "speedstep-centrino: "
#define MAINTAINER "cpufreq@vger.kernel.org"
#define MAINTAINER "linux-pm@vger.kernel.org"
#define INTEL_MSR_RANGE (0xffff)

View File

@ -82,9 +82,9 @@ out:
return ret;
}
static int tegra_update_cpu_speed(struct cpufreq_policy *policy,
unsigned long rate)
static int tegra_target(struct cpufreq_policy *policy, unsigned int index)
{
unsigned long rate = freq_table[index].frequency;
int ret = 0;
/*
@ -106,11 +106,6 @@ static int tegra_update_cpu_speed(struct cpufreq_policy *policy,
return ret;
}
static int tegra_target(struct cpufreq_policy *policy, unsigned int index)
{
return tegra_update_cpu_speed(policy, freq_table[index].frequency);
}
static int tegra_cpu_init(struct cpufreq_policy *policy)
{
int ret;

View File

@ -1734,18 +1734,17 @@ static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
static long round_armss_rate(unsigned long rate)
{
struct cpufreq_frequency_table *pos;
long freq = 0;
int i = 0;
/* cpufreq table frequencies is in KHz. */
rate = rate / 1000;
/* Find the corresponding arm opp from the cpufreq table. */
while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
freq = db8500_cpufreq_table[i].frequency;
cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
freq = pos->frequency;
if (freq == rate)
break;
i++;
}
/* Return the last valid value, even if a match was not found. */
@ -1886,23 +1885,21 @@ static void set_clock_rate(u8 clock, unsigned long rate)
static int set_armss_rate(unsigned long rate)
{
int i = 0;
struct cpufreq_frequency_table *pos;
/* cpufreq table frequencies is in KHz. */
rate = rate / 1000;
/* Find the corresponding arm opp from the cpufreq table. */
while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
if (db8500_cpufreq_table[i].frequency == rate)
cpufreq_for_each_entry(pos, db8500_cpufreq_table)
if (pos->frequency == rate)
break;
i++;
}
if (db8500_cpufreq_table[i].frequency != rate)
if (pos->frequency != rate)
return -EINVAL;
/* Set the new arm opp. */
return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
return db8500_prcmu_set_arm_opp(pos->driver_data);
}
static int set_plldsi_rate(unsigned long rate)

View File

@ -217,21 +217,17 @@ crc_init_out:
static u32 sh_sir_find_sclk(struct clk *irda_clk)
{
struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
struct cpufreq_frequency_table *pos;
struct clk *pclk = clk_get(NULL, "peripheral_clk");
u32 limit, min = 0xffffffff, tmp;
int i, index = 0;
int index = 0;
limit = clk_get_rate(pclk);
clk_put(pclk);
/* IrDA can not set over peripheral_clk */
for (i = 0;
freq_table[i].frequency != CPUFREQ_TABLE_END;
i++) {
u32 freq = freq_table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, freq_table) {
u32 freq = pos->frequency;
/* IrDA should not over peripheral_clk */
if (freq > limit)
@ -240,7 +236,7 @@ static u32 sh_sir_find_sclk(struct clk *irda_clk)
tmp = freq % SCLK_BASE;
if (tmp < min) {
min = tmp;
index = i;
index = pos - freq_table;
}
}

View File

@ -196,17 +196,11 @@ int clk_rate_table_find(struct clk *clk,
struct cpufreq_frequency_table *freq_table,
unsigned long rate)
{
int i;
struct cpufreq_frequency_table *pos;
for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
unsigned long freq = freq_table[i].frequency;
if (freq == CPUFREQ_ENTRY_INVALID)
continue;
if (freq == rate)
return i;
}
cpufreq_for_each_valid_entry(pos, freq_table)
if (pos->frequency == rate)
return pos - freq_table;
return -ENOENT;
}
@ -575,11 +569,7 @@ long clk_round_parent(struct clk *clk, unsigned long target,
return abs(target - *best_freq);
}
for (freq = parent->freq_table; freq->frequency != CPUFREQ_TABLE_END;
freq++) {
if (freq->frequency == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(freq, parent->freq_table) {
if (unlikely(freq->frequency / target <= div_min - 1)) {
unsigned long freq_max;

View File

@ -144,11 +144,11 @@ static int get_property(unsigned int cpu, unsigned long input,
unsigned int *output,
enum cpufreq_cooling_property property)
{
int i, j;
int i;
unsigned long max_level = 0, level = 0;
unsigned int freq = CPUFREQ_ENTRY_INVALID;
int descend = -1;
struct cpufreq_frequency_table *table =
struct cpufreq_frequency_table *pos, *table =
cpufreq_frequency_get_table(cpu);
if (!output)
@ -157,20 +157,16 @@ static int get_property(unsigned int cpu, unsigned long input,
if (!table)
return -EINVAL;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
/* ignore invalid entries */
if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
continue;
cpufreq_for_each_valid_entry(pos, table) {
/* ignore duplicate entry */
if (freq == table[i].frequency)
if (freq == pos->frequency)
continue;
/* get the frequency order */
if (freq != CPUFREQ_ENTRY_INVALID && descend == -1)
descend = !!(freq > table[i].frequency);
descend = freq > pos->frequency;
freq = table[i].frequency;
freq = pos->frequency;
max_level++;
}
@ -190,29 +186,26 @@ static int get_property(unsigned int cpu, unsigned long input,
if (property == GET_FREQ)
level = descend ? input : (max_level - input);
for (i = 0, j = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
/* ignore invalid entry */
if (table[i].frequency == CPUFREQ_ENTRY_INVALID)
continue;
i = 0;
cpufreq_for_each_valid_entry(pos, table) {
/* ignore duplicate entry */
if (freq == table[i].frequency)
if (freq == pos->frequency)
continue;
/* now we have a valid frequency entry */
freq = table[i].frequency;
freq = pos->frequency;
if (property == GET_LEVEL && (unsigned int)input == freq) {
/* get level by frequency */
*output = descend ? j : (max_level - j);
*output = descend ? i : (max_level - i);
return 0;
}
if (property == GET_FREQ && level == j) {
if (property == GET_FREQ && level == i) {
/* get frequency by level */
*output = freq;
return 0;
}
j++;
i++;
}
return -EINVAL;

View File

@ -110,6 +110,7 @@ struct cpufreq_policy {
bool transition_ongoing; /* Tracks transition status */
spinlock_t transition_lock;
wait_queue_head_t transition_wait;
struct task_struct *transition_task; /* Task which is doing the transition */
};
/* Only for ACPI */
@ -468,6 +469,55 @@ struct cpufreq_frequency_table {
* order */
};
#if defined(CONFIG_CPU_FREQ) && defined(CONFIG_PM_OPP)
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
#else
static inline int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table
**table)
{
return -EINVAL;
}
static inline void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table
**table)
{
}
#endif
static inline bool cpufreq_next_valid(struct cpufreq_frequency_table **pos)
{
while ((*pos)->frequency != CPUFREQ_TABLE_END)
if ((*pos)->frequency != CPUFREQ_ENTRY_INVALID)
return true;
else
(*pos)++;
return false;
}
/*
* cpufreq_for_each_entry - iterate over a cpufreq_frequency_table
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
*/
#define cpufreq_for_each_entry(pos, table) \
for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++)
/*
* cpufreq_for_each_valid_entry - iterate over a cpufreq_frequency_table
* excluding CPUFREQ_ENTRY_INVALID frequencies.
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
*/
#define cpufreq_for_each_valid_entry(pos, table) \
for (pos = table; cpufreq_next_valid(&pos); pos++)
int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table);

View File

@ -15,7 +15,6 @@
#define __LINUX_OPP_H__
#include <linux/err.h>
#include <linux/cpufreq.h>
#include <linux/notifier.h>
struct dev_pm_opp;
@ -117,23 +116,4 @@ static inline int of_init_opp_table(struct device *dev)
}
#endif
#if defined(CONFIG_CPU_FREQ) && defined(CONFIG_PM_OPP)
int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table);
#else
static inline int dev_pm_opp_init_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
return -EINVAL;
}
static inline
void dev_pm_opp_free_cpufreq_table(struct device *dev,
struct cpufreq_frequency_table **table)
{
}
#endif /* CONFIG_CPU_FREQ */
#endif /* __LINUX_OPP_H__ */

View File

@ -62,7 +62,7 @@ LIB_MAJ= 0.0.0
LIB_MIN= 0
PACKAGE = cpupower
PACKAGE_BUGREPORT = cpufreq@vger.kernel.org
PACKAGE_BUGREPORT = linux-pm@vger.kernel.org
LANGUAGES = de fr it cs pt

View File

@ -18,7 +18,7 @@
* 5.) if the third value, "diff_pmtmr", changes between 2. and 4., the
* TSC-based delay routine on the Linux kernel does not correctly
* handle the cpufreq transition. Please report this to
* cpufreq@vger.kernel.org
* linux-pm@vger.kernel.org
*/
#include <linux/kernel.h>