2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 07:35:44 +08:00

crypto: marvell - add Marvell OcteonTX2 CPT PF driver

Adds skeleton for the Marvell OcteonTX2 CPT physical function
driver which includes probe, PCI specific initialization and
hardware register defines.
RVU defines are present in AF driver
(drivers/net/ethernet/marvell/octeontx2/af), header files from
AF driver are included here to avoid duplication.

Signed-off-by: Suheil Chandran <schandran@marvell.com>
Signed-off-by: Lukasz Bartosik <lbartosik@marvell.com>
Signed-off-by: Srujana Challa <schalla@marvell.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Srujana Challa 2021-01-15 19:22:19 +05:30 committed by Herbert Xu
parent 0df07d8117
commit 5e8ce83347
7 changed files with 633 additions and 0 deletions

View File

@ -35,3 +35,13 @@ config CRYPTO_DEV_OCTEONTX_CPT
To compile this driver as module, choose M here:
the modules will be called octeontx-cpt and octeontx-cptvf
config CRYPTO_DEV_OCTEONTX2_CPT
tristate "Marvell OcteonTX2 CPT driver"
depends on ARM64 || COMPILE_TEST
depends on PCI_MSI && 64BIT
select OCTEONTX2_MBOX
select CRYPTO_DEV_MARVELL
help
This driver allows you to utilize the Marvell Cryptographic
Accelerator Unit(CPT) found in OcteonTX2 series of processors.

View File

@ -2,3 +2,4 @@
obj-$(CONFIG_CRYPTO_DEV_MARVELL_CESA) += cesa/
obj-$(CONFIG_CRYPTO_DEV_OCTEONTX_CPT) += octeontx/
obj-$(CONFIG_CRYPTO_DEV_OCTEONTX2_CPT) += octeontx2/

View File

@ -0,0 +1,6 @@
# SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_CRYPTO_DEV_OCTEONTX2_CPT) += octeontx2-cpt.o
octeontx2-cpt-objs := otx2_cptpf_main.o
ccflags-y += -I$(srctree)/drivers/net/ethernet/marvell/octeontx2/af

View File

@ -0,0 +1,32 @@
/* SPDX-License-Identifier: GPL-2.0-only
* Copyright (C) 2020 Marvell.
*/
#ifndef __OTX2_CPT_COMMON_H
#define __OTX2_CPT_COMMON_H
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include "otx2_cpt_hw_types.h"
#include "rvu.h"
#define OTX2_CPT_RVU_FUNC_ADDR_S(blk, slot, offs) \
(((blk) << 20) | ((slot) << 12) | (offs))
static inline void otx2_cpt_write64(void __iomem *reg_base, u64 blk, u64 slot,
u64 offs, u64 val)
{
writeq_relaxed(val, reg_base +
OTX2_CPT_RVU_FUNC_ADDR_S(blk, slot, offs));
}
static inline u64 otx2_cpt_read64(void __iomem *reg_base, u64 blk, u64 slot,
u64 offs)
{
return readq_relaxed(reg_base +
OTX2_CPT_RVU_FUNC_ADDR_S(blk, slot, offs));
}
#endif /* __OTX2_CPT_COMMON_H */

View File

@ -0,0 +1,464 @@
/* SPDX-License-Identifier: GPL-2.0-only
* Copyright (C) 2020 Marvell.
*/
#ifndef __OTX2_CPT_HW_TYPES_H
#define __OTX2_CPT_HW_TYPES_H
#include <linux/types.h>
/* Device IDs */
#define OTX2_CPT_PCI_PF_DEVICE_ID 0xA0FD
#define OTX2_CPT_PCI_VF_DEVICE_ID 0xA0FE
/* Mailbox interrupts offset */
#define OTX2_CPT_PF_MBOX_INT 6
#define OTX2_CPT_PF_INT_VEC_E_MBOXX(x, a) ((x) + (a))
/* Maximum supported microcode groups */
#define OTX2_CPT_MAX_ENGINE_GROUPS 8
/* CPT instruction size in bytes */
#define OTX2_CPT_INST_SIZE 64
/*
* CPT VF MSIX vectors and their offsets
*/
#define OTX2_CPT_VF_MSIX_VECTORS 1
#define OTX2_CPT_VF_INTR_MBOX_MASK BIT(0)
/* CPT LF MSIX vectors */
#define OTX2_CPT_LF_MSIX_VECTORS 2
/* OcteonTX2 CPT PF registers */
#define OTX2_CPT_PF_CONSTANTS (0x0)
#define OTX2_CPT_PF_RESET (0x100)
#define OTX2_CPT_PF_DIAG (0x120)
#define OTX2_CPT_PF_BIST_STATUS (0x160)
#define OTX2_CPT_PF_ECC0_CTL (0x200)
#define OTX2_CPT_PF_ECC0_FLIP (0x210)
#define OTX2_CPT_PF_ECC0_INT (0x220)
#define OTX2_CPT_PF_ECC0_INT_W1S (0x230)
#define OTX2_CPT_PF_ECC0_ENA_W1S (0x240)
#define OTX2_CPT_PF_ECC0_ENA_W1C (0x250)
#define OTX2_CPT_PF_MBOX_INTX(b) (0x400 | (b) << 3)
#define OTX2_CPT_PF_MBOX_INT_W1SX(b) (0x420 | (b) << 3)
#define OTX2_CPT_PF_MBOX_ENA_W1CX(b) (0x440 | (b) << 3)
#define OTX2_CPT_PF_MBOX_ENA_W1SX(b) (0x460 | (b) << 3)
#define OTX2_CPT_PF_EXEC_INT (0x500)
#define OTX2_CPT_PF_EXEC_INT_W1S (0x520)
#define OTX2_CPT_PF_EXEC_ENA_W1C (0x540)
#define OTX2_CPT_PF_EXEC_ENA_W1S (0x560)
#define OTX2_CPT_PF_GX_EN(b) (0x600 | (b) << 3)
#define OTX2_CPT_PF_EXEC_INFO (0x700)
#define OTX2_CPT_PF_EXEC_BUSY (0x800)
#define OTX2_CPT_PF_EXEC_INFO0 (0x900)
#define OTX2_CPT_PF_EXEC_INFO1 (0x910)
#define OTX2_CPT_PF_INST_REQ_PC (0x10000)
#define OTX2_CPT_PF_INST_LATENCY_PC (0x10020)
#define OTX2_CPT_PF_RD_REQ_PC (0x10040)
#define OTX2_CPT_PF_RD_LATENCY_PC (0x10060)
#define OTX2_CPT_PF_RD_UC_PC (0x10080)
#define OTX2_CPT_PF_ACTIVE_CYCLES_PC (0x10100)
#define OTX2_CPT_PF_EXE_CTL (0x4000000)
#define OTX2_CPT_PF_EXE_STATUS (0x4000008)
#define OTX2_CPT_PF_EXE_CLK (0x4000010)
#define OTX2_CPT_PF_EXE_DBG_CTL (0x4000018)
#define OTX2_CPT_PF_EXE_DBG_DATA (0x4000020)
#define OTX2_CPT_PF_EXE_BIST_STATUS (0x4000028)
#define OTX2_CPT_PF_EXE_REQ_TIMER (0x4000030)
#define OTX2_CPT_PF_EXE_MEM_CTL (0x4000038)
#define OTX2_CPT_PF_EXE_PERF_CTL (0x4001000)
#define OTX2_CPT_PF_EXE_DBG_CNTX(b) (0x4001100 | (b) << 3)
#define OTX2_CPT_PF_EXE_PERF_EVENT_CNT (0x4001180)
#define OTX2_CPT_PF_EXE_EPCI_INBX_CNT(b) (0x4001200 | (b) << 3)
#define OTX2_CPT_PF_EXE_EPCI_OUTBX_CNT(b) (0x4001240 | (b) << 3)
#define OTX2_CPT_PF_ENGX_UCODE_BASE(b) (0x4002000 | (b) << 3)
#define OTX2_CPT_PF_QX_CTL(b) (0x8000000 | (b) << 20)
#define OTX2_CPT_PF_QX_GMCTL(b) (0x8000020 | (b) << 20)
#define OTX2_CPT_PF_QX_CTL2(b) (0x8000100 | (b) << 20)
#define OTX2_CPT_PF_VFX_MBOXX(b, c) (0x8001000 | (b) << 20 | \
(c) << 8)
/* OcteonTX2 CPT LF registers */
#define OTX2_CPT_LF_CTL (0x10)
#define OTX2_CPT_LF_DONE_WAIT (0x30)
#define OTX2_CPT_LF_INPROG (0x40)
#define OTX2_CPT_LF_DONE (0x50)
#define OTX2_CPT_LF_DONE_ACK (0x60)
#define OTX2_CPT_LF_DONE_INT_ENA_W1S (0x90)
#define OTX2_CPT_LF_DONE_INT_ENA_W1C (0xa0)
#define OTX2_CPT_LF_MISC_INT (0xb0)
#define OTX2_CPT_LF_MISC_INT_W1S (0xc0)
#define OTX2_CPT_LF_MISC_INT_ENA_W1S (0xd0)
#define OTX2_CPT_LF_MISC_INT_ENA_W1C (0xe0)
#define OTX2_CPT_LF_Q_BASE (0xf0)
#define OTX2_CPT_LF_Q_SIZE (0x100)
#define OTX2_CPT_LF_Q_INST_PTR (0x110)
#define OTX2_CPT_LF_Q_GRP_PTR (0x120)
#define OTX2_CPT_LF_NQX(a) (0x400 | (a) << 3)
#define OTX2_CPT_RVU_FUNC_BLKADDR_SHIFT 20
/* LMT LF registers */
#define OTX2_CPT_LMT_LFBASE BIT_ULL(OTX2_CPT_RVU_FUNC_BLKADDR_SHIFT)
#define OTX2_CPT_LMT_LF_LMTLINEX(a) (OTX2_CPT_LMT_LFBASE | 0x000 | \
(a) << 12)
/* RVU VF registers */
#define OTX2_RVU_VF_INT (0x20)
#define OTX2_RVU_VF_INT_W1S (0x28)
#define OTX2_RVU_VF_INT_ENA_W1S (0x30)
#define OTX2_RVU_VF_INT_ENA_W1C (0x38)
/*
* Enumeration otx2_cpt_ucode_error_code_e
*
* Enumerates ucode errors
*/
enum otx2_cpt_ucode_comp_code_e {
OTX2_CPT_UCC_SUCCESS = 0x00,
OTX2_CPT_UCC_INVALID_OPCODE = 0x01,
/* Scatter gather */
OTX2_CPT_UCC_SG_WRITE_LENGTH = 0x02,
OTX2_CPT_UCC_SG_LIST = 0x03,
OTX2_CPT_UCC_SG_NOT_SUPPORTED = 0x04,
};
/*
* Enumeration otx2_cpt_comp_e
*
* OcteonTX2 CPT Completion Enumeration
* Enumerates the values of CPT_RES_S[COMPCODE].
*/
enum otx2_cpt_comp_e {
OTX2_CPT_COMP_E_NOTDONE = 0x00,
OTX2_CPT_COMP_E_GOOD = 0x01,
OTX2_CPT_COMP_E_FAULT = 0x02,
OTX2_CPT_COMP_E_HWERR = 0x04,
OTX2_CPT_COMP_E_INSTERR = 0x05,
OTX2_CPT_COMP_E_LAST_ENTRY = 0x06
};
/*
* Enumeration otx2_cpt_vf_int_vec_e
*
* OcteonTX2 CPT VF MSI-X Vector Enumeration
* Enumerates the MSI-X interrupt vectors.
*/
enum otx2_cpt_vf_int_vec_e {
OTX2_CPT_VF_INT_VEC_E_MBOX = 0x00
};
/*
* Enumeration otx2_cpt_lf_int_vec_e
*
* OcteonTX2 CPT LF MSI-X Vector Enumeration
* Enumerates the MSI-X interrupt vectors.
*/
enum otx2_cpt_lf_int_vec_e {
OTX2_CPT_LF_INT_VEC_E_MISC = 0x00,
OTX2_CPT_LF_INT_VEC_E_DONE = 0x01
};
/*
* Structure otx2_cpt_inst_s
*
* CPT Instruction Structure
* This structure specifies the instruction layout. Instructions are
* stored in memory as little-endian unless CPT()_PF_Q()_CTL[INST_BE] is set.
* cpt_inst_s_s
* Word 0
* doneint:1 Done interrupt.
* 0 = No interrupts related to this instruction.
* 1 = When the instruction completes, CPT()_VQ()_DONE[DONE] will be
* incremented,and based on the rules described there an interrupt may
* occur.
* Word 1
* res_addr [127: 64] Result IOVA.
* If nonzero, specifies where to write CPT_RES_S.
* If zero, no result structure will be written.
* Address must be 16-byte aligned.
* Bits <63:49> are ignored by hardware; software should use a
* sign-extended bit <48> for forward compatibility.
* Word 2
* grp:10 [171:162] If [WQ_PTR] is nonzero, the SSO guest-group to use when
* CPT submits work SSO.
* For the SSO to not discard the add-work request, FPA_PF_MAP() must map
* [GRP] and CPT()_PF_Q()_GMCTL[GMID] as valid.
* tt:2 [161:160] If [WQ_PTR] is nonzero, the SSO tag type to use when CPT
* submits work to SSO
* tag:32 [159:128] If [WQ_PTR] is nonzero, the SSO tag to use when CPT
* submits work to SSO.
* Word 3
* wq_ptr [255:192] If [WQ_PTR] is nonzero, it is a pointer to a
* work-queue entry that CPT submits work to SSO after all context,
* output data, and result write operations are visible to other
* CNXXXX units and the cores. Bits <2:0> must be zero.
* Bits <63:49> are ignored by hardware; software should
* use a sign-extended bit <48> for forward compatibility.
* Internal:
* Bits <63:49>, <2:0> are ignored by hardware, treated as always 0x0.
* Word 4
* ei0; [319:256] Engine instruction word 0. Passed to the AE/SE.
* Word 5
* ei1; [383:320] Engine instruction word 1. Passed to the AE/SE.
* Word 6
* ei2; [447:384] Engine instruction word 1. Passed to the AE/SE.
* Word 7
* ei3; [511:448] Engine instruction word 1. Passed to the AE/SE.
*
*/
union otx2_cpt_inst_s {
u64 u[8];
struct {
/* Word 0 */
u64 nixtxl:3;
u64 doneint:1;
u64 nixtx_addr:60;
/* Word 1 */
u64 res_addr;
/* Word 2 */
u64 tag:32;
u64 tt:2;
u64 grp:10;
u64 reserved_172_175:4;
u64 rvu_pf_func:16;
/* Word 3 */
u64 qord:1;
u64 reserved_194_193:2;
u64 wq_ptr:61;
/* Word 4 */
u64 ei0;
/* Word 5 */
u64 ei1;
/* Word 6 */
u64 ei2;
/* Word 7 */
u64 ei3;
} s;
};
/*
* Structure otx2_cpt_res_s
*
* CPT Result Structure
* The CPT coprocessor writes the result structure after it completes a
* CPT_INST_S instruction. The result structure is exactly 16 bytes, and
* each instruction completion produces exactly one result structure.
*
* This structure is stored in memory as little-endian unless
* CPT()_PF_Q()_CTL[INST_BE] is set.
* cpt_res_s_s
* Word 0
* doneint:1 [16:16] Done interrupt. This bit is copied from the
* corresponding instruction's CPT_INST_S[DONEINT].
* compcode:8 [7:0] Indicates completion/error status of the CPT coprocessor
* for the associated instruction, as enumerated by CPT_COMP_E.
* Core software may write the memory location containing [COMPCODE] to
* 0x0 before ringing the doorbell, and then poll for completion by
* checking for a nonzero value.
* Once the core observes a nonzero [COMPCODE] value in this case,the CPT
* coprocessor will have also completed L2/DRAM write operations.
* Word 1
* reserved
*
*/
union otx2_cpt_res_s {
u64 u[2];
struct {
u64 compcode:8;
u64 uc_compcode:8;
u64 doneint:1;
u64 reserved_17_63:47;
u64 reserved_64_127;
} s;
};
/*
* Register (RVU_PF_BAR0) cpt#_af_constants1
*
* CPT AF Constants Register
* This register contains implementation-related parameters of CPT.
*/
union otx2_cptx_af_constants1 {
u64 u;
struct otx2_cptx_af_constants1_s {
u64 se:16;
u64 ie:16;
u64 ae:16;
u64 reserved_48_63:16;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_misc_int
*
* This register contain the per-queue miscellaneous interrupts.
*
*/
union otx2_cptx_lf_misc_int {
u64 u;
struct otx2_cptx_lf_misc_int_s {
u64 reserved_0:1;
u64 nqerr:1;
u64 irde:1;
u64 nwrp:1;
u64 reserved_4:1;
u64 hwerr:1;
u64 fault:1;
u64 reserved_7_63:57;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_misc_int_ena_w1s
*
* This register sets interrupt enable bits.
*
*/
union otx2_cptx_lf_misc_int_ena_w1s {
u64 u;
struct otx2_cptx_lf_misc_int_ena_w1s_s {
u64 reserved_0:1;
u64 nqerr:1;
u64 irde:1;
u64 nwrp:1;
u64 reserved_4:1;
u64 hwerr:1;
u64 fault:1;
u64 reserved_7_63:57;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_ctl
*
* This register configures the queue.
*
* When the queue is not execution-quiescent (see CPT_LF_INPROG[EENA,INFLIGHT]),
* software must only write this register with [ENA]=0.
*/
union otx2_cptx_lf_ctl {
u64 u;
struct otx2_cptx_lf_ctl_s {
u64 ena:1;
u64 fc_ena:1;
u64 fc_up_crossing:1;
u64 reserved_3:1;
u64 fc_hyst_bits:4;
u64 reserved_8_63:56;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_done_wait
*
* This register specifies the per-queue interrupt coalescing settings.
*/
union otx2_cptx_lf_done_wait {
u64 u;
struct otx2_cptx_lf_done_wait_s {
u64 num_wait:20;
u64 reserved_20_31:12;
u64 time_wait:16;
u64 reserved_48_63:16;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_done
*
* This register contain the per-queue instruction done count.
*/
union otx2_cptx_lf_done {
u64 u;
struct otx2_cptx_lf_done_s {
u64 done:20;
u64 reserved_20_63:44;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_inprog
*
* These registers contain the per-queue instruction in flight registers.
*
*/
union otx2_cptx_lf_inprog {
u64 u;
struct otx2_cptx_lf_inprog_s {
u64 inflight:9;
u64 reserved_9_15:7;
u64 eena:1;
u64 grp_drp:1;
u64 reserved_18_30:13;
u64 grb_partial:1;
u64 grb_cnt:8;
u64 gwb_cnt:8;
u64 reserved_48_63:16;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_q_base
*
* CPT initializes these CSR fields to these values on any CPT_LF_Q_BASE write:
* _ CPT_LF_Q_INST_PTR[XQ_XOR]=0.
* _ CPT_LF_Q_INST_PTR[NQ_PTR]=2.
* _ CPT_LF_Q_INST_PTR[DQ_PTR]=2.
* _ CPT_LF_Q_GRP_PTR[XQ_XOR]=0.
* _ CPT_LF_Q_GRP_PTR[NQ_PTR]=1.
* _ CPT_LF_Q_GRP_PTR[DQ_PTR]=1.
*/
union otx2_cptx_lf_q_base {
u64 u;
struct otx2_cptx_lf_q_base_s {
u64 fault:1;
u64 reserved_1_6:6;
u64 addr:46;
u64 reserved_53_63:11;
} s;
};
/*
* RVU_PFVF_BAR2 - cpt_lf_q_size
*
* CPT initializes these CSR fields to these values on any CPT_LF_Q_SIZE write:
* _ CPT_LF_Q_INST_PTR[XQ_XOR]=0.
* _ CPT_LF_Q_INST_PTR[NQ_PTR]=2.
* _ CPT_LF_Q_INST_PTR[DQ_PTR]=2.
* _ CPT_LF_Q_GRP_PTR[XQ_XOR]=0.
* _ CPT_LF_Q_GRP_PTR[NQ_PTR]=1.
* _ CPT_LF_Q_GRP_PTR[DQ_PTR]=1.
*/
union otx2_cptx_lf_q_size {
u64 u;
struct otx2_cptx_lf_q_size_s {
u64 size_div40:15;
u64 reserved_15_63:49;
} s;
};
/*
* RVU_PF_BAR0 - cpt_af_lf_ctl
*
* This register configures queues. This register should be written only
* when the queue is execution-quiescent (see CPT_LF_INPROG[INFLIGHT]).
*/
union otx2_cptx_af_lf_ctrl {
u64 u;
struct otx2_cptx_af_lf_ctrl_s {
u64 pri:1;
u64 reserved_1_8:8;
u64 pf_func_inst:1;
u64 cont_err:1;
u64 reserved_11_15:5;
u64 nixtx_en:1;
u64 reserved_17_47:31;
u64 grp:8;
u64 reserved_56_63:8;
} s;
};
#endif /* __OTX2_CPT_HW_TYPES_H */

View File

@ -0,0 +1,13 @@
/* SPDX-License-Identifier: GPL-2.0-only
* Copyright (C) 2020 Marvell.
*/
#ifndef __OTX2_CPTPF_H
#define __OTX2_CPTPF_H
struct otx2_cptpf_dev {
void __iomem *reg_base; /* CPT PF registers start address */
struct pci_dev *pdev; /* PCI device handle */
};
#endif /* __OTX2_CPTPF_H */

View File

@ -0,0 +1,107 @@
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2020 Marvell. */
#include <linux/firmware.h>
#include "otx2_cpt_hw_types.h"
#include "otx2_cpt_common.h"
#include "otx2_cptpf.h"
#include "rvu_reg.h"
#define OTX2_CPT_DRV_NAME "octeontx2-cpt"
#define OTX2_CPT_DRV_STRING "Marvell OcteonTX2 CPT Physical Function Driver"
static int cpt_is_pf_usable(struct otx2_cptpf_dev *cptpf)
{
u64 rev;
rev = otx2_cpt_read64(cptpf->reg_base, BLKADDR_RVUM, 0,
RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_RVUM));
rev = (rev >> 12) & 0xFF;
/*
* Check if AF has setup revision for RVUM block, otherwise
* driver probe should be deferred until AF driver comes up
*/
if (!rev) {
dev_warn(&cptpf->pdev->dev,
"AF is not initialized, deferring probe\n");
return -EPROBE_DEFER;
}
return 0;
}
static int otx2_cptpf_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct otx2_cptpf_dev *cptpf;
int err;
cptpf = devm_kzalloc(dev, sizeof(*cptpf), GFP_KERNEL);
if (!cptpf)
return -ENOMEM;
err = pcim_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
goto clear_drvdata;
}
err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get usable DMA configuration\n");
goto clear_drvdata;
}
/* Map PF's configuration registers */
err = pcim_iomap_regions_request_all(pdev, 1 << PCI_PF_REG_BAR_NUM,
OTX2_CPT_DRV_NAME);
if (err) {
dev_err(dev, "Couldn't get PCI resources 0x%x\n", err);
goto clear_drvdata;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, cptpf);
cptpf->pdev = pdev;
cptpf->reg_base = pcim_iomap_table(pdev)[PCI_PF_REG_BAR_NUM];
/* Check if AF driver is up, otherwise defer probe */
err = cpt_is_pf_usable(cptpf);
if (err)
goto clear_drvdata;
return 0;
clear_drvdata:
pci_set_drvdata(pdev, NULL);
return err;
}
static void otx2_cptpf_remove(struct pci_dev *pdev)
{
struct otx2_cptpf_dev *cptpf = pci_get_drvdata(pdev);
if (!cptpf)
return;
pci_set_drvdata(pdev, NULL);
}
/* Supported devices */
static const struct pci_device_id otx2_cpt_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OTX2_CPT_PCI_PF_DEVICE_ID) },
{ 0, } /* end of table */
};
static struct pci_driver otx2_cpt_pci_driver = {
.name = OTX2_CPT_DRV_NAME,
.id_table = otx2_cpt_id_table,
.probe = otx2_cptpf_probe,
.remove = otx2_cptpf_remove,
};
module_pci_driver(otx2_cpt_pci_driver);
MODULE_AUTHOR("Marvell");
MODULE_DESCRIPTION(OTX2_CPT_DRV_STRING);
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(pci, otx2_cpt_id_table);