2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-15 16:53:54 +08:00

rtc: cmos: move mc146818rtc code out of asm-generic/rtc.h

Drivers should not really include stuff from asm-generic directly,
and the PC-style cmos rtc driver does this in order to reuse the
mc146818 implementation of get_rtc_time/set_rtc_time rather than
the architecture specific one for the architecture it gets built for.

To make it more obvious what is going on, this moves and renames the
two functions into include/linux/mc146818rtc.h, which holds the
other mc146818 specific code. Ideally it would be in a .c file,
but that would require extra infrastructure as the functions are
called by multiple drivers with conflicting dependencies.

With this change, the asm-generic/rtc.h header also becomes much
more generic, so it can be reused more easily across any architecture
that still relies on the genrtc driver.

The only caller of the internal __get_rtc_time/__set_rtc_time
functions is in arch/alpha/kernel/rtc.c, and we just change those
over to the new naming.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
This commit is contained in:
Arnd Bergmann 2016-05-30 20:57:50 +02:00 committed by Alexandre Belloni
parent f09c5142ee
commit 5ab788d738
7 changed files with 209 additions and 212 deletions

View File

@ -15,8 +15,6 @@
#include <linux/rtc.h>
#include <linux/platform_device.h>
#include <asm/rtc.h>
#include "proto.h"
@ -81,7 +79,7 @@ init_rtc_epoch(void)
static int
alpha_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
__get_rtc_time(tm);
mc146818_get_time(tm);
/* Adjust for non-default epochs. It's easier to depend on the
generic __get_rtc_time and adjust the epoch here than create
@ -112,7 +110,7 @@ alpha_rtc_set_time(struct device *dev, struct rtc_time *tm)
tm = &xtm;
}
return __set_rtc_time(tm);
return mc146818_set_time(tm);
}
static int

View File

@ -6,7 +6,6 @@
#include <asm/io.h>
#include <asm/processor.h>
#include <linux/mc146818rtc.h>
#ifndef RTC_PORT
#define RTC_PORT(x) (0x70 + (x))

View File

@ -25,6 +25,7 @@
#include <linux/bootmem.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/mc146818rtc.h>
#include <linux/efi.h>
#include <linux/uaccess.h>
#include <linux/io.h>

View File

@ -22,6 +22,7 @@
#include <linux/init.h>
#include <linux/sfi.h>
#include <linux/platform_device.h>
#include <linux/mc146818rtc.h>
#include <asm/intel-mid.h>
#include <asm/intel_mid_vrtc.h>

View File

@ -43,7 +43,7 @@
#include <linux/of_platform.h>
/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
#include <asm-generic/rtc.h>
#include <linux/mc146818rtc.h>
struct cmos_rtc {
struct rtc_device *rtc;
@ -190,10 +190,10 @@ static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
static int cmos_read_time(struct device *dev, struct rtc_time *t)
{
/* REVISIT: if the clock has a "century" register, use
* that instead of the heuristic in get_rtc_time().
* that instead of the heuristic in mc146818_get_time().
* That'll make Y3K compatility (year > 2070) easy!
*/
get_rtc_time(t);
mc146818_get_time(t);
return 0;
}
@ -205,7 +205,7 @@ static int cmos_set_time(struct device *dev, struct rtc_time *t)
* takes effect exactly 500ms after we write the register.
* (Also queueing and other delays before we get this far.)
*/
return set_rtc_time(t);
return mc146818_set_time(t);
}
static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
@ -1142,14 +1142,14 @@ static __init void cmos_of_init(struct platform_device *pdev)
if (val)
CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
get_rtc_time(&time);
cmos_read_time(&pdev->dev, &time);
ret = rtc_valid_tm(&time);
if (ret) {
struct rtc_time def_time = {
.tm_year = 1,
.tm_mday = 1,
};
set_rtc_time(&def_time);
cmos_set_time(&pdev->dev, &def_time);
}
}
#else

View File

@ -12,12 +12,12 @@
#ifndef __ASM_RTC_H__
#define __ASM_RTC_H__
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/delay.h>
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
#ifndef get_rtc_time
#include <linux/mc146818rtc.h>
#define get_rtc_time mc146818_get_time
#define set_rtc_time mc146818_set_time
#endif
#define RTC_PIE 0x40 /* periodic interrupt enable */
@ -31,202 +31,6 @@
#define RTC_24H 0x02 /* 24 hour mode - else hours bit 7 means pm */
#define RTC_DST_EN 0x01 /* auto switch DST - works f. USA only */
/*
* Returns true if a clock update is in progress
*/
static inline unsigned char rtc_is_updating(void)
{
unsigned char uip;
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
spin_unlock_irqrestore(&rtc_lock, flags);
return uip;
}
static inline unsigned int __get_rtc_time(struct rtc_time *time)
{
unsigned char ctrl;
unsigned long flags;
unsigned char century = 0;
#ifdef CONFIG_MACH_DECSTATION
unsigned int real_year;
#endif
/*
* read RTC once any update in progress is done. The update
* can take just over 2ms. We wait 20ms. There is no need to
* to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
* If you need to know *exactly* when a second has started, enable
* periodic update complete interrupts, (via ioctl) and then
* immediately read /dev/rtc which will block until you get the IRQ.
* Once the read clears, read the RTC time (again via ioctl). Easy.
*/
if (rtc_is_updating())
mdelay(20);
/*
* Only the values that we read from the RTC are set. We leave
* tm_wday, tm_yday and tm_isdst untouched. Even though the
* RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
* by the RTC when initially set to a non-zero value.
*/
spin_lock_irqsave(&rtc_lock, flags);
time->tm_sec = CMOS_READ(RTC_SECONDS);
time->tm_min = CMOS_READ(RTC_MINUTES);
time->tm_hour = CMOS_READ(RTC_HOURS);
time->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
time->tm_mon = CMOS_READ(RTC_MONTH);
time->tm_year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_MACH_DECSTATION
real_year = CMOS_READ(RTC_DEC_YEAR);
#endif
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century)
century = CMOS_READ(acpi_gbl_FADT.century);
#endif
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irqrestore(&rtc_lock, flags);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
{
time->tm_sec = bcd2bin(time->tm_sec);
time->tm_min = bcd2bin(time->tm_min);
time->tm_hour = bcd2bin(time->tm_hour);
time->tm_mday = bcd2bin(time->tm_mday);
time->tm_mon = bcd2bin(time->tm_mon);
time->tm_year = bcd2bin(time->tm_year);
century = bcd2bin(century);
}
#ifdef CONFIG_MACH_DECSTATION
time->tm_year += real_year - 72;
#endif
if (century)
time->tm_year += (century - 19) * 100;
/*
* Account for differences between how the RTC uses the values
* and how they are defined in a struct rtc_time;
*/
if (time->tm_year <= 69)
time->tm_year += 100;
time->tm_mon--;
return RTC_24H;
}
#ifndef get_rtc_time
#define get_rtc_time __get_rtc_time
#endif
/* Set the current date and time in the real time clock. */
static inline int __set_rtc_time(struct rtc_time *time)
{
unsigned long flags;
unsigned char mon, day, hrs, min, sec;
unsigned char save_control, save_freq_select;
unsigned int yrs;
#ifdef CONFIG_MACH_DECSTATION
unsigned int real_yrs, leap_yr;
#endif
unsigned char century = 0;
yrs = time->tm_year;
mon = time->tm_mon + 1; /* tm_mon starts at zero */
day = time->tm_mday;
hrs = time->tm_hour;
min = time->tm_min;
sec = time->tm_sec;
if (yrs > 255) /* They are unsigned */
return -EINVAL;
spin_lock_irqsave(&rtc_lock, flags);
#ifdef CONFIG_MACH_DECSTATION
real_yrs = yrs;
leap_yr = ((!((yrs + 1900) % 4) && ((yrs + 1900) % 100)) ||
!((yrs + 1900) % 400));
yrs = 72;
/*
* We want to keep the year set to 73 until March
* for non-leap years, so that Feb, 29th is handled
* correctly.
*/
if (!leap_yr && mon < 3) {
real_yrs--;
yrs = 73;
}
#endif
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century) {
century = (yrs + 1900) / 100;
yrs %= 100;
}
#endif
/* These limits and adjustments are independent of
* whether the chip is in binary mode or not.
*/
if (yrs > 169) {
spin_unlock_irqrestore(&rtc_lock, flags);
return -EINVAL;
}
if (yrs >= 100)
yrs -= 100;
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
|| RTC_ALWAYS_BCD) {
sec = bin2bcd(sec);
min = bin2bcd(min);
hrs = bin2bcd(hrs);
day = bin2bcd(day);
mon = bin2bcd(mon);
yrs = bin2bcd(yrs);
century = bin2bcd(century);
}
save_control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
#ifdef CONFIG_MACH_DECSTATION
CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
#endif
CMOS_WRITE(yrs, RTC_YEAR);
CMOS_WRITE(mon, RTC_MONTH);
CMOS_WRITE(day, RTC_DAY_OF_MONTH);
CMOS_WRITE(hrs, RTC_HOURS);
CMOS_WRITE(min, RTC_MINUTES);
CMOS_WRITE(sec, RTC_SECONDS);
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century)
CMOS_WRITE(century, acpi_gbl_FADT.century);
#endif
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#ifndef set_rtc_time
#define set_rtc_time __set_rtc_time
#endif
static inline unsigned int get_rtc_ss(void)
{
struct rtc_time h;

View File

@ -14,6 +14,12 @@
#include <asm/io.h>
#include <linux/rtc.h> /* get the user-level API */
#include <asm/mc146818rtc.h> /* register access macros */
#include <linux/bcd.h>
#include <linux/delay.h>
#ifdef CONFIG_ACPI
#include <linux/acpi.h>
#endif
#ifdef __KERNEL__
#include <linux/spinlock.h> /* spinlock_t */
@ -120,4 +126,192 @@ struct cmos_rtc_board_info {
#define RTC_IO_EXTENT_USED RTC_IO_EXTENT
#endif /* ARCH_RTC_LOCATION */
/*
* Returns true if a clock update is in progress
*/
static inline unsigned char mc146818_is_updating(void)
{
unsigned char uip;
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
spin_unlock_irqrestore(&rtc_lock, flags);
return uip;
}
static inline unsigned int mc146818_get_time(struct rtc_time *time)
{
unsigned char ctrl;
unsigned long flags;
unsigned char century = 0;
#ifdef CONFIG_MACH_DECSTATION
unsigned int real_year;
#endif
/*
* read RTC once any update in progress is done. The update
* can take just over 2ms. We wait 20ms. There is no need to
* to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
* If you need to know *exactly* when a second has started, enable
* periodic update complete interrupts, (via ioctl) and then
* immediately read /dev/rtc which will block until you get the IRQ.
* Once the read clears, read the RTC time (again via ioctl). Easy.
*/
if (mc146818_is_updating())
mdelay(20);
/*
* Only the values that we read from the RTC are set. We leave
* tm_wday, tm_yday and tm_isdst untouched. Even though the
* RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
* by the RTC when initially set to a non-zero value.
*/
spin_lock_irqsave(&rtc_lock, flags);
time->tm_sec = CMOS_READ(RTC_SECONDS);
time->tm_min = CMOS_READ(RTC_MINUTES);
time->tm_hour = CMOS_READ(RTC_HOURS);
time->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
time->tm_mon = CMOS_READ(RTC_MONTH);
time->tm_year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_MACH_DECSTATION
real_year = CMOS_READ(RTC_DEC_YEAR);
#endif
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century)
century = CMOS_READ(acpi_gbl_FADT.century);
#endif
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irqrestore(&rtc_lock, flags);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
{
time->tm_sec = bcd2bin(time->tm_sec);
time->tm_min = bcd2bin(time->tm_min);
time->tm_hour = bcd2bin(time->tm_hour);
time->tm_mday = bcd2bin(time->tm_mday);
time->tm_mon = bcd2bin(time->tm_mon);
time->tm_year = bcd2bin(time->tm_year);
century = bcd2bin(century);
}
#ifdef CONFIG_MACH_DECSTATION
time->tm_year += real_year - 72;
#endif
if (century)
time->tm_year += (century - 19) * 100;
/*
* Account for differences between how the RTC uses the values
* and how they are defined in a struct rtc_time;
*/
if (time->tm_year <= 69)
time->tm_year += 100;
time->tm_mon--;
return RTC_24H;
}
/* Set the current date and time in the real time clock. */
static inline int mc146818_set_time(struct rtc_time *time)
{
unsigned long flags;
unsigned char mon, day, hrs, min, sec;
unsigned char save_control, save_freq_select;
unsigned int yrs;
#ifdef CONFIG_MACH_DECSTATION
unsigned int real_yrs, leap_yr;
#endif
unsigned char century = 0;
yrs = time->tm_year;
mon = time->tm_mon + 1; /* tm_mon starts at zero */
day = time->tm_mday;
hrs = time->tm_hour;
min = time->tm_min;
sec = time->tm_sec;
if (yrs > 255) /* They are unsigned */
return -EINVAL;
spin_lock_irqsave(&rtc_lock, flags);
#ifdef CONFIG_MACH_DECSTATION
real_yrs = yrs;
leap_yr = ((!((yrs + 1900) % 4) && ((yrs + 1900) % 100)) ||
!((yrs + 1900) % 400));
yrs = 72;
/*
* We want to keep the year set to 73 until March
* for non-leap years, so that Feb, 29th is handled
* correctly.
*/
if (!leap_yr && mon < 3) {
real_yrs--;
yrs = 73;
}
#endif
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century) {
century = (yrs + 1900) / 100;
yrs %= 100;
}
#endif
/* These limits and adjustments are independent of
* whether the chip is in binary mode or not.
*/
if (yrs > 169) {
spin_unlock_irqrestore(&rtc_lock, flags);
return -EINVAL;
}
if (yrs >= 100)
yrs -= 100;
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
|| RTC_ALWAYS_BCD) {
sec = bin2bcd(sec);
min = bin2bcd(min);
hrs = bin2bcd(hrs);
day = bin2bcd(day);
mon = bin2bcd(mon);
yrs = bin2bcd(yrs);
century = bin2bcd(century);
}
save_control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
#ifdef CONFIG_MACH_DECSTATION
CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
#endif
CMOS_WRITE(yrs, RTC_YEAR);
CMOS_WRITE(mon, RTC_MONTH);
CMOS_WRITE(day, RTC_DAY_OF_MONTH);
CMOS_WRITE(hrs, RTC_HOURS);
CMOS_WRITE(min, RTC_MINUTES);
CMOS_WRITE(sec, RTC_SECONDS);
#ifdef CONFIG_ACPI
if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
acpi_gbl_FADT.century)
CMOS_WRITE(century, acpi_gbl_FADT.century);
#endif
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#endif /* _MC146818RTC_H */