2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 02:34:05 +08:00

extended-controls.rst: split up per control class

The extended-controls.rst file had become too big. Split it up: each
control class reference gets its own rst file, and this file just
describes the Extended Control API.

Each control class reference is also moved up one level into the
table of contents to make it easier to find e.g. the codec control
reference.

Finally I rearranged the order so that all camera-related control
classes are grouped together, ditto for codec/jpeg and fm-rx/tx.

The ext-ctrls-codec.rst is still pretty big and it is a candidate
to split up further in the future, possibly per codec.

Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
This commit is contained in:
Hans Verkuil 2019-02-08 10:53:50 +01:00 committed by Mauro Carvalho Chehab
parent c6f5c7c237
commit 4f14e3272f
13 changed files with 4014 additions and 3917 deletions

View File

@ -46,6 +46,17 @@ applicable to all devices.
dv-timings
control
extended-controls
ext-ctrls-camera
ext-ctrls-flash
ext-ctrls-image-source
ext-ctrls-image-process
ext-ctrls-codec
ext-ctrls-jpeg
ext-ctrls-dv
ext-ctrls-rf-tuner
ext-ctrls-fm-tx
ext-ctrls-fm-rx
ext-ctrls-detect
format
planar-apis
selection-api

View File

@ -0,0 +1,508 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _camera-controls:
************************
Camera Control Reference
************************
The Camera class includes controls for mechanical (or equivalent
digital) features of a device such as controllable lenses or sensors.
.. _camera-control-id:
Camera Control IDs
==================
``V4L2_CID_CAMERA_CLASS (class)``
The Camera class descriptor. Calling
:ref:`VIDIOC_QUERYCTRL` for this control will
return a description of this control class.
.. _v4l2-exposure-auto-type:
``V4L2_CID_EXPOSURE_AUTO``
(enum)
enum v4l2_exposure_auto_type -
Enables automatic adjustments of the exposure time and/or iris
aperture. The effect of manual changes of the exposure time or iris
aperture while these features are enabled is undefined, drivers
should ignore such requests. Possible values are:
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_EXPOSURE_AUTO``
- Automatic exposure time, automatic iris aperture.
* - ``V4L2_EXPOSURE_MANUAL``
- Manual exposure time, manual iris.
* - ``V4L2_EXPOSURE_SHUTTER_PRIORITY``
- Manual exposure time, auto iris.
* - ``V4L2_EXPOSURE_APERTURE_PRIORITY``
- Auto exposure time, manual iris.
``V4L2_CID_EXPOSURE_ABSOLUTE (integer)``
Determines the exposure time of the camera sensor. The exposure time
is limited by the frame interval. Drivers should interpret the
values as 100 µs units, where the value 1 stands for 1/10000th of a
second, 10000 for 1 second and 100000 for 10 seconds.
``V4L2_CID_EXPOSURE_AUTO_PRIORITY (boolean)``
When ``V4L2_CID_EXPOSURE_AUTO`` is set to ``AUTO`` or
``APERTURE_PRIORITY``, this control determines if the device may
dynamically vary the frame rate. By default this feature is disabled
(0) and the frame rate must remain constant.
``V4L2_CID_AUTO_EXPOSURE_BIAS (integer menu)``
Determines the automatic exposure compensation, it is effective only
when ``V4L2_CID_EXPOSURE_AUTO`` control is set to ``AUTO``,
``SHUTTER_PRIORITY`` or ``APERTURE_PRIORITY``. It is expressed in
terms of EV, drivers should interpret the values as 0.001 EV units,
where the value 1000 stands for +1 EV.
Increasing the exposure compensation value is equivalent to
decreasing the exposure value (EV) and will increase the amount of
light at the image sensor. The camera performs the exposure
compensation by adjusting absolute exposure time and/or aperture.
.. _v4l2-exposure-metering:
``V4L2_CID_EXPOSURE_METERING``
(enum)
enum v4l2_exposure_metering -
Determines how the camera measures the amount of light available for
the frame exposure. Possible values are:
.. tabularcolumns:: |p{8.5cm}|p{9.0cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_EXPOSURE_METERING_AVERAGE``
- Use the light information coming from the entire frame and average
giving no weighting to any particular portion of the metered area.
* - ``V4L2_EXPOSURE_METERING_CENTER_WEIGHTED``
- Average the light information coming from the entire frame giving
priority to the center of the metered area.
* - ``V4L2_EXPOSURE_METERING_SPOT``
- Measure only very small area at the center of the frame.
* - ``V4L2_EXPOSURE_METERING_MATRIX``
- A multi-zone metering. The light intensity is measured in several
points of the frame and the results are combined. The algorithm of
the zones selection and their significance in calculating the
final value is device dependent.
``V4L2_CID_PAN_RELATIVE (integer)``
This control turns the camera horizontally by the specified amount.
The unit is undefined. A positive value moves the camera to the
right (clockwise when viewed from above), a negative value to the
left. A value of zero does not cause motion. This is a write-only
control.
``V4L2_CID_TILT_RELATIVE (integer)``
This control turns the camera vertically by the specified amount.
The unit is undefined. A positive value moves the camera up, a
negative value down. A value of zero does not cause motion. This is
a write-only control.
``V4L2_CID_PAN_RESET (button)``
When this control is set, the camera moves horizontally to the
default position.
``V4L2_CID_TILT_RESET (button)``
When this control is set, the camera moves vertically to the default
position.
``V4L2_CID_PAN_ABSOLUTE (integer)``
This control turns the camera horizontally to the specified
position. Positive values move the camera to the right (clockwise
when viewed from above), negative values to the left. Drivers should
interpret the values as arc seconds, with valid values between -180
* 3600 and +180 * 3600 inclusive.
``V4L2_CID_TILT_ABSOLUTE (integer)``
This control turns the camera vertically to the specified position.
Positive values move the camera up, negative values down. Drivers
should interpret the values as arc seconds, with valid values
between -180 * 3600 and +180 * 3600 inclusive.
``V4L2_CID_FOCUS_ABSOLUTE (integer)``
This control sets the focal point of the camera to the specified
position. The unit is undefined. Positive values set the focus
closer to the camera, negative values towards infinity.
``V4L2_CID_FOCUS_RELATIVE (integer)``
This control moves the focal point of the camera by the specified
amount. The unit is undefined. Positive values move the focus closer
to the camera, negative values towards infinity. This is a
write-only control.
``V4L2_CID_FOCUS_AUTO (boolean)``
Enables continuous automatic focus adjustments. The effect of manual
focus adjustments while this feature is enabled is undefined,
drivers should ignore such requests.
``V4L2_CID_AUTO_FOCUS_START (button)``
Starts single auto focus process. The effect of setting this control
when ``V4L2_CID_FOCUS_AUTO`` is set to ``TRUE`` (1) is undefined,
drivers should ignore such requests.
``V4L2_CID_AUTO_FOCUS_STOP (button)``
Aborts automatic focusing started with ``V4L2_CID_AUTO_FOCUS_START``
control. It is effective only when the continuous autofocus is
disabled, that is when ``V4L2_CID_FOCUS_AUTO`` control is set to
``FALSE`` (0).
.. _v4l2-auto-focus-status:
``V4L2_CID_AUTO_FOCUS_STATUS (bitmask)``
The automatic focus status. This is a read-only control.
Setting ``V4L2_LOCK_FOCUS`` lock bit of the ``V4L2_CID_3A_LOCK``
control may stop updates of the ``V4L2_CID_AUTO_FOCUS_STATUS``
control value.
.. tabularcolumns:: |p{6.5cm}|p{11.0cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_AUTO_FOCUS_STATUS_IDLE``
- Automatic focus is not active.
* - ``V4L2_AUTO_FOCUS_STATUS_BUSY``
- Automatic focusing is in progress.
* - ``V4L2_AUTO_FOCUS_STATUS_REACHED``
- Focus has been reached.
* - ``V4L2_AUTO_FOCUS_STATUS_FAILED``
- Automatic focus has failed, the driver will not transition from
this state until another action is performed by an application.
.. _v4l2-auto-focus-range:
``V4L2_CID_AUTO_FOCUS_RANGE``
(enum)
enum v4l2_auto_focus_range -
Determines auto focus distance range for which lens may be adjusted.
.. tabularcolumns:: |p{6.5cm}|p{11.0cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_AUTO_FOCUS_RANGE_AUTO``
- The camera automatically selects the focus range.
* - ``V4L2_AUTO_FOCUS_RANGE_NORMAL``
- Normal distance range, limited for best automatic focus
performance.
* - ``V4L2_AUTO_FOCUS_RANGE_MACRO``
- Macro (close-up) auto focus. The camera will use its minimum
possible distance for auto focus.
* - ``V4L2_AUTO_FOCUS_RANGE_INFINITY``
- The lens is set to focus on an object at infinite distance.
``V4L2_CID_ZOOM_ABSOLUTE (integer)``
Specify the objective lens focal length as an absolute value. The
zoom unit is driver-specific and its value should be a positive
integer.
``V4L2_CID_ZOOM_RELATIVE (integer)``
Specify the objective lens focal length relatively to the current
value. Positive values move the zoom lens group towards the
telephoto direction, negative values towards the wide-angle
direction. The zoom unit is driver-specific. This is a write-only
control.
``V4L2_CID_ZOOM_CONTINUOUS (integer)``
Move the objective lens group at the specified speed until it
reaches physical device limits or until an explicit request to stop
the movement. A positive value moves the zoom lens group towards the
telephoto direction. A value of zero stops the zoom lens group
movement. A negative value moves the zoom lens group towards the
wide-angle direction. The zoom speed unit is driver-specific.
``V4L2_CID_IRIS_ABSOLUTE (integer)``
This control sets the camera's aperture to the specified value. The
unit is undefined. Larger values open the iris wider, smaller values
close it.
``V4L2_CID_IRIS_RELATIVE (integer)``
This control modifies the camera's aperture by the specified amount.
The unit is undefined. Positive values open the iris one step
further, negative values close it one step further. This is a
write-only control.
``V4L2_CID_PRIVACY (boolean)``
Prevent video from being acquired by the camera. When this control
is set to ``TRUE`` (1), no image can be captured by the camera.
Common means to enforce privacy are mechanical obturation of the
sensor and firmware image processing, but the device is not
restricted to these methods. Devices that implement the privacy
control must support read access and may support write access.
``V4L2_CID_BAND_STOP_FILTER (integer)``
Switch the band-stop filter of a camera sensor on or off, or specify
its strength. Such band-stop filters can be used, for example, to
filter out the fluorescent light component.
.. _v4l2-auto-n-preset-white-balance:
``V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE``
(enum)
enum v4l2_auto_n_preset_white_balance -
Sets white balance to automatic, manual or a preset. The presets
determine color temperature of the light as a hint to the camera for
white balance adjustments resulting in most accurate color
representation. The following white balance presets are listed in
order of increasing color temperature.
.. tabularcolumns:: |p{7.0 cm}|p{10.5cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_WHITE_BALANCE_MANUAL``
- Manual white balance.
* - ``V4L2_WHITE_BALANCE_AUTO``
- Automatic white balance adjustments.
* - ``V4L2_WHITE_BALANCE_INCANDESCENT``
- White balance setting for incandescent (tungsten) lighting. It
generally cools down the colors and corresponds approximately to
2500...3500 K color temperature range.
* - ``V4L2_WHITE_BALANCE_FLUORESCENT``
- White balance preset for fluorescent lighting. It corresponds
approximately to 4000...5000 K color temperature.
* - ``V4L2_WHITE_BALANCE_FLUORESCENT_H``
- With this setting the camera will compensate for fluorescent H
lighting.
* - ``V4L2_WHITE_BALANCE_HORIZON``
- White balance setting for horizon daylight. It corresponds
approximately to 5000 K color temperature.
* - ``V4L2_WHITE_BALANCE_DAYLIGHT``
- White balance preset for daylight (with clear sky). It corresponds
approximately to 5000...6500 K color temperature.
* - ``V4L2_WHITE_BALANCE_FLASH``
- With this setting the camera will compensate for the flash light.
It slightly warms up the colors and corresponds roughly to
5000...5500 K color temperature.
* - ``V4L2_WHITE_BALANCE_CLOUDY``
- White balance preset for moderately overcast sky. This option
corresponds approximately to 6500...8000 K color temperature
range.
* - ``V4L2_WHITE_BALANCE_SHADE``
- White balance preset for shade or heavily overcast sky. It
corresponds approximately to 9000...10000 K color temperature.
.. _v4l2-wide-dynamic-range:
``V4L2_CID_WIDE_DYNAMIC_RANGE (boolean)``
Enables or disables the camera's wide dynamic range feature. This
feature allows to obtain clear images in situations where intensity
of the illumination varies significantly throughout the scene, i.e.
there are simultaneously very dark and very bright areas. It is most
commonly realized in cameras by combining two subsequent frames with
different exposure times. [#f1]_
.. _v4l2-image-stabilization:
``V4L2_CID_IMAGE_STABILIZATION (boolean)``
Enables or disables image stabilization.
``V4L2_CID_ISO_SENSITIVITY (integer menu)``
Determines ISO equivalent of an image sensor indicating the sensor's
sensitivity to light. The numbers are expressed in arithmetic scale,
as per :ref:`iso12232` standard, where doubling the sensor
sensitivity is represented by doubling the numerical ISO value.
Applications should interpret the values as standard ISO values
multiplied by 1000, e.g. control value 800 stands for ISO 0.8.
Drivers will usually support only a subset of standard ISO values.
The effect of setting this control while the
``V4L2_CID_ISO_SENSITIVITY_AUTO`` control is set to a value other
than ``V4L2_CID_ISO_SENSITIVITY_MANUAL`` is undefined, drivers
should ignore such requests.
.. _v4l2-iso-sensitivity-auto-type:
``V4L2_CID_ISO_SENSITIVITY_AUTO``
(enum)
enum v4l2_iso_sensitivity_type -
Enables or disables automatic ISO sensitivity adjustments.
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_CID_ISO_SENSITIVITY_MANUAL``
- Manual ISO sensitivity.
* - ``V4L2_CID_ISO_SENSITIVITY_AUTO``
- Automatic ISO sensitivity adjustments.
.. _v4l2-scene-mode:
``V4L2_CID_SCENE_MODE``
(enum)
enum v4l2_scene_mode -
This control allows to select scene programs as the camera automatic
modes optimized for common shooting scenes. Within these modes the
camera determines best exposure, aperture, focusing, light metering,
white balance and equivalent sensitivity. The controls of those
parameters are influenced by the scene mode control. An exact
behavior in each mode is subject to the camera specification.
When the scene mode feature is not used, this control should be set
to ``V4L2_SCENE_MODE_NONE`` to make sure the other possibly related
controls are accessible. The following scene programs are defined:
.. tabularcolumns:: |p{6.0cm}|p{11.5cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_SCENE_MODE_NONE``
- The scene mode feature is disabled.
* - ``V4L2_SCENE_MODE_BACKLIGHT``
- Backlight. Compensates for dark shadows when light is coming from
behind a subject, also by automatically turning on the flash.
* - ``V4L2_SCENE_MODE_BEACH_SNOW``
- Beach and snow. This mode compensates for all-white or bright
scenes, which tend to look gray and low contrast, when camera's
automatic exposure is based on an average scene brightness. To
compensate, this mode automatically slightly overexposes the
frames. The white balance may also be adjusted to compensate for
the fact that reflected snow looks bluish rather than white.
* - ``V4L2_SCENE_MODE_CANDLELIGHT``
- Candle light. The camera generally raises the ISO sensitivity and
lowers the shutter speed. This mode compensates for relatively
close subject in the scene. The flash is disabled in order to
preserve the ambiance of the light.
* - ``V4L2_SCENE_MODE_DAWN_DUSK``
- Dawn and dusk. Preserves the colors seen in low natural light
before dusk and after down. The camera may turn off the flash, and
automatically focus at infinity. It will usually boost saturation
and lower the shutter speed.
* - ``V4L2_SCENE_MODE_FALL_COLORS``
- Fall colors. Increases saturation and adjusts white balance for
color enhancement. Pictures of autumn leaves get saturated reds
and yellows.
* - ``V4L2_SCENE_MODE_FIREWORKS``
- Fireworks. Long exposure times are used to capture the expanding
burst of light from a firework. The camera may invoke image
stabilization.
* - ``V4L2_SCENE_MODE_LANDSCAPE``
- Landscape. The camera may choose a small aperture to provide deep
depth of field and long exposure duration to help capture detail
in dim light conditions. The focus is fixed at infinity. Suitable
for distant and wide scenery.
* - ``V4L2_SCENE_MODE_NIGHT``
- Night, also known as Night Landscape. Designed for low light
conditions, it preserves detail in the dark areas without blowing
out bright objects. The camera generally sets itself to a
medium-to-high ISO sensitivity, with a relatively long exposure
time, and turns flash off. As such, there will be increased image
noise and the possibility of blurred image.
* - ``V4L2_SCENE_MODE_PARTY_INDOOR``
- Party and indoor. Designed to capture indoor scenes that are lit
by indoor background lighting as well as the flash. The camera
usually increases ISO sensitivity, and adjusts exposure for the
low light conditions.
* - ``V4L2_SCENE_MODE_PORTRAIT``
- Portrait. The camera adjusts the aperture so that the depth of
field is reduced, which helps to isolate the subject against a
smooth background. Most cameras recognize the presence of faces in
the scene and focus on them. The color hue is adjusted to enhance
skin tones. The intensity of the flash is often reduced.
* - ``V4L2_SCENE_MODE_SPORTS``
- Sports. Significantly increases ISO and uses a fast shutter speed
to freeze motion of rapidly-moving subjects. Increased image noise
may be seen in this mode.
* - ``V4L2_SCENE_MODE_SUNSET``
- Sunset. Preserves deep hues seen in sunsets and sunrises. It bumps
up the saturation.
* - ``V4L2_SCENE_MODE_TEXT``
- Text. It applies extra contrast and sharpness, it is typically a
black-and-white mode optimized for readability. Automatic focus
may be switched to close-up mode and this setting may also involve
some lens-distortion correction.
``V4L2_CID_3A_LOCK (bitmask)``
This control locks or unlocks the automatic focus, exposure and
white balance. The automatic adjustments can be paused independently
by setting the corresponding lock bit to 1. The camera then retains
the settings until the lock bit is cleared. The following lock bits
are defined:
When a given algorithm is not enabled, drivers should ignore
requests to lock it and should return no error. An example might be
an application setting bit ``V4L2_LOCK_WHITE_BALANCE`` when the
``V4L2_CID_AUTO_WHITE_BALANCE`` control is set to ``FALSE``. The
value of this control may be changed by exposure, white balance or
focus controls.
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_LOCK_EXPOSURE``
- Automatic exposure adjustments lock.
* - ``V4L2_LOCK_WHITE_BALANCE``
- Automatic white balance adjustments lock.
* - ``V4L2_LOCK_FOCUS``
- Automatic focus lock.
``V4L2_CID_PAN_SPEED (integer)``
This control turns the camera horizontally at the specific speed.
The unit is undefined. A positive value moves the camera to the
right (clockwise when viewed from above), a negative value to the
left. A value of zero stops the motion if one is in progress and has
no effect otherwise.
``V4L2_CID_TILT_SPEED (integer)``
This control turns the camera vertically at the specified speed. The
unit is undefined. A positive value moves the camera up, a negative
value down. A value of zero stops the motion if one is in progress
and has no effect otherwise.
.. [#f1]
This control may be changed to a menu control in the future, if more
options are required.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,71 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _detect-controls:
************************
Detect Control Reference
************************
The Detect class includes controls for common features of various motion
or object detection capable devices.
.. _detect-control-id:
Detect Control IDs
==================
``V4L2_CID_DETECT_CLASS (class)``
The Detect class descriptor. Calling
:ref:`VIDIOC_QUERYCTRL` for this control will
return a description of this control class.
``V4L2_CID_DETECT_MD_MODE (menu)``
Sets the motion detection mode.
.. tabularcolumns:: |p{7.5cm}|p{10.0cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_DETECT_MD_MODE_DISABLED``
- Disable motion detection.
* - ``V4L2_DETECT_MD_MODE_GLOBAL``
- Use a single motion detection threshold.
* - ``V4L2_DETECT_MD_MODE_THRESHOLD_GRID``
- The image is divided into a grid, each cell with its own motion
detection threshold. These thresholds are set through the
``V4L2_CID_DETECT_MD_THRESHOLD_GRID`` matrix control.
* - ``V4L2_DETECT_MD_MODE_REGION_GRID``
- The image is divided into a grid, each cell with its own region
value that specifies which per-region motion detection thresholds
should be used. Each region has its own thresholds. How these
per-region thresholds are set up is driver-specific. The region
values for the grid are set through the
``V4L2_CID_DETECT_MD_REGION_GRID`` matrix control.
``V4L2_CID_DETECT_MD_GLOBAL_THRESHOLD (integer)``
Sets the global motion detection threshold to be used with the
``V4L2_DETECT_MD_MODE_GLOBAL`` motion detection mode.
``V4L2_CID_DETECT_MD_THRESHOLD_GRID (__u16 matrix)``
Sets the motion detection thresholds for each cell in the grid. To
be used with the ``V4L2_DETECT_MD_MODE_THRESHOLD_GRID`` motion
detection mode. Matrix element (0, 0) represents the cell at the
top-left of the grid.
``V4L2_CID_DETECT_MD_REGION_GRID (__u8 matrix)``
Sets the motion detection region value for each cell in the grid. To
be used with the ``V4L2_DETECT_MD_MODE_REGION_GRID`` motion
detection mode. Matrix element (0, 0) represents the cell at the
top-left of the grid.

View File

@ -0,0 +1,166 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _dv-controls:
*******************************
Digital Video Control Reference
*******************************
The Digital Video control class is intended to control receivers and
transmitters for `VGA <http://en.wikipedia.org/wiki/Vga>`__,
`DVI <http://en.wikipedia.org/wiki/Digital_Visual_Interface>`__
(Digital Visual Interface), HDMI (:ref:`hdmi`) and DisplayPort
(:ref:`dp`). These controls are generally expected to be private to
the receiver or transmitter subdevice that implements them, so they are
only exposed on the ``/dev/v4l-subdev*`` device node.
.. note::
Note that these devices can have multiple input or output pads which are
hooked up to e.g. HDMI connectors. Even though the subdevice will
receive or transmit video from/to only one of those pads, the other pads
can still be active when it comes to EDID (Extended Display
Identification Data, :ref:`vesaedid`) and HDCP (High-bandwidth Digital
Content Protection System, :ref:`hdcp`) processing, allowing the
device to do the fairly slow EDID/HDCP handling in advance. This allows
for quick switching between connectors.
These pads appear in several of the controls in this section as
bitmasks, one bit for each pad. Bit 0 corresponds to pad 0, bit 1 to pad
1, etc. The maximum value of the control is the set of valid pads.
.. _dv-control-id:
Digital Video Control IDs
=========================
``V4L2_CID_DV_CLASS (class)``
The Digital Video class descriptor.
``V4L2_CID_DV_TX_HOTPLUG (bitmask)``
Many connectors have a hotplug pin which is high if EDID information
is available from the source. This control shows the state of the
hotplug pin as seen by the transmitter. Each bit corresponds to an
output pad on the transmitter. If an output pad does not have an
associated hotplug pin, then the bit for that pad will be 0. This
read-only control is applicable to DVI-D, HDMI and DisplayPort
connectors.
``V4L2_CID_DV_TX_RXSENSE (bitmask)``
Rx Sense is the detection of pull-ups on the TMDS clock lines. This
normally means that the sink has left/entered standby (i.e. the
transmitter can sense that the receiver is ready to receive video).
Each bit corresponds to an output pad on the transmitter. If an
output pad does not have an associated Rx Sense, then the bit for
that pad will be 0. This read-only control is applicable to DVI-D
and HDMI devices.
``V4L2_CID_DV_TX_EDID_PRESENT (bitmask)``
When the transmitter sees the hotplug signal from the receiver it
will attempt to read the EDID. If set, then the transmitter has read
at least the first block (= 128 bytes). Each bit corresponds to an
output pad on the transmitter. If an output pad does not support
EDIDs, then the bit for that pad will be 0. This read-only control
is applicable to VGA, DVI-A/D, HDMI and DisplayPort connectors.
``V4L2_CID_DV_TX_MODE``
(enum)
enum v4l2_dv_tx_mode -
HDMI transmitters can transmit in DVI-D mode (just video) or in HDMI
mode (video + audio + auxiliary data). This control selects which
mode to use: V4L2_DV_TX_MODE_DVI_D or V4L2_DV_TX_MODE_HDMI.
This control is applicable to HDMI connectors.
``V4L2_CID_DV_TX_RGB_RANGE``
(enum)
enum v4l2_dv_rgb_range -
Select the quantization range for RGB output. V4L2_DV_RANGE_AUTO
follows the RGB quantization range specified in the standard for the
video interface (ie. :ref:`cea861` for HDMI).
V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the
standard to be compatible with sinks that have not implemented the
standard correctly (unfortunately quite common for HDMI and DVI-D).
Full range allows all possible values to be used whereas limited
range sets the range to (16 << (N-8)) - (235 << (N-8)) where N is
the number of bits per component. This control is applicable to VGA,
DVI-A/D, HDMI and DisplayPort connectors.
``V4L2_CID_DV_TX_IT_CONTENT_TYPE``
(enum)
enum v4l2_dv_it_content_type -
Configures the IT Content Type of the transmitted video. This
information is sent over HDMI and DisplayPort connectors as part of
the AVI InfoFrame. The term 'IT Content' is used for content that
originates from a computer as opposed to content from a TV broadcast
or an analog source. The enum v4l2_dv_it_content_type defines
the possible content types:
.. tabularcolumns:: |p{7.0cm}|p{10.5cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_DV_IT_CONTENT_TYPE_GRAPHICS``
- Graphics content. Pixel data should be passed unfiltered and
without analog reconstruction.
* - ``V4L2_DV_IT_CONTENT_TYPE_PHOTO``
- Photo content. The content is derived from digital still pictures.
The content should be passed through with minimal scaling and
picture enhancements.
* - ``V4L2_DV_IT_CONTENT_TYPE_CINEMA``
- Cinema content.
* - ``V4L2_DV_IT_CONTENT_TYPE_GAME``
- Game content. Audio and video latency should be minimized.
* - ``V4L2_DV_IT_CONTENT_TYPE_NO_ITC``
- No IT Content information is available and the ITC bit in the AVI
InfoFrame is set to 0.
``V4L2_CID_DV_RX_POWER_PRESENT (bitmask)``
Detects whether the receiver receives power from the source (e.g.
HDMI carries 5V on one of the pins). This is often used to power an
eeprom which contains EDID information, such that the source can
read the EDID even if the sink is in standby/power off. Each bit
corresponds to an input pad on the receiver. If an input pad
cannot detect whether power is present, then the bit for that pad
will be 0. This read-only control is applicable to DVI-D, HDMI and
DisplayPort connectors.
``V4L2_CID_DV_RX_RGB_RANGE``
(enum)
enum v4l2_dv_rgb_range -
Select the quantization range for RGB input. V4L2_DV_RANGE_AUTO
follows the RGB quantization range specified in the standard for the
video interface (ie. :ref:`cea861` for HDMI).
V4L2_DV_RANGE_LIMITED and V4L2_DV_RANGE_FULL override the
standard to be compatible with sources that have not implemented the
standard correctly (unfortunately quite common for HDMI and DVI-D).
Full range allows all possible values to be used whereas limited
range sets the range to (16 << (N-8)) - (235 << (N-8)) where N is
the number of bits per component. This control is applicable to VGA,
DVI-A/D, HDMI and DisplayPort connectors.
``V4L2_CID_DV_RX_IT_CONTENT_TYPE``
(enum)
enum v4l2_dv_it_content_type -
Reads the IT Content Type of the received video. This information is
sent over HDMI and DisplayPort connectors as part of the AVI
InfoFrame. The term 'IT Content' is used for content that originates
from a computer as opposed to content from a TV broadcast or an
analog source. See ``V4L2_CID_DV_TX_IT_CONTENT_TYPE`` for the
available content types.

View File

@ -0,0 +1,192 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _flash-controls:
***********************
Flash Control Reference
***********************
The V4L2 flash controls are intended to provide generic access to flash
controller devices. Flash controller devices are typically used in
digital cameras.
The interface can support both LED and xenon flash devices. As of
writing this, there is no xenon flash driver using this interface.
.. _flash-controls-use-cases:
Supported use cases
===================
Unsynchronised LED flash (software strobe)
------------------------------------------
Unsynchronised LED flash is controlled directly by the host as the
sensor. The flash must be enabled by the host before the exposure of the
image starts and disabled once it ends. The host is fully responsible
for the timing of the flash.
Example of such device: Nokia N900.
Synchronised LED flash (hardware strobe)
----------------------------------------
The synchronised LED flash is pre-programmed by the host (power and
timeout) but controlled by the sensor through a strobe signal from the
sensor to the flash.
The sensor controls the flash duration and timing. This information
typically must be made available to the sensor.
LED flash as torch
------------------
LED flash may be used as torch in conjunction with another use case
involving camera or individually.
.. _flash-control-id:
Flash Control IDs
-----------------
``V4L2_CID_FLASH_CLASS (class)``
The FLASH class descriptor.
``V4L2_CID_FLASH_LED_MODE (menu)``
Defines the mode of the flash LED, the high-power white LED attached
to the flash controller. Setting this control may not be possible in
presence of some faults. See V4L2_CID_FLASH_FAULT.
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_FLASH_LED_MODE_NONE``
- Off.
* - ``V4L2_FLASH_LED_MODE_FLASH``
- Flash mode.
* - ``V4L2_FLASH_LED_MODE_TORCH``
- Torch mode. See V4L2_CID_FLASH_TORCH_INTENSITY.
``V4L2_CID_FLASH_STROBE_SOURCE (menu)``
Defines the source of the flash LED strobe.
.. tabularcolumns:: |p{7.0cm}|p{10.5cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_FLASH_STROBE_SOURCE_SOFTWARE``
- The flash strobe is triggered by using the
V4L2_CID_FLASH_STROBE control.
* - ``V4L2_FLASH_STROBE_SOURCE_EXTERNAL``
- The flash strobe is triggered by an external source. Typically
this is a sensor, which makes it possible to synchronises the
flash strobe start to exposure start.
``V4L2_CID_FLASH_STROBE (button)``
Strobe flash. Valid when V4L2_CID_FLASH_LED_MODE is set to
V4L2_FLASH_LED_MODE_FLASH and V4L2_CID_FLASH_STROBE_SOURCE
is set to V4L2_FLASH_STROBE_SOURCE_SOFTWARE. Setting this
control may not be possible in presence of some faults. See
V4L2_CID_FLASH_FAULT.
``V4L2_CID_FLASH_STROBE_STOP (button)``
Stop flash strobe immediately.
``V4L2_CID_FLASH_STROBE_STATUS (boolean)``
Strobe status: whether the flash is strobing at the moment or not.
This is a read-only control.
``V4L2_CID_FLASH_TIMEOUT (integer)``
Hardware timeout for flash. The flash strobe is stopped after this
period of time has passed from the start of the strobe.
``V4L2_CID_FLASH_INTENSITY (integer)``
Intensity of the flash strobe when the flash LED is in flash mode
(V4L2_FLASH_LED_MODE_FLASH). The unit should be milliamps (mA)
if possible.
``V4L2_CID_FLASH_TORCH_INTENSITY (integer)``
Intensity of the flash LED in torch mode
(V4L2_FLASH_LED_MODE_TORCH). The unit should be milliamps (mA)
if possible. Setting this control may not be possible in presence of
some faults. See V4L2_CID_FLASH_FAULT.
``V4L2_CID_FLASH_INDICATOR_INTENSITY (integer)``
Intensity of the indicator LED. The indicator LED may be fully
independent of the flash LED. The unit should be microamps (uA) if
possible.
``V4L2_CID_FLASH_FAULT (bitmask)``
Faults related to the flash. The faults tell about specific problems
in the flash chip itself or the LEDs attached to it. Faults may
prevent further use of some of the flash controls. In particular,
V4L2_CID_FLASH_LED_MODE is set to V4L2_FLASH_LED_MODE_NONE
if the fault affects the flash LED. Exactly which faults have such
an effect is chip dependent. Reading the faults resets the control
and returns the chip to a usable state if possible.
.. tabularcolumns:: |p{8.0cm}|p{9.5cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_FLASH_FAULT_OVER_VOLTAGE``
- Flash controller voltage to the flash LED has exceeded the limit
specific to the flash controller.
* - ``V4L2_FLASH_FAULT_TIMEOUT``
- The flash strobe was still on when the timeout set by the user ---
V4L2_CID_FLASH_TIMEOUT control --- has expired. Not all flash
controllers may set this in all such conditions.
* - ``V4L2_FLASH_FAULT_OVER_TEMPERATURE``
- The flash controller has overheated.
* - ``V4L2_FLASH_FAULT_SHORT_CIRCUIT``
- The short circuit protection of the flash controller has been
triggered.
* - ``V4L2_FLASH_FAULT_OVER_CURRENT``
- Current in the LED power supply has exceeded the limit specific to
the flash controller.
* - ``V4L2_FLASH_FAULT_INDICATOR``
- The flash controller has detected a short or open circuit
condition on the indicator LED.
* - ``V4L2_FLASH_FAULT_UNDER_VOLTAGE``
- Flash controller voltage to the flash LED has been below the
minimum limit specific to the flash controller.
* - ``V4L2_FLASH_FAULT_INPUT_VOLTAGE``
- The input voltage of the flash controller is below the limit under
which strobing the flash at full current will not be possible.The
condition persists until this flag is no longer set.
* - ``V4L2_FLASH_FAULT_LED_OVER_TEMPERATURE``
- The temperature of the LED has exceeded its allowed upper limit.
``V4L2_CID_FLASH_CHARGE (boolean)``
Enable or disable charging of the xenon flash capacitor.
``V4L2_CID_FLASH_READY (boolean)``
Is the flash ready to strobe? Xenon flashes require their capacitors
charged before strobing. LED flashes often require a cooldown period
after strobe during which another strobe will not be possible. This
is a read-only control.

View File

@ -0,0 +1,95 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _fm-rx-controls:
*****************************
FM Receiver Control Reference
*****************************
The FM Receiver (FM_RX) class includes controls for common features of
FM Reception capable devices.
.. _fm-rx-control-id:
FM_RX Control IDs
=================
``V4L2_CID_FM_RX_CLASS (class)``
The FM_RX class descriptor. Calling
:ref:`VIDIOC_QUERYCTRL` for this control will
return a description of this control class.
``V4L2_CID_RDS_RECEPTION (boolean)``
Enables/disables RDS reception by the radio tuner
``V4L2_CID_RDS_RX_PTY (integer)``
Gets RDS Programme Type field. This encodes up to 31 pre-defined
programme types.
``V4L2_CID_RDS_RX_PS_NAME (string)``
Gets the Programme Service name (PS_NAME). It is intended for
static display on a receiver. It is the primary aid to listeners in
programme service identification and selection. In Annex E of
:ref:`iec62106`, the RDS specification, there is a full
description of the correct character encoding for Programme Service
name strings. Also from RDS specification, PS is usually a single
eight character text. However, it is also possible to find receivers
which can scroll strings sized as 8 x N characters. So, this control
must be configured with steps of 8 characters. The result is it must
always contain a string with size multiple of 8.
``V4L2_CID_RDS_RX_RADIO_TEXT (string)``
Gets the Radio Text info. It is a textual description of what is
being broadcasted. RDS Radio Text can be applied when broadcaster
wishes to transmit longer PS names, programme-related information or
any other text. In these cases, RadioText can be used in addition to
``V4L2_CID_RDS_RX_PS_NAME``. The encoding for Radio Text strings is
also fully described in Annex E of :ref:`iec62106`. The length of
Radio Text strings depends on which RDS Block is being used to
transmit it, either 32 (2A block) or 64 (2B block). However, it is
also possible to find receivers which can scroll strings sized as 32
x N or 64 x N characters. So, this control must be configured with
steps of 32 or 64 characters. The result is it must always contain a
string with size multiple of 32 or 64.
``V4L2_CID_RDS_RX_TRAFFIC_ANNOUNCEMENT (boolean)``
If set, then a traffic announcement is in progress.
``V4L2_CID_RDS_RX_TRAFFIC_PROGRAM (boolean)``
If set, then the tuned programme carries traffic announcements.
``V4L2_CID_RDS_RX_MUSIC_SPEECH (boolean)``
If set, then this channel broadcasts music. If cleared, then it
broadcasts speech. If the transmitter doesn't make this distinction,
then it will be set.
``V4L2_CID_TUNE_DEEMPHASIS``
(enum)
enum v4l2_deemphasis -
Configures the de-emphasis value for reception. A de-emphasis filter
is applied to the broadcast to accentuate the high audio
frequencies. Depending on the region, a time constant of either 50
or 75 useconds is used. The enum v4l2_deemphasis defines possible
values for de-emphasis. Here they are:
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_DEEMPHASIS_DISABLED``
- No de-emphasis is applied.
* - ``V4L2_DEEMPHASIS_50_uS``
- A de-emphasis of 50 uS is used.
* - ``V4L2_DEEMPHASIS_75_uS``
- A de-emphasis of 75 uS is used.

View File

@ -0,0 +1,188 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _fm-tx-controls:
********************************
FM Transmitter Control Reference
********************************
The FM Transmitter (FM_TX) class includes controls for common features
of FM transmissions capable devices. Currently this class includes
parameters for audio compression, pilot tone generation, audio deviation
limiter, RDS transmission and tuning power features.
.. _fm-tx-control-id:
FM_TX Control IDs
=================
``V4L2_CID_FM_TX_CLASS (class)``
The FM_TX class descriptor. Calling
:ref:`VIDIOC_QUERYCTRL` for this control will
return a description of this control class.
``V4L2_CID_RDS_TX_DEVIATION (integer)``
Configures RDS signal frequency deviation level in Hz. The range and
step are driver-specific.
``V4L2_CID_RDS_TX_PI (integer)``
Sets the RDS Programme Identification field for transmission.
``V4L2_CID_RDS_TX_PTY (integer)``
Sets the RDS Programme Type field for transmission. This encodes up
to 31 pre-defined programme types.
``V4L2_CID_RDS_TX_PS_NAME (string)``
Sets the Programme Service name (PS_NAME) for transmission. It is
intended for static display on a receiver. It is the primary aid to
listeners in programme service identification and selection. In
Annex E of :ref:`iec62106`, the RDS specification, there is a full
description of the correct character encoding for Programme Service
name strings. Also from RDS specification, PS is usually a single
eight character text. However, it is also possible to find receivers
which can scroll strings sized as 8 x N characters. So, this control
must be configured with steps of 8 characters. The result is it must
always contain a string with size multiple of 8.
``V4L2_CID_RDS_TX_RADIO_TEXT (string)``
Sets the Radio Text info for transmission. It is a textual
description of what is being broadcasted. RDS Radio Text can be
applied when broadcaster wishes to transmit longer PS names,
programme-related information or any other text. In these cases,
RadioText should be used in addition to ``V4L2_CID_RDS_TX_PS_NAME``.
The encoding for Radio Text strings is also fully described in Annex
E of :ref:`iec62106`. The length of Radio Text strings depends on
which RDS Block is being used to transmit it, either 32 (2A block)
or 64 (2B block). However, it is also possible to find receivers
which can scroll strings sized as 32 x N or 64 x N characters. So,
this control must be configured with steps of 32 or 64 characters.
The result is it must always contain a string with size multiple of
32 or 64.
``V4L2_CID_RDS_TX_MONO_STEREO (boolean)``
Sets the Mono/Stereo bit of the Decoder Identification code. If set,
then the audio was recorded as stereo.
``V4L2_CID_RDS_TX_ARTIFICIAL_HEAD (boolean)``
Sets the
`Artificial Head <http://en.wikipedia.org/wiki/Artificial_head>`__
bit of the Decoder Identification code. If set, then the audio was
recorded using an artificial head.
``V4L2_CID_RDS_TX_COMPRESSED (boolean)``
Sets the Compressed bit of the Decoder Identification code. If set,
then the audio is compressed.
``V4L2_CID_RDS_TX_DYNAMIC_PTY (boolean)``
Sets the Dynamic PTY bit of the Decoder Identification code. If set,
then the PTY code is dynamically switched.
``V4L2_CID_RDS_TX_TRAFFIC_ANNOUNCEMENT (boolean)``
If set, then a traffic announcement is in progress.
``V4L2_CID_RDS_TX_TRAFFIC_PROGRAM (boolean)``
If set, then the tuned programme carries traffic announcements.
``V4L2_CID_RDS_TX_MUSIC_SPEECH (boolean)``
If set, then this channel broadcasts music. If cleared, then it
broadcasts speech. If the transmitter doesn't make this distinction,
then it should be set.
``V4L2_CID_RDS_TX_ALT_FREQS_ENABLE (boolean)``
If set, then transmit alternate frequencies.
``V4L2_CID_RDS_TX_ALT_FREQS (__u32 array)``
The alternate frequencies in kHz units. The RDS standard allows for
up to 25 frequencies to be defined. Drivers may support fewer
frequencies so check the array size.
``V4L2_CID_AUDIO_LIMITER_ENABLED (boolean)``
Enables or disables the audio deviation limiter feature. The limiter
is useful when trying to maximize the audio volume, minimize
receiver-generated distortion and prevent overmodulation.
``V4L2_CID_AUDIO_LIMITER_RELEASE_TIME (integer)``
Sets the audio deviation limiter feature release time. Unit is in
useconds. Step and range are driver-specific.
``V4L2_CID_AUDIO_LIMITER_DEVIATION (integer)``
Configures audio frequency deviation level in Hz. The range and step
are driver-specific.
``V4L2_CID_AUDIO_COMPRESSION_ENABLED (boolean)``
Enables or disables the audio compression feature. This feature
amplifies signals below the threshold by a fixed gain and compresses
audio signals above the threshold by the ratio of Threshold/(Gain +
Threshold).
``V4L2_CID_AUDIO_COMPRESSION_GAIN (integer)``
Sets the gain for audio compression feature. It is a dB value. The
range and step are driver-specific.
``V4L2_CID_AUDIO_COMPRESSION_THRESHOLD (integer)``
Sets the threshold level for audio compression freature. It is a dB
value. The range and step are driver-specific.
``V4L2_CID_AUDIO_COMPRESSION_ATTACK_TIME (integer)``
Sets the attack time for audio compression feature. It is a useconds
value. The range and step are driver-specific.
``V4L2_CID_AUDIO_COMPRESSION_RELEASE_TIME (integer)``
Sets the release time for audio compression feature. It is a
useconds value. The range and step are driver-specific.
``V4L2_CID_PILOT_TONE_ENABLED (boolean)``
Enables or disables the pilot tone generation feature.
``V4L2_CID_PILOT_TONE_DEVIATION (integer)``
Configures pilot tone frequency deviation level. Unit is in Hz. The
range and step are driver-specific.
``V4L2_CID_PILOT_TONE_FREQUENCY (integer)``
Configures pilot tone frequency value. Unit is in Hz. The range and
step are driver-specific.
``V4L2_CID_TUNE_PREEMPHASIS``
(enum)
enum v4l2_preemphasis -
Configures the pre-emphasis value for broadcasting. A pre-emphasis
filter is applied to the broadcast to accentuate the high audio
frequencies. Depending on the region, a time constant of either 50
or 75 useconds is used. The enum v4l2_preemphasis defines possible
values for pre-emphasis. Here they are:
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_PREEMPHASIS_DISABLED``
- No pre-emphasis is applied.
* - ``V4L2_PREEMPHASIS_50_uS``
- A pre-emphasis of 50 uS is used.
* - ``V4L2_PREEMPHASIS_75_uS``
- A pre-emphasis of 75 uS is used.
``V4L2_CID_TUNE_POWER_LEVEL (integer)``
Sets the output power level for signal transmission. Unit is in
dBuV. Range and step are driver-specific.
``V4L2_CID_TUNE_ANTENNA_CAPACITOR (integer)``
This selects the value of antenna tuning capacitor manually or
automatically if set to zero. Unit, range and step are
driver-specific.
For more details about RDS specification, refer to :ref:`iec62106`
document, from CENELEC.

View File

@ -0,0 +1,63 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _image-process-controls:
*******************************
Image Process Control Reference
*******************************
The Image Process control class is intended for low-level control of
image processing functions. Unlike ``V4L2_CID_IMAGE_SOURCE_CLASS``, the
controls in this class affect processing the image, and do not control
capturing of it.
.. _image-process-control-id:
Image Process Control IDs
=========================
``V4L2_CID_IMAGE_PROC_CLASS (class)``
The IMAGE_PROC class descriptor.
``V4L2_CID_LINK_FREQ (integer menu)``
Data bus frequency. Together with the media bus pixel code, bus type
(clock cycles per sample), the data bus frequency defines the pixel
rate (``V4L2_CID_PIXEL_RATE``) in the pixel array (or possibly
elsewhere, if the device is not an image sensor). The frame rate can
be calculated from the pixel clock, image width and height and
horizontal and vertical blanking. While the pixel rate control may
be defined elsewhere than in the subdev containing the pixel array,
the frame rate cannot be obtained from that information. This is
because only on the pixel array it can be assumed that the vertical
and horizontal blanking information is exact: no other blanking is
allowed in the pixel array. The selection of frame rate is performed
by selecting the desired horizontal and vertical blanking. The unit
of this control is Hz.
``V4L2_CID_PIXEL_RATE (64-bit integer)``
Pixel rate in the source pads of the subdev. This control is
read-only and its unit is pixels / second.
``V4L2_CID_TEST_PATTERN (menu)``
Some capture/display/sensor devices have the capability to generate
test pattern images. These hardware specific test patterns can be
used to test if a device is working properly.
``V4L2_CID_DEINTERLACING_MODE (menu)``
The video deinterlacing mode (such as Bob, Weave, ...). The menu items are
driver specific and are documented in :ref:`v4l-drivers`.
``V4L2_CID_DIGITAL_GAIN (integer)``
Digital gain is the value by which all colour components
are multiplied by. Typically the digital gain applied is the
control value divided by e.g. 0x100, meaning that to get no
digital gain the control value needs to be 0x100. The no-gain
configuration is also typically the default.

View File

@ -0,0 +1,57 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _image-source-controls:
******************************
Image Source Control Reference
******************************
The Image Source control class is intended for low-level control of
image source devices such as image sensors. The devices feature an
analogue to digital converter and a bus transmitter to transmit the
image data out of the device.
.. _image-source-control-id:
Image Source Control IDs
========================
``V4L2_CID_IMAGE_SOURCE_CLASS (class)``
The IMAGE_SOURCE class descriptor.
``V4L2_CID_VBLANK (integer)``
Vertical blanking. The idle period after every frame during which no
image data is produced. The unit of vertical blanking is a line.
Every line has length of the image width plus horizontal blanking at
the pixel rate defined by ``V4L2_CID_PIXEL_RATE`` control in the
same sub-device.
``V4L2_CID_HBLANK (integer)``
Horizontal blanking. The idle period after every line of image data
during which no image data is produced. The unit of horizontal
blanking is pixels.
``V4L2_CID_ANALOGUE_GAIN (integer)``
Analogue gain is gain affecting all colour components in the pixel
matrix. The gain operation is performed in the analogue domain
before A/D conversion.
``V4L2_CID_TEST_PATTERN_RED (integer)``
Test pattern red colour component.
``V4L2_CID_TEST_PATTERN_GREENR (integer)``
Test pattern green (next to red) colour component.
``V4L2_CID_TEST_PATTERN_BLUE (integer)``
Test pattern blue colour component.
``V4L2_CID_TEST_PATTERN_GREENB (integer)``
Test pattern green (next to blue) colour component.

View File

@ -0,0 +1,113 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _jpeg-controls:
**********************
JPEG Control Reference
**********************
The JPEG class includes controls for common features of JPEG encoders
and decoders. Currently it includes features for codecs implementing
progressive baseline DCT compression process with Huffman entrophy
coding.
.. _jpeg-control-id:
JPEG Control IDs
================
``V4L2_CID_JPEG_CLASS (class)``
The JPEG class descriptor. Calling
:ref:`VIDIOC_QUERYCTRL` for this control will
return a description of this control class.
``V4L2_CID_JPEG_CHROMA_SUBSAMPLING (menu)``
The chroma subsampling factors describe how each component of an
input image is sampled, in respect to maximum sample rate in each
spatial dimension. See :ref:`itu-t81`, clause A.1.1. for more
details. The ``V4L2_CID_JPEG_CHROMA_SUBSAMPLING`` control determines
how Cb and Cr components are downsampled after converting an input
image from RGB to Y'CbCr color space.
.. tabularcolumns:: |p{7.0cm}|p{10.5cm}|
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_JPEG_CHROMA_SUBSAMPLING_444``
- No chroma subsampling, each pixel has Y, Cr and Cb values.
* - ``V4L2_JPEG_CHROMA_SUBSAMPLING_422``
- Horizontally subsample Cr, Cb components by a factor of 2.
* - ``V4L2_JPEG_CHROMA_SUBSAMPLING_420``
- Subsample Cr, Cb components horizontally and vertically by 2.
* - ``V4L2_JPEG_CHROMA_SUBSAMPLING_411``
- Horizontally subsample Cr, Cb components by a factor of 4.
* - ``V4L2_JPEG_CHROMA_SUBSAMPLING_410``
- Subsample Cr, Cb components horizontally by 4 and vertically by 2.
* - ``V4L2_JPEG_CHROMA_SUBSAMPLING_GRAY``
- Use only luminance component.
``V4L2_CID_JPEG_RESTART_INTERVAL (integer)``
The restart interval determines an interval of inserting RSTm
markers (m = 0..7). The purpose of these markers is to additionally
reinitialize the encoder process, in order to process blocks of an
image independently. For the lossy compression processes the restart
interval unit is MCU (Minimum Coded Unit) and its value is contained
in DRI (Define Restart Interval) marker. If
``V4L2_CID_JPEG_RESTART_INTERVAL`` control is set to 0, DRI and RSTm
markers will not be inserted.
.. _jpeg-quality-control:
``V4L2_CID_JPEG_COMPRESSION_QUALITY (integer)``
``V4L2_CID_JPEG_COMPRESSION_QUALITY`` control determines trade-off
between image quality and size. It provides simpler method for
applications to control image quality, without a need for direct
reconfiguration of luminance and chrominance quantization tables. In
cases where a driver uses quantization tables configured directly by
an application, using interfaces defined elsewhere,
``V4L2_CID_JPEG_COMPRESSION_QUALITY`` control should be set by
driver to 0.
The value range of this control is driver-specific. Only positive,
non-zero values are meaningful. The recommended range is 1 - 100,
where larger values correspond to better image quality.
.. _jpeg-active-marker-control:
``V4L2_CID_JPEG_ACTIVE_MARKER (bitmask)``
Specify which JPEG markers are included in compressed stream. This
control is valid only for encoders.
.. flat-table::
:header-rows: 0
:stub-columns: 0
* - ``V4L2_JPEG_ACTIVE_MARKER_APP0``
- Application data segment APP\ :sub:`0`.
* - ``V4L2_JPEG_ACTIVE_MARKER_APP1``
- Application data segment APP\ :sub:`1`.
* - ``V4L2_JPEG_ACTIVE_MARKER_COM``
- Comment segment.
* - ``V4L2_JPEG_ACTIVE_MARKER_DQT``
- Quantization tables segment.
* - ``V4L2_JPEG_ACTIVE_MARKER_DHT``
- Huffman tables segment.
For more details about JPEG specification, refer to :ref:`itu-t81`,
:ref:`jfif`, :ref:`w3c-jpeg-jfif`.

View File

@ -0,0 +1,96 @@
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
.. _rf-tuner-controls:
**************************
RF Tuner Control Reference
**************************
The RF Tuner (RF_TUNER) class includes controls for common features of
devices having RF tuner.
In this context, RF tuner is radio receiver circuit between antenna and
demodulator. It receives radio frequency (RF) from the antenna and
converts that received signal to lower intermediate frequency (IF) or
baseband frequency (BB). Tuners that could do baseband output are often
called Zero-IF tuners. Older tuners were typically simple PLL tuners
inside a metal box, while newer ones are highly integrated chips
without a metal box "silicon tuners". These controls are mostly
applicable for new feature rich silicon tuners, just because older
tuners does not have much adjustable features.
For more information about RF tuners see
`Tuner (radio) <http://en.wikipedia.org/wiki/Tuner_%28radio%29>`__
and `RF front end <http://en.wikipedia.org/wiki/RF_front_end>`__
from Wikipedia.
.. _rf-tuner-control-id:
RF_TUNER Control IDs
====================
``V4L2_CID_RF_TUNER_CLASS (class)``
The RF_TUNER class descriptor. Calling
:ref:`VIDIOC_QUERYCTRL` for this control will
return a description of this control class.
``V4L2_CID_RF_TUNER_BANDWIDTH_AUTO (boolean)``
Enables/disables tuner radio channel bandwidth configuration. In
automatic mode bandwidth configuration is performed by the driver.
``V4L2_CID_RF_TUNER_BANDWIDTH (integer)``
Filter(s) on tuner signal path are used to filter signal according
to receiving party needs. Driver configures filters to fulfill
desired bandwidth requirement. Used when
V4L2_CID_RF_TUNER_BANDWIDTH_AUTO is not set. Unit is in Hz. The
range and step are driver-specific.
``V4L2_CID_RF_TUNER_LNA_GAIN_AUTO (boolean)``
Enables/disables LNA automatic gain control (AGC)
``V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO (boolean)``
Enables/disables mixer automatic gain control (AGC)
``V4L2_CID_RF_TUNER_IF_GAIN_AUTO (boolean)``
Enables/disables IF automatic gain control (AGC)
``V4L2_CID_RF_TUNER_RF_GAIN (integer)``
The RF amplifier is the very first amplifier on the receiver signal
path, just right after the antenna input. The difference between the
LNA gain and the RF gain in this document is that the LNA gain is
integrated in the tuner chip while the RF gain is a separate chip.
There may be both RF and LNA gain controls in the same device. The
range and step are driver-specific.
``V4L2_CID_RF_TUNER_LNA_GAIN (integer)``
LNA (low noise amplifier) gain is first gain stage on the RF tuner
signal path. It is located very close to tuner antenna input. Used
when ``V4L2_CID_RF_TUNER_LNA_GAIN_AUTO`` is not set. See
``V4L2_CID_RF_TUNER_RF_GAIN`` to understand how RF gain and LNA gain
differs from the each others. The range and step are
driver-specific.
``V4L2_CID_RF_TUNER_MIXER_GAIN (integer)``
Mixer gain is second gain stage on the RF tuner signal path. It is
located inside mixer block, where RF signal is down-converted by the
mixer. Used when ``V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO`` is not set.
The range and step are driver-specific.
``V4L2_CID_RF_TUNER_IF_GAIN (integer)``
IF gain is last gain stage on the RF tuner signal path. It is
located on output of RF tuner. It controls signal level of
intermediate frequency output or baseband output. Used when
``V4L2_CID_RF_TUNER_IF_GAIN_AUTO`` is not set. The range and step
are driver-specific.
``V4L2_CID_RF_TUNER_PLL_LOCK (boolean)``
Is synthesizer PLL locked? RF tuner is receiving given frequency
when that control is set. This is a read-only control.

File diff suppressed because it is too large Load Diff