2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 10:43:57 +08:00

Merge commit 'origin/master' into next

This commit is contained in:
Benjamin Herrenschmidt 2009-06-17 10:24:53 +10:00
commit 492b057c42
1489 changed files with 117971 additions and 52115 deletions

View File

@ -1253,6 +1253,10 @@ S: 8124 Constitution Apt. 7
S: Sterling Heights, Michigan 48313 S: Sterling Heights, Michigan 48313
S: USA S: USA
N: Wolfgang Grandegger
E: wg@grandegger.com
D: Controller Area Network (device drivers)
N: William Greathouse N: William Greathouse
E: wgreathouse@smva.com E: wgreathouse@smva.com
E: wgreathouse@myfavoritei.com E: wgreathouse@myfavoritei.com

View File

@ -145,7 +145,6 @@ usage should require reading the full document.
interface in STA mode at first! interface in STA mode at first!
</para> </para>
!Finclude/net/mac80211.h ieee80211_if_init_conf !Finclude/net/mac80211.h ieee80211_if_init_conf
!Finclude/net/mac80211.h ieee80211_if_conf
</chapter> </chapter>
<chapter id="rx-tx"> <chapter id="rx-tx">

View File

@ -438,6 +438,13 @@ Why: Superseded by tdfxfb. I2C/DDC support used to live in a separate
Who: Jean Delvare <khali@linux-fr.org> Who: Jean Delvare <khali@linux-fr.org>
Krzysztof Helt <krzysztof.h1@wp.pl> Krzysztof Helt <krzysztof.h1@wp.pl>
---------------------------
What: CONFIG_RFKILL_INPUT
When: 2.6.33
Why: Should be implemented in userspace, policy daemon.
Who: Johannes Berg <johannes@sipsolutions.net>
---------------------------- ----------------------------
What: CONFIG_X86_OLD_MCE What: CONFIG_X86_OLD_MCE

View File

@ -39,9 +39,8 @@ Features which NILFS2 does not support yet:
- extended attributes - extended attributes
- POSIX ACLs - POSIX ACLs
- quotas - quotas
- writable snapshots - fsck
- remote backup (CDP) - resize
- data integrity
- defragmentation - defragmentation
Mount options Mount options

View File

@ -132,6 +132,11 @@ rodir -- FAT has the ATTR_RO (read-only) attribute. On Windows,
If you want to use ATTR_RO as read-only flag even for If you want to use ATTR_RO as read-only flag even for
the directory, set this option. the directory, set this option.
errors=panic|continue|remount-ro
-- specify FAT behavior on critical errors: panic, continue
without doing anything or remount the partition in
read-only mode (default behavior).
<bool>: 0,1,yes,no,true,false <bool>: 0,1,yes,no,true,false
TODO TODO

View File

@ -2,14 +2,18 @@ Kernel driver f71882fg
====================== ======================
Supported chips: Supported chips:
* Fintek F71882FG and F71883FG * Fintek F71858FG
Prefix: 'f71882fg' Prefix: 'f71858fg'
Addresses scanned: none, address read from Super I/O config space Addresses scanned: none, address read from Super I/O config space
Datasheet: Available from the Fintek website Datasheet: Available from the Fintek website
* Fintek F71862FG and F71863FG * Fintek F71862FG and F71863FG
Prefix: 'f71862fg' Prefix: 'f71862fg'
Addresses scanned: none, address read from Super I/O config space Addresses scanned: none, address read from Super I/O config space
Datasheet: Available from the Fintek website Datasheet: Available from the Fintek website
* Fintek F71882FG and F71883FG
Prefix: 'f71882fg'
Addresses scanned: none, address read from Super I/O config space
Datasheet: Available from the Fintek website
* Fintek F8000 * Fintek F8000
Prefix: 'f8000' Prefix: 'f8000'
Addresses scanned: none, address read from Super I/O config space Addresses scanned: none, address read from Super I/O config space
@ -66,13 +70,13 @@ printed when loading the driver.
Three different fan control modes are supported; the mode number is written Three different fan control modes are supported; the mode number is written
to the pwm#_enable file. Note that not all modes are supported on all to the pwm#_enable file. Note that not all modes are supported on all
chips, and some modes may only be available in RPM / PWM mode on the F8000. chips, and some modes may only be available in RPM / PWM mode.
Writing an unsupported mode will result in an invalid parameter error. Writing an unsupported mode will result in an invalid parameter error.
* 1: Manual mode * 1: Manual mode
You ask for a specific PWM duty cycle / DC voltage or a specific % of You ask for a specific PWM duty cycle / DC voltage or a specific % of
fan#_full_speed by writing to the pwm# file. This mode is only fan#_full_speed by writing to the pwm# file. This mode is only
available on the F8000 if the fan channel is in RPM mode. available on the F71858FG / F8000 if the fan channel is in RPM mode.
* 2: Normal auto mode * 2: Normal auto mode
You can define a number of temperature/fan speed trip points, which % the You can define a number of temperature/fan speed trip points, which % the

View File

@ -7,7 +7,7 @@ henceforth as AEM.
Supported systems: Supported systems:
* Any recent IBM System X server with AEM support. * Any recent IBM System X server with AEM support.
This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2, This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2,
x3950 M2, and certain HS2x/LS2x/QS2x blades. The IPMI host interface x3950 M2, and certain HC10/HS2x/LS2x/QS2x blades. The IPMI host interface
driver ("ipmi-si") needs to be loaded for this driver to do anything. driver ("ipmi-si") needs to be loaded for this driver to do anything.
Prefix: 'ibmaem' Prefix: 'ibmaem'
Datasheet: Not available Datasheet: Not available

View File

@ -70,6 +70,7 @@ are interpreted as 0! For more on how written strings are interpreted see the
[0-*] denotes any positive number starting from 0 [0-*] denotes any positive number starting from 0
[1-*] denotes any positive number starting from 1 [1-*] denotes any positive number starting from 1
RO read only value RO read only value
WO write only value
RW read/write value RW read/write value
Read/write values may be read-only for some chips, depending on the Read/write values may be read-only for some chips, depending on the
@ -295,6 +296,24 @@ temp[1-*]_label Suggested temperature channel label.
user-space. user-space.
RO RO
temp[1-*]_lowest
Historical minimum temperature
Unit: millidegree Celsius
RO
temp[1-*]_highest
Historical maximum temperature
Unit: millidegree Celsius
RO
temp[1-*]_reset_history
Reset temp_lowest and temp_highest
WO
temp_reset_history
Reset temp_lowest and temp_highest for all sensors
WO
Some chips measure temperature using external thermistors and an ADC, and Some chips measure temperature using external thermistors and an ADC, and
report the temperature measurement as a voltage. Converting this voltage report the temperature measurement as a voltage. Converting this voltage
back to a temperature (or the other way around for limits) requires back to a temperature (or the other way around for limits) requires

View File

@ -0,0 +1,42 @@
Kernel driver tmp401
====================
Supported chips:
* Texas Instruments TMP401
Prefix: 'tmp401'
Addresses scanned: I2C 0x4c
Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp401.html
* Texas Instruments TMP411
Prefix: 'tmp411'
Addresses scanned: I2C 0x4c
Datasheet: http://focus.ti.com/docs/prod/folders/print/tmp411.html
Authors:
Hans de Goede <hdegoede@redhat.com>
Andre Prendel <andre.prendel@gmx.de>
Description
-----------
This driver implements support for Texas Instruments TMP401 and
TMP411 chips. These chips implements one remote and one local
temperature sensor. Temperature is measured in degrees
Celsius. Resolution of the remote sensor is 0.0625 degree. Local
sensor resolution can be set to 0.5, 0.25, 0.125 or 0.0625 degree (not
supported by the driver so far, so using the default resolution of 0.5
degree).
The driver provides the common sysfs-interface for temperatures (see
/Documentation/hwmon/sysfs-interface under Temperatures).
The TMP411 chip is compatible with TMP401. It provides some additional
features.
* Minimum and Maximum temperature measured since power-on, chip-reset
Exported via sysfs attributes tempX_lowest and tempX_highest.
* Reset of historical minimum/maximum temperature measurements
Exported via sysfs attribute temp_reset_history. Writing 1 to this
file triggers a reset.

View File

@ -12,6 +12,10 @@ Supported chips:
Addresses scanned: ISA address retrieved from Super I/O registers Addresses scanned: ISA address retrieved from Super I/O registers
Datasheet: Datasheet:
http://www.nuvoton.com.tw/NR/rdonlyres/7885623D-A487-4CF9-A47F-30C5F73D6FE6/0/W83627DHG.pdf http://www.nuvoton.com.tw/NR/rdonlyres/7885623D-A487-4CF9-A47F-30C5F73D6FE6/0/W83627DHG.pdf
* Winbond W83627DHG-P
Prefix: 'w83627dhg'
Addresses scanned: ISA address retrieved from Super I/O registers
Datasheet: not available
* Winbond W83667HG * Winbond W83667HG
Prefix: 'w83667hg' Prefix: 'w83667hg'
Addresses scanned: ISA address retrieved from Super I/O registers Addresses scanned: ISA address retrieved from Super I/O registers
@ -28,8 +32,8 @@ Description
----------- -----------
This driver implements support for the Winbond W83627EHF, W83627EHG, This driver implements support for the Winbond W83627EHF, W83627EHG,
W83627DHG and W83667HG super I/O chips. We will refer to them collectively W83627DHG, W83627DHG-P and W83667HG super I/O chips. We will refer to them
as Winbond chips. collectively as Winbond chips.
The chips implement three temperature sensors, five fan rotation The chips implement three temperature sensors, five fan rotation
speed sensors, ten analog voltage sensors (only nine for the 627DHG), one speed sensors, ten analog voltage sensors (only nine for the 627DHG), one
@ -135,3 +139,6 @@ done in the driver for all register addresses.
The DHG also supports PECI, where the DHG queries Intel CPU temperatures, and The DHG also supports PECI, where the DHG queries Intel CPU temperatures, and
the ICH8 southbridge gets that data via PECI from the DHG, so that the the ICH8 southbridge gets that data via PECI from the DHG, so that the
southbridge drives the fans. And the DHG supports SST, a one-wire serial bus. southbridge drives the fans. And the DHG supports SST, a one-wire serial bus.
The DHG-P has an additional automatic fan speed control mode named Smart Fan
(TM) III+. This mode is not yet supported by the driver.

View File

@ -19,6 +19,9 @@ Supported adapters:
* VIA Technologies, Inc. VX800/VX820 * VIA Technologies, Inc. VX800/VX820
Datasheet: available on http://linux.via.com.tw Datasheet: available on http://linux.via.com.tw
* VIA Technologies, Inc. VX855/VX875
Datasheet: Availability unknown
Authors: Authors:
Kyösti Mälkki <kmalkki@cc.hut.fi>, Kyösti Mälkki <kmalkki@cc.hut.fi>,
Mark D. Studebaker <mdsxyz123@yahoo.com>, Mark D. Studebaker <mdsxyz123@yahoo.com>,
@ -53,6 +56,7 @@ Your lspci -n listing must show one of these :
device 1106:3287 (VT8251) device 1106:3287 (VT8251)
device 1106:8324 (CX700) device 1106:8324 (CX700)
device 1106:8353 (VX800/VX820) device 1106:8353 (VX800/VX820)
device 1106:8409 (VX855/VX875)
If none of these show up, you should look in the BIOS for settings like If none of these show up, you should look in the BIOS for settings like
enable ACPI / SMBus or even USB. enable ACPI / SMBus or even USB.

View File

@ -22,16 +22,11 @@ README.gigaset
- info on the drivers for Siemens Gigaset ISDN adapters. - info on the drivers for Siemens Gigaset ISDN adapters.
README.icn README.icn
- info on the ICN-ISDN-card and its driver. - info on the ICN-ISDN-card and its driver.
>>>>>>> 93af7aca44f0e82e67bda10a0fb73d383edcc8bd:Documentation/isdn/00-INDEX
README.HiSax README.HiSax
- info on the HiSax driver which replaces the old teles. - info on the HiSax driver which replaces the old teles.
README.hfc-pci README.audio
- info on hfc-pci based cards. - info for running audio over ISDN.
README.pcbit
- info on the PCBIT-D ISDN adapter and driver.
README.syncppp
- info on running Sync PPP over ISDN.
syncPPP.FAQ
- frequently asked questions about running PPP over ISDN.
README.avmb1 README.avmb1
- info on driver for AVM-B1 ISDN card. - info on driver for AVM-B1 ISDN card.
README.act2000 README.act2000
@ -42,10 +37,28 @@ README.concap
- info on "CONCAP" encapsulation protocol interface used for X.25. - info on "CONCAP" encapsulation protocol interface used for X.25.
README.diversion README.diversion
- info on module for isdn diversion services. - info on module for isdn diversion services.
README.fax
- info for using Fax over ISDN.
README.gigaset
- info on the drivers for Siemens Gigaset ISDN adapters
README.hfc-pci
- info on hfc-pci based cards.
README.hysdn
- info on driver for Hypercope active HYSDN cards
README.icn
- info on the ICN-ISDN-card and its driver.
README.mISDN
- info on the Modular ISDN subsystem (mISDN)
README.pcbit
- info on the PCBIT-D ISDN adapter and driver.
README.sc README.sc
- info on driver for Spellcaster cards. - info on driver for Spellcaster cards.
README.syncppp
- info on running Sync PPP over ISDN.
README.x25 README.x25
- info for running X.25 over ISDN. - info for running X.25 over ISDN.
syncPPP.FAQ
- frequently asked questions about running PPP over ISDN.
README.hysdn README.hysdn
- info on driver for Hypercope active HYSDN cards - info on driver for Hypercope active HYSDN cards
README.mISDN README.mISDN

View File

@ -45,7 +45,7 @@ From then on, Kernel CAPI may call the registered callback functions for the
device. device.
If the device becomes unusable for any reason (shutdown, disconnect ...), the If the device becomes unusable for any reason (shutdown, disconnect ...), the
driver has to call capi_ctr_reseted(). This will prevent further calls to the driver has to call capi_ctr_down(). This will prevent further calls to the
callback functions by Kernel CAPI. callback functions by Kernel CAPI.
@ -114,20 +114,36 @@ char *driver_name
int (*load_firmware)(struct capi_ctr *ctrlr, capiloaddata *ldata) int (*load_firmware)(struct capi_ctr *ctrlr, capiloaddata *ldata)
(optional) pointer to a callback function for sending firmware and (optional) pointer to a callback function for sending firmware and
configuration data to the device configuration data to the device
Return value: 0 on success, error code on error
Called in process context.
void (*reset_ctr)(struct capi_ctr *ctrlr) void (*reset_ctr)(struct capi_ctr *ctrlr)
pointer to a callback function for performing a reset on the device, (optional) pointer to a callback function for performing a reset on
releasing all registered applications the device, releasing all registered applications
Called in process context.
void (*register_appl)(struct capi_ctr *ctrlr, u16 applid, void (*register_appl)(struct capi_ctr *ctrlr, u16 applid,
capi_register_params *rparam) capi_register_params *rparam)
void (*release_appl)(struct capi_ctr *ctrlr, u16 applid) void (*release_appl)(struct capi_ctr *ctrlr, u16 applid)
pointers to callback functions for registration and deregistration of pointers to callback functions for registration and deregistration of
applications with the device applications with the device
Calls to these functions are serialized by Kernel CAPI so that only
one call to any of them is active at any time.
u16 (*send_message)(struct capi_ctr *ctrlr, struct sk_buff *skb) u16 (*send_message)(struct capi_ctr *ctrlr, struct sk_buff *skb)
pointer to a callback function for sending a CAPI message to the pointer to a callback function for sending a CAPI message to the
device device
Return value: CAPI error code
If the method returns 0 (CAPI_NOERROR) the driver has taken ownership
of the skb and the caller may no longer access it. If it returns a
non-zero (error) value then ownership of the skb returns to the caller
who may reuse or free it.
The return value should only be used to signal problems with respect
to accepting or queueing the message. Errors occurring during the
actual processing of the message should be signaled with an
appropriate reply message.
Calls to this function are not serialized by Kernel CAPI, ie. it must
be prepared to be re-entered.
char *(*procinfo)(struct capi_ctr *ctrlr) char *(*procinfo)(struct capi_ctr *ctrlr)
pointer to a callback function returning the entry for the device in pointer to a callback function returning the entry for the device in
@ -138,6 +154,8 @@ read_proc_t *ctr_read_proc
system entry, /proc/capi/controllers/<n>; will be called with a system entry, /proc/capi/controllers/<n>; will be called with a
pointer to the device's capi_ctr structure as the last (data) argument pointer to the device's capi_ctr structure as the last (data) argument
Note: Callback functions are never called in interrupt context.
- to be filled in before calling capi_ctr_ready(): - to be filled in before calling capi_ctr_ready():
u8 manu[CAPI_MANUFACTURER_LEN] u8 manu[CAPI_MANUFACTURER_LEN]
@ -153,6 +171,45 @@ u8 serial[CAPI_SERIAL_LEN]
value to return for CAPI_GET_SERIAL value to return for CAPI_GET_SERIAL
4.3 The _cmsg Structure
(declared in <linux/isdn/capiutil.h>)
The _cmsg structure stores the contents of a CAPI 2.0 message in an easily
accessible form. It contains members for all possible CAPI 2.0 parameters, of
which only those appearing in the message type currently being processed are
actually used. Unused members should be set to zero.
Members are named after the CAPI 2.0 standard names of the parameters they
represent. See <linux/isdn/capiutil.h> for the exact spelling. Member data
types are:
u8 for CAPI parameters of type 'byte'
u16 for CAPI parameters of type 'word'
u32 for CAPI parameters of type 'dword'
_cstruct for CAPI parameters of type 'struct' not containing any
variably-sized (struct) subparameters (eg. 'Called Party Number')
The member is a pointer to a buffer containing the parameter in
CAPI encoding (length + content). It may also be NULL, which will
be taken to represent an empty (zero length) parameter.
_cmstruct for CAPI parameters of type 'struct' containing 'struct'
subparameters ('Additional Info' and 'B Protocol')
The representation is a single byte containing one of the values:
CAPI_DEFAULT: the parameter is empty
CAPI_COMPOSE: the values of the subparameters are stored
individually in the corresponding _cmsg structure members
Functions capi_cmsg2message() and capi_message2cmsg() are provided to convert
messages between their transport encoding described in the CAPI 2.0 standard
and their _cmsg structure representation. Note that capi_cmsg2message() does
not know or check the size of its destination buffer. The caller must make
sure it is big enough to accomodate the resulting CAPI message.
5. Lower Layer Interface Functions 5. Lower Layer Interface Functions
(declared in <linux/isdn/capilli.h>) (declared in <linux/isdn/capilli.h>)
@ -166,7 +223,7 @@ int detach_capi_ctr(struct capi_ctr *ctrlr)
register/unregister a device (controller) with Kernel CAPI register/unregister a device (controller) with Kernel CAPI
void capi_ctr_ready(struct capi_ctr *ctrlr) void capi_ctr_ready(struct capi_ctr *ctrlr)
void capi_ctr_reseted(struct capi_ctr *ctrlr) void capi_ctr_down(struct capi_ctr *ctrlr)
signal controller ready/not ready signal controller ready/not ready
void capi_ctr_suspend_output(struct capi_ctr *ctrlr) void capi_ctr_suspend_output(struct capi_ctr *ctrlr)
@ -211,3 +268,32 @@ CAPIMSG_CONTROL(m) CAPIMSG_SETCONTROL(m, contr) Controller/PLCI/NCCI
(u32) (u32)
CAPIMSG_DATALEN(m) CAPIMSG_SETDATALEN(m, len) Data Length (u16) CAPIMSG_DATALEN(m) CAPIMSG_SETDATALEN(m, len) Data Length (u16)
Library functions for working with _cmsg structures
(from <linux/isdn/capiutil.h>):
unsigned capi_cmsg2message(_cmsg *cmsg, u8 *msg)
Assembles a CAPI 2.0 message from the parameters in *cmsg, storing the
result in *msg.
unsigned capi_message2cmsg(_cmsg *cmsg, u8 *msg)
Disassembles the CAPI 2.0 message in *msg, storing the parameters in
*cmsg.
unsigned capi_cmsg_header(_cmsg *cmsg, u16 ApplId, u8 Command, u8 Subcommand,
u16 Messagenumber, u32 Controller)
Fills the header part and address field of the _cmsg structure *cmsg
with the given values, zeroing the remainder of the structure so only
parameters with non-default values need to be changed before sending
the message.
void capi_cmsg_answer(_cmsg *cmsg)
Sets the low bit of the Subcommand field in *cmsg, thereby converting
_REQ to _CONF and _IND to _RESP.
char *capi_cmd2str(u8 Command, u8 Subcommand)
Returns the CAPI 2.0 message name corresponding to the given command
and subcommand values, as a static ASCII string. The return value may
be NULL if the command/subcommand is not one of those defined in the
CAPI 2.0 standard.

View File

@ -149,10 +149,8 @@ GigaSet 307x Device Driver
configuration files and chat scripts in the gigaset-VERSION/ppp directory configuration files and chat scripts in the gigaset-VERSION/ppp directory
in the driver packages from http://sourceforge.net/projects/gigaset307x/. in the driver packages from http://sourceforge.net/projects/gigaset307x/.
Please note that the USB drivers are not able to change the state of the Please note that the USB drivers are not able to change the state of the
control lines (the M105 driver can be configured to use some undocumented control lines. This means you must use "Stupid Mode" if you are using
control requests, if you really need the control lines, though). This means wvdial or you should use the nocrtscts option of pppd.
you must use "Stupid Mode" if you are using wvdial or you should use the
nocrtscts option of pppd.
You must also assure that the ppp_async module is loaded with the parameter You must also assure that the ppp_async module is loaded with the parameter
flag_time=0. You can do this e.g. by adding a line like flag_time=0. You can do this e.g. by adding a line like
@ -190,20 +188,19 @@ GigaSet 307x Device Driver
You can also use /sys/class/tty/ttyGxy/cidmode for changing the CID mode You can also use /sys/class/tty/ttyGxy/cidmode for changing the CID mode
setting (ttyGxy is ttyGU0 or ttyGB0). setting (ttyGxy is ttyGU0 or ttyGB0).
2.6. M105 Undocumented USB Requests 2.6. Unregistered Wireless Devices (M101/M105)
------------------------------ -----------------------------------------
The main purpose of the ser_gigaset and usb_gigaset drivers is to allow
The Gigaset M105 USB data box understands a couple of useful, but the M101 and M105 wireless devices to be used as ISDN devices for ISDN
undocumented USB commands. These requests are not used in normal connections through a Gigaset base. Therefore they assume that the device
operation (for wireless access to the base), but are needed for access is registered to a DECT base.
to the M105's own configuration mode (registration to the base, baudrate
and line format settings, device status queries) via the gigacontr
utility. Their use is controlled by the kernel configuration option
"Support for undocumented USB requests" (CONFIG_GIGASET_UNDOCREQ). If you
encounter error code -ENOTTY when trying to use some features of the
M105, try setting that option to "y" via 'make {x,menu}config' and
recompiling the driver.
If the M101/M105 device is not registered to a base, initialization of
the device fails, and a corresponding error message is logged by the
driver. In that situation, a restricted set of functions is available
which includes, in particular, those necessary for registering the device
to a base or for switching it between Fixed Part and Portable Part
modes.
3. Troubleshooting 3. Troubleshooting
--------------- ---------------
@ -234,11 +231,12 @@ GigaSet 307x Device Driver
Select Unimodem mode for all DECT data adapters. (see section 2.4.) Select Unimodem mode for all DECT data adapters. (see section 2.4.)
Problem: Problem:
You want to configure your USB DECT data adapter (M105) but gigacontr Messages like this:
reports an error: "/dev/ttyGU0: Inappropriate ioctl for device". usb_gigaset 3-2:1.0: Could not initialize the device.
appear in your syslog.
Solution: Solution:
Recompile the usb_gigaset driver with the kernel configuration option Check whether your M10x wireless device is correctly registered to the
CONFIG_GIGASET_UNDOCREQ set to 'y'. (see section 2.6.) Gigaset base. (see section 2.6.)
3.2. Telling the driver to provide more information 3.2. Telling the driver to provide more information
---------------------------------------------- ----------------------------------------------

View File

@ -36,10 +36,15 @@ This file contains
6.2 local loopback of sent frames 6.2 local loopback of sent frames
6.3 CAN controller hardware filters 6.3 CAN controller hardware filters
6.4 The virtual CAN driver (vcan) 6.4 The virtual CAN driver (vcan)
6.5 currently supported CAN hardware 6.5 The CAN network device driver interface
6.6 todo 6.5.1 Netlink interface to set/get devices properties
6.5.2 Setting the CAN bit-timing
6.5.3 Starting and stopping the CAN network device
6.6 supported CAN hardware
7 Credits 7 Socket CAN resources
8 Credits
============================================================================ ============================================================================
@ -234,6 +239,8 @@ solution for a couple of reasons:
the user application using the common CAN filter mechanisms. Inside the user application using the common CAN filter mechanisms. Inside
this filter definition the (interested) type of errors may be this filter definition the (interested) type of errors may be
selected. The reception of error frames is disabled by default. selected. The reception of error frames is disabled by default.
The format of the CAN error frame is briefly decribed in the Linux
header file "include/linux/can/error.h".
4. How to use Socket CAN 4. How to use Socket CAN
------------------------ ------------------------
@ -605,61 +612,213 @@ solution for a couple of reasons:
removal of vcan network devices can be managed with the ip(8) tool: removal of vcan network devices can be managed with the ip(8) tool:
- Create a virtual CAN network interface: - Create a virtual CAN network interface:
ip link add type vcan $ ip link add type vcan
- Create a virtual CAN network interface with a specific name 'vcan42': - Create a virtual CAN network interface with a specific name 'vcan42':
ip link add dev vcan42 type vcan $ ip link add dev vcan42 type vcan
- Remove a (virtual CAN) network interface 'vcan42': - Remove a (virtual CAN) network interface 'vcan42':
ip link del vcan42 $ ip link del vcan42
The tool 'vcan' from the SocketCAN SVN repository on BerliOS is obsolete. 6.5 The CAN network device driver interface
Virtual CAN network device creation in older Kernels: The CAN network device driver interface provides a generic interface
In Linux Kernel versions < 2.6.24 the vcan driver creates 4 vcan to setup, configure and monitor CAN network devices. The user can then
netdevices at module load time by default. This value can be changed configure the CAN device, like setting the bit-timing parameters, via
with the module parameter 'numdev'. E.g. 'modprobe vcan numdev=8' the netlink interface using the program "ip" from the "IPROUTE2"
utility suite. The following chapter describes briefly how to use it.
Furthermore, the interface uses a common data structure and exports a
set of common functions, which all real CAN network device drivers
should use. Please have a look to the SJA1000 or MSCAN driver to
understand how to use them. The name of the module is can-dev.ko.
6.5 currently supported CAN hardware 6.5.1 Netlink interface to set/get devices properties
On the project website http://developer.berlios.de/projects/socketcan The CAN device must be configured via netlink interface. The supported
there are different drivers available: netlink message types are defined and briefly described in
"include/linux/can/netlink.h". CAN link support for the program "ip"
of the IPROUTE2 utility suite is avaiable and it can be used as shown
below:
vcan: Virtual CAN interface driver (if no real hardware is available) - Setting CAN device properties:
sja1000: Philips SJA1000 CAN controller (recommended)
i82527: Intel i82527 CAN controller
mscan: Motorola/Freescale CAN controller (e.g. inside SOC MPC5200)
ccan: CCAN controller core (e.g. inside SOC h7202)
slcan: For a bunch of CAN adaptors that are attached via a
serial line ASCII protocol (for serial / USB adaptors)
Additionally the different CAN adaptors (ISA/PCI/PCMCIA/USB/Parport) $ ip link set can0 type can help
from PEAK Systemtechnik support the CAN netdevice driver model Usage: ip link set DEVICE type can
since Linux driver v6.0: http://www.peak-system.com/linux/index.htm [ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |
[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1
phase-seg2 PHASE-SEG2 [ sjw SJW ] ]
Please check the Mailing Lists on the berlios OSS project website. [ loopback { on | off } ]
[ listen-only { on | off } ]
[ triple-sampling { on | off } ]
6.6 todo [ restart-ms TIME-MS ]
[ restart ]
The configuration interface for CAN network drivers is still an open Where: BITRATE := { 1..1000000 }
issue that has not been finalized in the socketcan project. Also the SAMPLE-POINT := { 0.000..0.999 }
idea of having a library module (candev.ko) that holds functions TQ := { NUMBER }
that are needed by all CAN netdevices is not ready to ship. PROP-SEG := { 1..8 }
Your contribution is welcome. PHASE-SEG1 := { 1..8 }
PHASE-SEG2 := { 1..8 }
SJW := { 1..4 }
RESTART-MS := { 0 | NUMBER }
7. Credits - Display CAN device details and statistics:
$ ip -details -statistics link show can0
2: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP qlen 10
link/can
can <TRIPLE-SAMPLING> state ERROR-ACTIVE restart-ms 100
bitrate 125000 sample_point 0.875
tq 125 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1
sja1000: tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1
clock 8000000
re-started bus-errors arbit-lost error-warn error-pass bus-off
41 17457 0 41 42 41
RX: bytes packets errors dropped overrun mcast
140859 17608 17457 0 0 0
TX: bytes packets errors dropped carrier collsns
861 112 0 41 0 0
More info to the above output:
"<TRIPLE-SAMPLING>"
Shows the list of selected CAN controller modes: LOOPBACK,
LISTEN-ONLY, or TRIPLE-SAMPLING.
"state ERROR-ACTIVE"
The current state of the CAN controller: "ERROR-ACTIVE",
"ERROR-WARNING", "ERROR-PASSIVE", "BUS-OFF" or "STOPPED"
"restart-ms 100"
Automatic restart delay time. If set to a non-zero value, a
restart of the CAN controller will be triggered automatically
in case of a bus-off condition after the specified delay time
in milliseconds. By default it's off.
"bitrate 125000 sample_point 0.875"
Shows the real bit-rate in bits/sec and the sample-point in the
range 0.000..0.999. If the calculation of bit-timing parameters
is enabled in the kernel (CONFIG_CAN_CALC_BITTIMING=y), the
bit-timing can be defined by setting the "bitrate" argument.
Optionally the "sample-point" can be specified. By default it's
0.000 assuming CIA-recommended sample-points.
"tq 125 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1"
Shows the time quanta in ns, propagation segment, phase buffer
segment 1 and 2 and the synchronisation jump width in units of
tq. They allow to define the CAN bit-timing in a hardware
independent format as proposed by the Bosch CAN 2.0 spec (see
chapter 8 of http://www.semiconductors.bosch.de/pdf/can2spec.pdf).
"sja1000: tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1
clock 8000000"
Shows the bit-timing constants of the CAN controller, here the
"sja1000". The minimum and maximum values of the time segment 1
and 2, the synchronisation jump width in units of tq, the
bitrate pre-scaler and the CAN system clock frequency in Hz.
These constants could be used for user-defined (non-standard)
bit-timing calculation algorithms in user-space.
"re-started bus-errors arbit-lost error-warn error-pass bus-off"
Shows the number of restarts, bus and arbitration lost errors,
and the state changes to the error-warning, error-passive and
bus-off state. RX overrun errors are listed in the "overrun"
field of the standard network statistics.
6.5.2 Setting the CAN bit-timing
The CAN bit-timing parameters can always be defined in a hardware
independent format as proposed in the Bosch CAN 2.0 specification
specifying the arguments "tq", "prop_seg", "phase_seg1", "phase_seg2"
and "sjw":
$ ip link set canX type can tq 125 prop-seg 6 \
phase-seg1 7 phase-seg2 2 sjw 1
If the kernel option CONFIG_CAN_CALC_BITTIMING is enabled, CIA
recommended CAN bit-timing parameters will be calculated if the bit-
rate is specified with the argument "bitrate":
$ ip link set canX type can bitrate 125000
Note that this works fine for the most common CAN controllers with
standard bit-rates but may *fail* for exotic bit-rates or CAN system
clock frequencies. Disabling CONFIG_CAN_CALC_BITTIMING saves some
space and allows user-space tools to solely determine and set the
bit-timing parameters. The CAN controller specific bit-timing
constants can be used for that purpose. They are listed by the
following command:
$ ip -details link show can0
...
sja1000: clock 8000000 tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1
6.5.3 Starting and stopping the CAN network device
A CAN network device is started or stopped as usual with the command
"ifconfig canX up/down" or "ip link set canX up/down". Be aware that
you *must* define proper bit-timing parameters for real CAN devices
before you can start it to avoid error-prone default settings:
$ ip link set canX up type can bitrate 125000
A device may enter the "bus-off" state if too much errors occurred on
the CAN bus. Then no more messages are received or sent. An automatic
bus-off recovery can be enabled by setting the "restart-ms" to a
non-zero value, e.g.:
$ ip link set canX type can restart-ms 100
Alternatively, the application may realize the "bus-off" condition
by monitoring CAN error frames and do a restart when appropriate with
the command:
$ ip link set canX type can restart
Note that a restart will also create a CAN error frame (see also
chapter 3.4).
6.6 Supported CAN hardware
Please check the "Kconfig" file in "drivers/net/can" to get an actual
list of the support CAN hardware. On the Socket CAN project website
(see chapter 7) there might be further drivers available, also for
older kernel versions.
7. Socket CAN resources
-----------------------
You can find further resources for Socket CAN like user space tools,
support for old kernel versions, more drivers, mailing lists, etc.
at the BerliOS OSS project website for Socket CAN:
http://developer.berlios.de/projects/socketcan
If you have questions, bug fixes, etc., don't hesitate to post them to
the Socketcan-Users mailing list. But please search the archives first.
8. Credits
---------- ----------
Oliver Hartkopp (PF_CAN core, filters, drivers, bcm) Oliver Hartkopp (PF_CAN core, filters, drivers, bcm, SJA1000 driver)
Urs Thuermann (PF_CAN core, kernel integration, socket interfaces, raw, vcan) Urs Thuermann (PF_CAN core, kernel integration, socket interfaces, raw, vcan)
Jan Kizka (RT-SocketCAN core, Socket-API reconciliation) Jan Kizka (RT-SocketCAN core, Socket-API reconciliation)
Wolfgang Grandegger (RT-SocketCAN core & drivers, Raw Socket-API reviews) Wolfgang Grandegger (RT-SocketCAN core & drivers, Raw Socket-API reviews,
CAN device driver interface, MSCAN driver)
Robert Schwebel (design reviews, PTXdist integration) Robert Schwebel (design reviews, PTXdist integration)
Marc Kleine-Budde (design reviews, Kernel 2.6 cleanups, drivers) Marc Kleine-Budde (design reviews, Kernel 2.6 cleanups, drivers)
Benedikt Spranger (reviews) Benedikt Spranger (reviews)
Thomas Gleixner (LKML reviews, coding style, posting hints) Thomas Gleixner (LKML reviews, coding style, posting hints)
Andrey Volkov (kernel subtree structure, ioctls, mscan driver) Andrey Volkov (kernel subtree structure, ioctls, MSCAN driver)
Matthias Brukner (first SJA1000 CAN netdevice implementation Q2/2003) Matthias Brukner (first SJA1000 CAN netdevice implementation Q2/2003)
Klaus Hitschler (PEAK driver integration) Klaus Hitschler (PEAK driver integration)
Uwe Koppe (CAN netdevices with PF_PACKET approach) Uwe Koppe (CAN netdevices with PF_PACKET approach)
Michael Schulze (driver layer loopback requirement, RT CAN drivers review) Michael Schulze (driver layer loopback requirement, RT CAN drivers review)
Pavel Pisa (Bit-timing calculation)
Sascha Hauer (SJA1000 platform driver)
Sebastian Haas (SJA1000 EMS PCI driver)
Markus Plessing (SJA1000 EMS PCI driver)
Per Dalen (SJA1000 Kvaser PCI driver)
Sam Ravnborg (reviews, coding style, kbuild help)

View File

@ -0,0 +1,76 @@
Linux IEEE 802.15.4 implementation
Introduction
============
The Linux-ZigBee project goal is to provide complete implementation
of IEEE 802.15.4 / ZigBee / 6LoWPAN protocols. IEEE 802.15.4 is a stack
of protocols for organizing Low-Rate Wireless Personal Area Networks.
Currently only IEEE 802.15.4 layer is implemented. We have choosen
to use plain Berkeley socket API, the generic Linux networking stack
to transfer IEEE 802.15.4 messages and a special protocol over genetlink
for configuration/management
Socket API
==========
int sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);
.....
The address family, socket addresses etc. are defined in the
include/net/ieee802154/af_ieee802154.h header or in the special header
in our userspace package (see either linux-zigbee sourceforge download page
or git tree at git://linux-zigbee.git.sourceforge.net/gitroot/linux-zigbee).
One can use SOCK_RAW for passing raw data towards device xmit function. YMMV.
MLME - MAC Level Management
============================
Most of IEEE 802.15.4 MLME interfaces are directly mapped on netlink commands.
See the include/net/ieee802154/nl802154.h header. Our userspace tools package
(see above) provides CLI configuration utility for radio interfaces and simple
coordinator for IEEE 802.15.4 networks as an example users of MLME protocol.
Kernel side
=============
Like with WiFi, there are several types of devices implementing IEEE 802.15.4.
1) 'HardMAC'. The MAC layer is implemented in the device itself, the device
exports MLME and data API.
2) 'SoftMAC' or just radio. These types of devices are just radio transceivers
possibly with some kinds of acceleration like automatic CRC computation and
comparation, automagic ACK handling, address matching, etc.
Those types of devices require different approach to be hooked into Linux kernel.
HardMAC
=======
See the header include/net/ieee802154/netdevice.h. You have to implement Linux
net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family
code via plain sk_buffs. The control block of sk_buffs will contain additional
info as described in the struct ieee802154_mac_cb.
To hook the MLME interface you have to populate the ml_priv field of your
net_device with a pointer to struct ieee802154_mlme_ops instance. All fields are
required.
We provide an example of simple HardMAC driver at drivers/ieee802154/fakehard.c
SoftMAC
=======
We are going to provide intermediate layer impelementing IEEE 802.15.4 MAC
in software. This is currently WIP.
See header include/net/ieee802154/mac802154.h and several drivers in
drivers/ieee802154/

View File

@ -168,7 +168,16 @@ tcp_dsack - BOOLEAN
Allows TCP to send "duplicate" SACKs. Allows TCP to send "duplicate" SACKs.
tcp_ecn - BOOLEAN tcp_ecn - BOOLEAN
Enable Explicit Congestion Notification in TCP. Enable Explicit Congestion Notification (ECN) in TCP. ECN is only
used when both ends of the TCP flow support it. It is useful to
avoid losses due to congestion (when the bottleneck router supports
ECN).
Possible values are:
0 disable ECN
1 ECN enabled
2 Only server-side ECN enabled. If the other end does
not support ECN, behavior is like with ECN disabled.
Default: 2
tcp_fack - BOOLEAN tcp_fack - BOOLEAN
Enable FACK congestion avoidance and fast retransmission. Enable FACK congestion avoidance and fast retransmission.
@ -1048,6 +1057,13 @@ disable_ipv6 - BOOLEAN
address. address.
Default: FALSE (enable IPv6 operation) Default: FALSE (enable IPv6 operation)
When this value is changed from 1 to 0 (IPv6 is being enabled),
it will dynamically create a link-local address on the given
interface and start Duplicate Address Detection, if necessary.
When this value is changed from 0 to 1 (IPv6 is being disabled),
it will dynamically delete all address on the given interface.
accept_dad - INTEGER accept_dad - INTEGER
Whether to accept DAD (Duplicate Address Detection). Whether to accept DAD (Duplicate Address Detection).
0: Disable DAD 0: Disable DAD

View File

@ -33,3 +33,40 @@ disable
A reboot is required to enable IPv6. A reboot is required to enable IPv6.
autoconf
Specifies whether to enable IPv6 address autoconfiguration
on all interfaces. This might be used when one does not wish
for addresses to be automatically generated from prefixes
received in Router Advertisements.
The possible values and their effects are:
0
IPv6 address autoconfiguration is disabled on all interfaces.
Only the IPv6 loopback address (::1) and link-local addresses
will be added to interfaces.
1
IPv6 address autoconfiguration is enabled on all interfaces.
This is the default value.
disable_ipv6
Specifies whether to disable IPv6 on all interfaces.
This might be used when no IPv6 addresses are desired.
The possible values and their effects are:
0
IPv6 is enabled on all interfaces.
This is the default value.
1
IPv6 is disabled on all interfaces.
No IPv6 addresses will be added to interfaces.

View File

@ -12,38 +12,22 @@ following format:
The radiotap format is discussed in The radiotap format is discussed in
./Documentation/networking/radiotap-headers.txt. ./Documentation/networking/radiotap-headers.txt.
Despite 13 radiotap argument types are currently defined, most only make sense Despite many radiotap parameters being currently defined, most only make sense
to appear on received packets. The following information is parsed from the to appear on received packets. The following information is parsed from the
radiotap headers and used to control injection: radiotap headers and used to control injection:
* IEEE80211_RADIOTAP_RATE
rate in 500kbps units, automatic if invalid or not present
* IEEE80211_RADIOTAP_ANTENNA
antenna to use, automatic if not present
* IEEE80211_RADIOTAP_DBM_TX_POWER
transmit power in dBm, automatic if not present
* IEEE80211_RADIOTAP_FLAGS * IEEE80211_RADIOTAP_FLAGS
IEEE80211_RADIOTAP_F_FCS: FCS will be removed and recalculated IEEE80211_RADIOTAP_F_FCS: FCS will be removed and recalculated
IEEE80211_RADIOTAP_F_WEP: frame will be encrypted if key available IEEE80211_RADIOTAP_F_WEP: frame will be encrypted if key available
IEEE80211_RADIOTAP_F_FRAG: frame will be fragmented if longer than the IEEE80211_RADIOTAP_F_FRAG: frame will be fragmented if longer than the
current fragmentation threshold. Note that current fragmentation threshold.
this flag is only reliable when software
fragmentation is enabled)
The injection code can also skip all other currently defined radiotap fields The injection code can also skip all other currently defined radiotap fields
facilitating replay of captured radiotap headers directly. facilitating replay of captured radiotap headers directly.
Here is an example valid radiotap header defining these three parameters Here is an example valid radiotap header defining some parameters
0x00, 0x00, // <-- radiotap version 0x00, 0x00, // <-- radiotap version
0x0b, 0x00, // <- radiotap header length 0x0b, 0x00, // <- radiotap header length
@ -72,8 +56,8 @@ interface), along the following lines:
... ...
r = pcap_inject(ppcap, u8aSendBuffer, nLength); r = pcap_inject(ppcap, u8aSendBuffer, nLength);
You can also find sources for a complete inject test applet here: You can also find a link to a complete inject application here:
http://penumbra.warmcat.com/_twk/tiki-index.php?page=packetspammer http://wireless.kernel.org/en/users/Documentation/packetspammer
Andy Green <andy@warmcat.com> Andy Green <andy@warmcat.com>

View File

@ -38,9 +38,6 @@ ifinfomsg::if_flags & IFF_LOWER_UP:
ifinfomsg::if_flags & IFF_DORMANT: ifinfomsg::if_flags & IFF_DORMANT:
Driver has signaled netif_dormant_on() Driver has signaled netif_dormant_on()
These interface flags can also be queried without netlink using the
SIOCGIFFLAGS ioctl.
TLV IFLA_OPERSTATE TLV IFLA_OPERSTATE
contains RFC2863 state of the interface in numeric representation: contains RFC2863 state of the interface in numeric representation:

View File

@ -4,16 +4,18 @@
This file documents the CONFIG_PACKET_MMAP option available with the PACKET This file documents the CONFIG_PACKET_MMAP option available with the PACKET
socket interface on 2.4 and 2.6 kernels. This type of sockets is used for socket interface on 2.4 and 2.6 kernels. This type of sockets is used for
capture network traffic with utilities like tcpdump or any other that uses capture network traffic with utilities like tcpdump or any other that needs
the libpcap library. raw access to network interface.
You can find the latest version of this document at
You can find the latest version of this document at:
http://pusa.uv.es/~ulisses/packet_mmap/ http://pusa.uv.es/~ulisses/packet_mmap/
Please send me your comments to Howto can be found at:
http://wiki.gnu-log.net (packet_mmap)
Please send your comments to
Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es> Ulisses Alonso Camaró <uaca@i.hate.spam.alumni.uv.es>
Johann Baudy <johann.baudy@gnu-log.net>
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
+ Why use PACKET_MMAP + Why use PACKET_MMAP
@ -25,19 +27,24 @@ to capture each packet, it requires two if you want to get packet's
timestamp (like libpcap always does). timestamp (like libpcap always does).
In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size
configurable circular buffer mapped in user space. This way reading packets just configurable circular buffer mapped in user space that can be used to either
needs to wait for them, most of the time there is no need to issue a single send or receive packets. This way reading packets just needs to wait for them,
system call. By using a shared buffer between the kernel and the user most of the time there is no need to issue a single system call. Concerning
also has the benefit of minimizing packet copies. transmission, multiple packets can be sent through one system call to get the
highest bandwidth.
By using a shared buffer between the kernel and the user also has the benefit
of minimizing packet copies.
It's fine to use PACKET_MMAP to improve the performance of the capture process, It's fine to use PACKET_MMAP to improve the performance of the capture and
but it isn't everything. At least, if you are capturing at high speeds (this transmission process, but it isn't everything. At least, if you are capturing
is relative to the cpu speed), you should check if the device driver of your at high speeds (this is relative to the cpu speed), you should check if the
network interface card supports some sort of interrupt load mitigation or device driver of your network interface card supports some sort of interrupt
(even better) if it supports NAPI, also make sure it is enabled. load mitigation or (even better) if it supports NAPI, also make sure it is
enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
supported by devices of your network.
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
+ How to use CONFIG_PACKET_MMAP + How to use CONFIG_PACKET_MMAP to improve capture process
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
From the user standpoint, you should use the higher level libpcap library, which From the user standpoint, you should use the higher level libpcap library, which
@ -57,7 +64,7 @@ the low level details or want to improve libpcap by including PACKET_MMAP
support. support.
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
+ How to use CONFIG_PACKET_MMAP directly + How to use CONFIG_PACKET_MMAP directly to improve capture process
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
From the system calls stand point, the use of PACKET_MMAP involves From the system calls stand point, the use of PACKET_MMAP involves
@ -66,6 +73,7 @@ the following process:
[setup] socket() -------> creation of the capture socket [setup] socket() -------> creation of the capture socket
setsockopt() ---> allocation of the circular buffer (ring) setsockopt() ---> allocation of the circular buffer (ring)
option: PACKET_RX_RING
mmap() ---------> mapping of the allocated buffer to the mmap() ---------> mapping of the allocated buffer to the
user process user process
@ -96,6 +104,65 @@ Next I will describe PACKET_MMAP settings and it's constraints,
also the mapping of the circular buffer in the user process and also the mapping of the circular buffer in the user process and
the use of this buffer. the use of this buffer.
--------------------------------------------------------------------------------
+ How to use CONFIG_PACKET_MMAP directly to improve transmission process
--------------------------------------------------------------------------------
Transmission process is similar to capture as shown below.
[setup] socket() -------> creation of the transmission socket
setsockopt() ---> allocation of the circular buffer (ring)
option: PACKET_TX_RING
bind() ---------> bind transmission socket with a network interface
mmap() ---------> mapping of the allocated buffer to the
user process
[transmission] poll() ---------> wait for free packets (optional)
send() ---------> send all packets that are set as ready in
the ring
The flag MSG_DONTWAIT can be used to return
before end of transfer.
[shutdown] close() --------> destruction of the transmission socket and
deallocation of all associated resources.
Binding the socket to your network interface is mandatory (with zero copy) to
know the header size of frames used in the circular buffer.
As capture, each frame contains two parts:
--------------------
| struct tpacket_hdr | Header. It contains the status of
| | of this frame
|--------------------|
| data buffer |
. . Data that will be sent over the network interface.
. .
--------------------
bind() associates the socket to your network interface thanks to
sll_ifindex parameter of struct sockaddr_ll.
Initialization example:
struct sockaddr_ll my_addr;
struct ifreq s_ifr;
...
strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
/* get interface index of eth0 */
ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
/* fill sockaddr_ll struct to prepare binding */
my_addr.sll_family = AF_PACKET;
my_addr.sll_protocol = ETH_P_ALL;
my_addr.sll_ifindex = s_ifr.ifr_ifindex;
/* bind socket to eth0 */
bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
A complete tutorial is available at: http://wiki.gnu-log.net/
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
+ PACKET_MMAP settings + PACKET_MMAP settings
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
@ -103,7 +170,10 @@ the use of this buffer.
To setup PACKET_MMAP from user level code is done with a call like To setup PACKET_MMAP from user level code is done with a call like
- Capture process
setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req)) setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
- Transmission process
setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
The most significant argument in the previous call is the req parameter, The most significant argument in the previous call is the req parameter,
this parameter must to have the following structure: this parameter must to have the following structure:
@ -117,11 +187,11 @@ this parameter must to have the following structure:
}; };
This structure is defined in /usr/include/linux/if_packet.h and establishes a This structure is defined in /usr/include/linux/if_packet.h and establishes a
circular buffer (ring) of unswappable memory mapped in the capture process. circular buffer (ring) of unswappable memory.
Being mapped in the capture process allows reading the captured frames and Being mapped in the capture process allows reading the captured frames and
related meta-information like timestamps without requiring a system call. related meta-information like timestamps without requiring a system call.
Captured frames are grouped in blocks. Each block is a physically contiguous Frames are grouped in blocks. Each block is a physically contiguous
region of memory and holds tp_block_size/tp_frame_size frames. The total number region of memory and holds tp_block_size/tp_frame_size frames. The total number
of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
@ -336,6 +406,7 @@ struct tpacket_hdr). If this field is 0 means that the frame is ready
to be used for the kernel, If not, there is a frame the user can read to be used for the kernel, If not, there is a frame the user can read
and the following flags apply: and the following flags apply:
+++ Capture process:
from include/linux/if_packet.h from include/linux/if_packet.h
#define TP_STATUS_COPY 2 #define TP_STATUS_COPY 2
@ -391,6 +462,37 @@ packets are in the ring:
It doesn't incur in a race condition to first check the status value and It doesn't incur in a race condition to first check the status value and
then poll for frames. then poll for frames.
++ Transmission process
Those defines are also used for transmission:
#define TP_STATUS_AVAILABLE 0 // Frame is available
#define TP_STATUS_SEND_REQUEST 1 // Frame will be sent on next send()
#define TP_STATUS_SENDING 2 // Frame is currently in transmission
#define TP_STATUS_WRONG_FORMAT 4 // Frame format is not correct
First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
packet, the user fills a data buffer of an available frame, sets tp_len to
current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
This can be done on multiple frames. Once the user is ready to transmit, it
calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
forwarded to the network device. The kernel updates each status of sent
frames with TP_STATUS_SENDING until the end of transfer.
At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
header->tp_len = in_i_size;
header->tp_status = TP_STATUS_SEND_REQUEST;
retval = send(this->socket, NULL, 0, 0);
The user can also use poll() to check if a buffer is available:
(status == TP_STATUS_SENDING)
struct pollfd pfd;
pfd.fd = fd;
pfd.revents = 0;
pfd.events = POLLOUT;
retval = poll(&pfd, 1, timeout);
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------
+ THANKS + THANKS
-------------------------------------------------------------------------------- --------------------------------------------------------------------------------

View File

@ -0,0 +1,53 @@
Memory mapped SJA1000 CAN controller from NXP (formerly Philips)
Required properties:
- compatible : should be "nxp,sja1000".
- reg : should specify the chip select, address offset and size required
to map the registers of the SJA1000. The size is usually 0x80.
- interrupts: property with a value describing the interrupt source
(number and sensitivity) required for the SJA1000.
Optional properties:
- nxp,external-clock-frequency : Frequency of the external oscillator
clock in Hz. Note that the internal clock frequency used by the
SJA1000 is half of that value. If not specified, a default value
of 16000000 (16 MHz) is used.
- nxp,tx-output-mode : operation mode of the TX output control logic:
<0x0> : bi-phase output mode
<0x1> : normal output mode (default)
<0x2> : test output mode
<0x3> : clock output mode
- nxp,tx-output-config : TX output pin configuration:
<0x01> : TX0 invert
<0x02> : TX0 pull-down (default)
<0x04> : TX0 pull-up
<0x06> : TX0 push-pull
<0x08> : TX1 invert
<0x10> : TX1 pull-down
<0x20> : TX1 pull-up
<0x30> : TX1 push-pull
- nxp,clock-out-frequency : clock frequency in Hz on the CLKOUT pin.
If not specified or if the specified value is 0, the CLKOUT pin
will be disabled.
- nxp,no-comparator-bypass : Allows to disable the CAN input comperator.
For futher information, please have a look to the SJA1000 data sheet.
Examples:
can@3,100 {
compatible = "nxp,sja1000";
reg = <3 0x100 0x80>;
interrupts = <2 0>;
interrupt-parent = <&mpic>;
nxp,external-clock-frequency = <16000000>;
};

View File

@ -1,575 +1,136 @@
rfkill - RF switch subsystem support rfkill - RF kill switch support
==================================== ===============================
1 Introduction 1. Introduction
2 Implementation details 2. Implementation details
3 Kernel driver guidelines 3. Kernel driver guidelines
3.1 wireless device drivers 4. Kernel API
3.2 platform/switch drivers 5. Userspace support
3.3 input device drivers
4 Kernel API
5 Userspace support
1. Introduction: 1. Introduction
The rfkill switch subsystem exists to add a generic interface to circuitry that The rfkill subsystem provides a generic interface to disabling any radio
can enable or disable the signal output of a wireless *transmitter* of any transmitter in the system. When a transmitter is blocked, it shall not
type. By far, the most common use is to disable radio-frequency transmitters. radiate any power.
Note that disabling the signal output means that the the transmitter is to be The subsystem also provides the ability to react on button presses and
made to not emit any energy when "blocked". rfkill is not about blocking data disable all transmitters of a certain type (or all). This is intended for
transmissions, it is about blocking energy emission. situations where transmitters need to be turned off, for example on
aircraft.
The rfkill subsystem offers support for keys and switches often found on
laptops to enable wireless devices like WiFi and Bluetooth, so that these keys
and switches actually perform an action in all wireless devices of a given type
attached to the system.
The buttons to enable and disable the wireless transmitters are important in
situations where the user is for example using his laptop on a location where
radio-frequency transmitters _must_ be disabled (e.g. airplanes).
Because of this requirement, userspace support for the keys should not be made 2. Implementation details
mandatory. Because userspace might want to perform some additional smarter
tasks when the key is pressed, rfkill provides userspace the possibility to
take over the task to handle the key events.
===============================================================================
2: Implementation details
The rfkill subsystem is composed of various components: the rfkill class, the The rfkill subsystem is composed of various components: the rfkill class, the
rfkill-input module (an input layer handler), and some specific input layer rfkill-input module (an input layer handler), and some specific input layer
events. events.
The rfkill class provides kernel drivers with an interface that allows them to The rfkill class is provided for kernel drivers to register their radio
know when they should enable or disable a wireless network device transmitter. transmitter with the kernel, provide methods for turning it on and off and,
This is enabled by the CONFIG_RFKILL Kconfig option. optionally, letting the system know about hardware-disabled states that may
be implemented on the device. This code is enabled with the CONFIG_RFKILL
Kconfig option, which drivers can "select".
The rfkill class support makes sure userspace will be notified of all state The rfkill class code also notifies userspace of state changes, this is
changes on rfkill devices through uevents. It provides a notification chain achieved via uevents. It also provides some sysfs files for userspace to
for interested parties in the kernel to also get notified of rfkill state check the status of radio transmitters. See the "Userspace support" section
changes in other drivers. It creates several sysfs entries which can be used below.
by userspace. See section "Userspace support".
The rfkill-input module provides the kernel with the ability to implement a
basic response when the user presses a key or button (or toggles a switch)
related to rfkill functionality. It is an in-kernel implementation of default
policy of reacting to rfkill-related input events and neither mandatory nor
required for wireless drivers to operate. It is enabled by the
CONFIG_RFKILL_INPUT Kconfig option.
rfkill-input is a rfkill-related events input layer handler. This handler will The rfkill-input code implements a basic response to rfkill buttons -- it
listen to all rfkill key events and will change the rfkill state of the implements turning on/off all devices of a certain class (or all).
wireless devices accordingly. With this option enabled userspace could either
do nothing or simply perform monitoring tasks.
The rfkill-input module also provides EPO (emergency power-off) functionality When the device is hard-blocked (either by a call to rfkill_set_hw_state()
for all wireless transmitters. This function cannot be overridden, and it is or from query_hw_block) set_block() will be invoked but drivers can well
always active. rfkill EPO is related to *_RFKILL_ALL input layer events. ignore the method call since they can use the return value of the function
rfkill_set_hw_state() to sync the software state instead of keeping track
of calls to set_block().
Important terms for the rfkill subsystem: The entire functionality is spread over more than one subsystem:
In order to avoid confusion, we avoid the term "switch" in rfkill when it is * The kernel input layer generates KEY_WWAN, KEY_WLAN etc. and
referring to an electronic control circuit that enables or disables a SW_RFKILL_ALL -- when the user presses a button. Drivers for radio
transmitter. We reserve it for the physical device a human manipulates transmitters generally do not register to the input layer, unless the
(which is an input device, by the way): device really provides an input device (i.e. a button that has no
effect other than generating a button press event)
rfkill switch: * The rfkill-input code hooks up to these events and switches the soft-block
of the various radio transmitters, depending on the button type.
A physical device a human manipulates. Its state can be perceived by * The rfkill drivers turn off/on their transmitters as requested.
the kernel either directly (through a GPIO pin, ACPI GPE) or by its
effect on a rfkill line of a wireless device.
rfkill controller: * The rfkill class will generate userspace notifications (uevents) to tell
userspace what the current state is.
A hardware circuit that controls the state of a rfkill line, which a
kernel driver can interact with *to modify* that state (i.e. it has
either write-only or read/write access).
rfkill line:
An input channel (hardware or software) of a wireless device, which 3. Kernel driver guidelines
causes a wireless transmitter to stop emitting energy (BLOCK) when it
is active. Point of view is extremely important here: rfkill lines are
always seen from the PoV of a wireless device (and its driver).
soft rfkill line/software rfkill line:
A rfkill line the wireless device driver can directly change the state Drivers for radio transmitters normally implement only the rfkill class.
of. Related to rfkill_state RFKILL_STATE_SOFT_BLOCKED. These drivers may not unblock the transmitter based on own decisions, they
should act on information provided by the rfkill class only.
hard rfkill line/hardware rfkill line: Platform drivers might implement input devices if the rfkill button is just
that, a button. If that button influences the hardware then you need to
implement an rfkill class instead. This also applies if the platform provides
a way to turn on/off the transmitter(s).
A rfkill line that works fully in hardware or firmware, and that cannot During suspend/hibernation, transmitters should only be left enabled when
be overridden by the kernel driver. The hardware device or the wake-on wlan or similar functionality requires it and the device wasn't
firmware just exports its status to the driver, but it is read-only. blocked before suspend/hibernate. Note that it may be necessary to update
Related to rfkill_state RFKILL_STATE_HARD_BLOCKED. the rfkill subsystem's idea of what the current state is at resume time if
the state may have changed over suspend.
The enum rfkill_state describes the rfkill state of a transmitter:
When a rfkill line or rfkill controller is in the RFKILL_STATE_UNBLOCKED state,
the wireless transmitter (radio TX circuit for example) is *enabled*. When the
it is in the RFKILL_STATE_SOFT_BLOCKED or RFKILL_STATE_HARD_BLOCKED, the
wireless transmitter is to be *blocked* from operating.
RFKILL_STATE_SOFT_BLOCKED indicates that a call to toggle_radio() can change 4. Kernel API
that state. RFKILL_STATE_HARD_BLOCKED indicates that a call to toggle_radio()
will not be able to change the state and will return with a suitable error if
attempts are made to set the state to RFKILL_STATE_UNBLOCKED.
RFKILL_STATE_HARD_BLOCKED is used by drivers to signal that the device is
locked in the BLOCKED state by a hardwire rfkill line (typically an input pin
that, when active, forces the transmitter to be disabled) which the driver
CANNOT override.
Full rfkill functionality requires two different subsystems to cooperate: the
input layer and the rfkill class. The input layer issues *commands* to the
entire system requesting that devices registered to the rfkill class change
state. The way this interaction happens is not complex, but it is not obvious
either:
Kernel Input layer:
* Generates KEY_WWAN, KEY_WLAN, KEY_BLUETOOTH, SW_RFKILL_ALL, and
other such events when the user presses certain keys, buttons, or
toggles certain physical switches.
THE INPUT LAYER IS NEVER USED TO PROPAGATE STATUS, NOTIFICATIONS OR THE
KIND OF STUFF AN ON-SCREEN-DISPLAY APPLICATION WOULD REPORT. It is
used to issue *commands* for the system to change behaviour, and these
commands may or may not be carried out by some kernel driver or
userspace application. It follows that doing user feedback based only
on input events is broken, as there is no guarantee that an input event
will be acted upon.
Most wireless communication device drivers implementing rfkill
functionality MUST NOT generate these events, and have no reason to
register themselves with the input layer. Doing otherwise is a common
misconception. There is an API to propagate rfkill status change
information, and it is NOT the input layer.
rfkill class:
* Calls a hook in a driver to effectively change the wireless
transmitter state;
* Keeps track of the wireless transmitter state (with help from
the driver);
* Generates userspace notifications (uevents) and a call to a
notification chain (kernel) when there is a wireless transmitter
state change;
* Connects a wireless communications driver with the common rfkill
control system, which, for example, allows actions such as
"switch all bluetooth devices offline" to be carried out by
userspace or by rfkill-input.
THE RFKILL CLASS NEVER ISSUES INPUT EVENTS. THE RFKILL CLASS DOES
NOT LISTEN TO INPUT EVENTS. NO DRIVER USING THE RFKILL CLASS SHALL
EVER LISTEN TO, OR ACT ON RFKILL INPUT EVENTS. Doing otherwise is
a layering violation.
Most wireless data communication drivers in the kernel have just to
implement the rfkill class API to work properly. Interfacing to the
input layer is not often required (and is very often a *bug*) on
wireless drivers.
Platform drivers often have to attach to the input layer to *issue*
(but never to listen to) rfkill events for rfkill switches, and also to
the rfkill class to export a control interface for the platform rfkill
controllers to the rfkill subsystem. This does NOT mean the rfkill
switch is attached to a rfkill class (doing so is almost always wrong).
It just means the same kernel module is the driver for different
devices (rfkill switches and rfkill controllers).
Userspace input handlers (uevents) or kernel input handlers (rfkill-input):
* Implements the policy of what should happen when one of the input
layer events related to rfkill operation is received.
* Uses the sysfs interface (userspace) or private rfkill API calls
to tell the devices registered with the rfkill class to change
their state (i.e. translates the input layer event into real
action).
* rfkill-input implements EPO by handling EV_SW SW_RFKILL_ALL 0
(power off all transmitters) in a special way: it ignores any
overrides and local state cache and forces all transmitters to the
RFKILL_STATE_SOFT_BLOCKED state (including those which are already
supposed to be BLOCKED).
* rfkill EPO will remain active until rfkill-input receives an
EV_SW SW_RFKILL_ALL 1 event. While the EPO is active, transmitters
are locked in the blocked state (rfkill will refuse to unblock them).
* rfkill-input implements different policies that the user can
select for handling EV_SW SW_RFKILL_ALL 1. It will unlock rfkill,
and either do nothing (leave transmitters blocked, but now unlocked),
restore the transmitters to their state before the EPO, or unblock
them all.
Userspace uevent handler or kernel platform-specific drivers hooked to the
rfkill notifier chain:
* Taps into the rfkill notifier chain or to KOBJ_CHANGE uevents,
in order to know when a device that is registered with the rfkill
class changes state;
* Issues feedback notifications to the user;
* In the rare platforms where this is required, synthesizes an input
event to command all *OTHER* rfkill devices to also change their
statues when a specific rfkill device changes state.
===============================================================================
3: Kernel driver guidelines
Remember: point-of-view is everything for a driver that connects to the rfkill
subsystem. All the details below must be measured/perceived from the point of
view of the specific driver being modified.
The first thing one needs to know is whether his driver should be talking to
the rfkill class or to the input layer. In rare cases (platform drivers), it
could happen that you need to do both, as platform drivers often handle a
variety of devices in the same driver.
Do not mistake input devices for rfkill controllers. The only type of "rfkill
switch" device that is to be registered with the rfkill class are those
directly controlling the circuits that cause a wireless transmitter to stop
working (or the software equivalent of them), i.e. what we call a rfkill
controller. Every other kind of "rfkill switch" is just an input device and
MUST NOT be registered with the rfkill class.
A driver should register a device with the rfkill class when ALL of the
following conditions are met (they define a rfkill controller):
1. The device is/controls a data communications wireless transmitter;
2. The kernel can interact with the hardware/firmware to CHANGE the wireless
transmitter state (block/unblock TX operation);
3. The transmitter can be made to not emit any energy when "blocked":
rfkill is not about blocking data transmissions, it is about blocking
energy emission;
A driver should register a device with the input subsystem to issue
rfkill-related events (KEY_WLAN, KEY_BLUETOOTH, KEY_WWAN, KEY_WIMAX,
SW_RFKILL_ALL, etc) when ALL of the folowing conditions are met:
1. It is directly related to some physical device the user interacts with, to
command the O.S./firmware/hardware to enable/disable a data communications
wireless transmitter.
Examples of the physical device are: buttons, keys and switches the user
will press/touch/slide/switch to enable or disable the wireless
communication device.
2. It is NOT slaved to another device, i.e. there is no other device that
issues rfkill-related input events in preference to this one.
Please refer to the corner cases and examples section for more details.
When in doubt, do not issue input events. For drivers that should generate
input events in some platforms, but not in others (e.g. b43), the best solution
is to NEVER generate input events in the first place. That work should be
deferred to a platform-specific kernel module (which will know when to generate
events through the rfkill notifier chain) or to userspace. This avoids the
usual maintenance problems with DMI whitelisting.
Corner cases and examples:
====================================
1. If the device is an input device that, because of hardware or firmware,
causes wireless transmitters to be blocked regardless of the kernel's will, it
is still just an input device, and NOT to be registered with the rfkill class.
2. If the wireless transmitter switch control is read-only, it is an input
device and not to be registered with the rfkill class (and maybe not to be made
an input layer event source either, see below).
3. If there is some other device driver *closer* to the actual hardware the
user interacted with (the button/switch/key) to issue an input event, THAT is
the device driver that should be issuing input events.
E.g:
[RFKILL slider switch] -- [GPIO hardware] -- [WLAN card rf-kill input]
(platform driver) (wireless card driver)
The user is closer to the RFKILL slide switch plaform driver, so the driver
which must issue input events is the platform driver looking at the GPIO
hardware, and NEVER the wireless card driver (which is just a slave). It is
very likely that there are other leaves than just the WLAN card rf-kill input
(e.g. a bluetooth card, etc)...
On the other hand, some embedded devices do this:
[RFKILL slider switch] -- [WLAN card rf-kill input]
(wireless card driver)
In this situation, the wireless card driver *could* register itself as an input
device and issue rf-kill related input events... but in order to AVOID the need
for DMI whitelisting, the wireless card driver does NOT do it. Userspace (HAL)
or a platform driver (that exists only on these embedded devices) will do the
dirty job of issuing the input events.
COMMON MISTAKES in kernel drivers, related to rfkill:
====================================
1. NEVER confuse input device keys and buttons with input device switches.
1a. Switches are always set or reset. They report the current state
(on position or off position).
1b. Keys and buttons are either in the pressed or not-pressed state, and
that's it. A "button" that latches down when you press it, and
unlatches when you press it again is in fact a switch as far as input
devices go.
Add the SW_* events you need for switches, do NOT try to emulate a button using
KEY_* events just because there is no such SW_* event yet. Do NOT try to use,
for example, KEY_BLUETOOTH when you should be using SW_BLUETOOTH instead.
2. Input device switches (sources of EV_SW events) DO store their current state
(so you *must* initialize it by issuing a gratuitous input layer event on
driver start-up and also when resuming from sleep), and that state CAN be
queried from userspace through IOCTLs. There is no sysfs interface for this,
but that doesn't mean you should break things trying to hook it to the rfkill
class to get a sysfs interface :-)
3. Do not issue *_RFKILL_ALL events by default, unless you are sure it is the
correct event for your switch/button. These events are emergency power-off
events when they are trying to turn the transmitters off. An example of an
input device which SHOULD generate *_RFKILL_ALL events is the wireless-kill
switch in a laptop which is NOT a hotkey, but a real sliding/rocker switch.
An example of an input device which SHOULD NOT generate *_RFKILL_ALL events by
default, is any sort of hot key that is type-specific (e.g. the one for WLAN).
3.1 Guidelines for wireless device drivers
------------------------------------------
(in this text, rfkill->foo means the foo field of struct rfkill).
1. Each independent transmitter in a wireless device (usually there is only one
transmitter per device) should have a SINGLE rfkill class attached to it.
2. If the device does not have any sort of hardware assistance to allow the
driver to rfkill the device, the driver should emulate it by taking all actions
required to silence the transmitter.
3. If it is impossible to silence the transmitter (i.e. it still emits energy,
even if it is just in brief pulses, when there is no data to transmit and there
is no hardware support to turn it off) do NOT lie to the users. Do not attach
it to a rfkill class. The rfkill subsystem does not deal with data
transmission, it deals with energy emission. If the transmitter is emitting
energy, it is not blocked in rfkill terms.
4. It doesn't matter if the device has multiple rfkill input lines affecting
the same transmitter, their combined state is to be exported as a single state
per transmitter (see rule 1).
This rule exists because users of the rfkill subsystem expect to get (and set,
when possible) the overall transmitter rfkill state, not of a particular rfkill
line.
5. The wireless device driver MUST NOT leave the transmitter enabled during
suspend and hibernation unless:
5.1. The transmitter has to be enabled for some sort of functionality
like wake-on-wireless-packet or autonomous packed forwarding in a mesh
network, and that functionality is enabled for this suspend/hibernation
cycle.
AND
5.2. The device was not on a user-requested BLOCKED state before
the suspend (i.e. the driver must NOT unblock a device, not even
to support wake-on-wireless-packet or remain in the mesh).
In other words, there is absolutely no allowed scenario where a driver can
automatically take action to unblock a rfkill controller (obviously, this deals
with scenarios where soft-blocking or both soft and hard blocking is happening.
Scenarios where hardware rfkill lines are the only ones blocking the
transmitter are outside of this rule, since the wireless device driver does not
control its input hardware rfkill lines in the first place).
6. During resume, rfkill will try to restore its previous state.
7. After a rfkill class is suspended, it will *not* call rfkill->toggle_radio
until it is resumed.
Example of a WLAN wireless driver connected to the rfkill subsystem:
--------------------------------------------------------------------
A certain WLAN card has one input pin that causes it to block the transmitter
and makes the status of that input pin available (only for reading!) to the
kernel driver. This is a hard rfkill input line (it cannot be overridden by
the kernel driver).
The card also has one PCI register that, if manipulated by the driver, causes
it to block the transmitter. This is a soft rfkill input line.
It has also a thermal protection circuitry that shuts down its transmitter if
the card overheats, and makes the status of that protection available (only for
reading!) to the kernel driver. This is also a hard rfkill input line.
If either one of these rfkill lines are active, the transmitter is blocked by
the hardware and forced offline.
The driver should allocate and attach to its struct device *ONE* instance of
the rfkill class (there is only one transmitter).
It can implement the get_state() hook, and return RFKILL_STATE_HARD_BLOCKED if
either one of its two hard rfkill input lines are active. If the two hard
rfkill lines are inactive, it must return RFKILL_STATE_SOFT_BLOCKED if its soft
rfkill input line is active. Only if none of the rfkill input lines are
active, will it return RFKILL_STATE_UNBLOCKED.
Since the device has a hardware rfkill line, it IS subject to state changes
external to rfkill. Therefore, the driver must make sure that it calls
rfkill_force_state() to keep the status always up-to-date, and it must do a
rfkill_force_state() on resume from sleep.
Every time the driver gets a notification from the card that one of its rfkill
lines changed state (polling might be needed on badly designed cards that don't
generate interrupts for such events), it recomputes the rfkill state as per
above, and calls rfkill_force_state() to update it.
The driver should implement the toggle_radio() hook, that:
1. Returns an error if one of the hardware rfkill lines are active, and the
caller asked for RFKILL_STATE_UNBLOCKED.
2. Activates the soft rfkill line if the caller asked for state
RFKILL_STATE_SOFT_BLOCKED. It should do this even if one of the hard rfkill
lines are active, effectively double-blocking the transmitter.
3. Deactivates the soft rfkill line if none of the hardware rfkill lines are
active and the caller asked for RFKILL_STATE_UNBLOCKED.
===============================================================================
4: Kernel API
To build a driver with rfkill subsystem support, the driver should depend on To build a driver with rfkill subsystem support, the driver should depend on
(or select) the Kconfig symbol RFKILL; it should _not_ depend on RKFILL_INPUT. (or select) the Kconfig symbol RFKILL.
The hardware the driver talks to may be write-only (where the current state The hardware the driver talks to may be write-only (where the current state
of the hardware is unknown), or read-write (where the hardware can be queried of the hardware is unknown), or read-write (where the hardware can be queried
about its current state). about its current state).
The rfkill class will call the get_state hook of a device every time it needs Calling rfkill_set_hw_state() when a state change happens is required from
to know the *real* current state of the hardware. This can happen often, but rfkill drivers that control devices that can be hard-blocked unless they also
it does not do any polling, so it is not enough on hardware that is subject assign the poll_hw_block() callback (then the rfkill core will poll the
to state changes outside of the rfkill subsystem. device). Don't do this unless you cannot get the event in any other way.
Therefore, calling rfkill_force_state() when a state change happens is
mandatory when the device has a hardware rfkill line, or when something else
like the firmware could cause its state to be changed without going through the
rfkill class.
Some hardware provides events when its status changes. In these cases, it is
best for the driver to not provide a get_state hook, and instead register the
rfkill class *already* with the correct status, and keep it updated using
rfkill_force_state() when it gets an event from the hardware.
rfkill_force_state() must be used on the device resume handlers to update the 5. Userspace support
rfkill status, should there be any chance of the device status changing during
the sleep.
There is no provision for a statically-allocated rfkill struct. You must The following sysfs entries exist for every rfkill device:
use rfkill_allocate() to allocate one.
You should:
- rfkill_allocate()
- modify rfkill fields (flags, name)
- modify state to the current hardware state (THIS IS THE ONLY TIME
YOU CAN ACCESS state DIRECTLY)
- rfkill_register()
The only way to set a device to the RFKILL_STATE_HARD_BLOCKED state is through
a suitable return of get_state() or through rfkill_force_state().
When a device is in the RFKILL_STATE_HARD_BLOCKED state, the only way to switch
it to a different state is through a suitable return of get_state() or through
rfkill_force_state().
If toggle_radio() is called to set a device to state RFKILL_STATE_SOFT_BLOCKED
when that device is already at the RFKILL_STATE_HARD_BLOCKED state, it should
not return an error. Instead, it should try to double-block the transmitter,
so that its state will change from RFKILL_STATE_HARD_BLOCKED to
RFKILL_STATE_SOFT_BLOCKED should the hardware blocking cease.
Please refer to the source for more documentation.
===============================================================================
5: Userspace support
rfkill devices issue uevents (with an action of "change"), with the following
environment variables set:
RFKILL_NAME
RFKILL_STATE
RFKILL_TYPE
The ABI for these variables is defined by the sysfs attributes. It is best
to take a quick look at the source to make sure of the possible values.
It is expected that HAL will trap those, and bridge them to DBUS, etc. These
events CAN and SHOULD be used to give feedback to the user about the rfkill
status of the system.
Input devices may issue events that are related to rfkill. These are the
various KEY_* events and SW_* events supported by rfkill-input.c.
******IMPORTANT******
When rfkill-input is ACTIVE, userspace is NOT TO CHANGE THE STATE OF AN RFKILL
SWITCH IN RESPONSE TO AN INPUT EVENT also handled by rfkill-input, unless it
has set to true the user_claim attribute for that particular switch. This rule
is *absolute*; do NOT violate it.
******IMPORTANT******
Userspace must not assume it is the only source of control for rfkill switches.
Their state CAN and WILL change due to firmware actions, direct user actions,
and the rfkill-input EPO override for *_RFKILL_ALL.
When rfkill-input is not active, userspace must initiate a rfkill status
change by writing to the "state" attribute in order for anything to happen.
Take particular care to implement EV_SW SW_RFKILL_ALL properly. When that
switch is set to OFF, *every* rfkill device *MUST* be immediately put into the
RFKILL_STATE_SOFT_BLOCKED state, no questions asked.
The following sysfs entries will be created:
name: Name assigned by driver to this key (interface or driver name). name: Name assigned by driver to this key (interface or driver name).
type: Name of the key type ("wlan", "bluetooth", etc). type: Name of the key type ("wlan", "bluetooth", etc).
state: Current state of the transmitter state: Current state of the transmitter
0: RFKILL_STATE_SOFT_BLOCKED 0: RFKILL_STATE_SOFT_BLOCKED
transmitter is forced off, but one can override it transmitter is turned off by software
by a write to the state attribute;
1: RFKILL_STATE_UNBLOCKED 1: RFKILL_STATE_UNBLOCKED
transmiter is NOT forced off, and may operate if transmitter is (potentially) active
all other conditions for such operation are met
(such as interface is up and configured, etc);
2: RFKILL_STATE_HARD_BLOCKED 2: RFKILL_STATE_HARD_BLOCKED
transmitter is forced off by something outside of transmitter is forced off by something outside of
the driver's control. One cannot set a device to the driver's control.
this state through writes to the state attribute; claim: 0: Kernel handles events (currently always reads that value)
claim: 1: Userspace handles events, 0: Kernel handles events
Both the "state" and "claim" entries are also writable. For the "state" entry rfkill devices also issue uevents (with an action of "change"), with the
this means that when 1 or 0 is written, the device rfkill state (if not yet in following environment variables set:
the requested state), will be will be toggled accordingly.
For the "claim" entry writing 1 to it means that the kernel no longer handles RFKILL_NAME
key events even though RFKILL_INPUT input was enabled. When "claim" has been RFKILL_STATE
set to 0, userspace should make sure that it listens for the input events or RFKILL_TYPE
check the sysfs "state" entry regularly to correctly perform the required tasks
when the rkfill key is pressed.
A note about input devices and EV_SW events: The contents of these variables corresponds to the "name", "state" and
"type" sysfs files explained above.
In order to know the current state of an input device switch (like An alternative userspace interface exists as a misc device /dev/rfkill,
SW_RFKILL_ALL), you will need to use an IOCTL. That information is not which allows userspace to obtain and set the state of rfkill devices and
available through sysfs in a generic way at this time, and it is not available sets of devices. It also notifies userspace about device addition and
through the rfkill class AT ALL. removal. The API is a simple read/write API that is defined in
linux/rfkill.h.

View File

@ -157,9 +157,10 @@ S: Maintained
F: drivers/net/r8169.c F: drivers/net/r8169.c
8250/16?50 (AND CLONE UARTS) SERIAL DRIVER 8250/16?50 (AND CLONE UARTS) SERIAL DRIVER
P: Alan Cox
M: alan@lxorguk.ukuu.org.uk
L: linux-serial@vger.kernel.org L: linux-serial@vger.kernel.org
W: http://serial.sourceforge.net W: http://serial.sourceforge.net
M: alan@lxorguk.ukuu.org.uk
S: Odd Fixes S: Odd Fixes
F: drivers/serial/8250* F: drivers/serial/8250*
F: include/linux/serial_8250.h F: include/linux/serial_8250.h
@ -947,6 +948,12 @@ P: Luis R. Rodriguez
M: lrodriguez@atheros.com M: lrodriguez@atheros.com
P: Jouni Malinen P: Jouni Malinen
M: jmalinen@atheros.com M: jmalinen@atheros.com
P: Sujith Manoharan
M: Sujith.Manoharan@atheros.com
P: Vasanthakumar Thiagarajan
M: vasanth@atheros.com
P: Senthil Balasubramanian
M: senthilkumar@atheros.com
L: linux-wireless@vger.kernel.org L: linux-wireless@vger.kernel.org
L: ath9k-devel@lists.ath9k.org L: ath9k-devel@lists.ath9k.org
S: Supported S: Supported
@ -1339,6 +1346,13 @@ F: drivers/net/can/
F: include/linux/can/ F: include/linux/can/
F: include/linux/can.h F: include/linux/can.h
CAN NETWORK DRIVERS
P: Wolfgang Grandegger
M: wg@grandegger.com
L: socketcan-core@lists.berlios.de (subscribers-only)
W: http://developer.berlios.de/projects/socketcan/
S: Maintained
CELL BROADBAND ENGINE ARCHITECTURE CELL BROADBAND ENGINE ARCHITECTURE
P: Arnd Bergmann P: Arnd Bergmann
M: arnd@arndb.de M: arnd@arndb.de
@ -2843,6 +2857,18 @@ L: linux1394-devel@lists.sourceforge.net
S: Maintained S: Maintained
F: drivers/ieee1394/raw1394* F: drivers/ieee1394/raw1394*
IEEE 802.15.4 SUBSYSTEM
P: Dmitry Eremin-Solenikov
M: dbaryshkov@gmail.com
P: Sergey Lapin
M: slapin@ossfans.org
L: linux-zigbee-devel@lists.sourceforge.net
W: http://apps.sourceforge.net/trac/linux-zigbee
T: git git://git.kernel.org/pub/scm/linux/kernel/git/lumag/lowpan.git
S: Maintained
F: net/ieee802154/
F: drivers/ieee801254/
INTEGRITY MEASUREMENT ARCHITECTURE (IMA) INTEGRITY MEASUREMENT ARCHITECTURE (IMA)
P: Mimi Zohar P: Mimi Zohar
M: zohar@us.ibm.com M: zohar@us.ibm.com
@ -3136,6 +3162,7 @@ M: samuel@sortiz.org
L: irda-users@lists.sourceforge.net (subscribers-only) L: irda-users@lists.sourceforge.net (subscribers-only)
W: http://irda.sourceforge.net/ W: http://irda.sourceforge.net/
S: Maintained S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/sameo/irda-2.6.git
F: Documentation/networking/irda.txt F: Documentation/networking/irda.txt
F: drivers/net/irda/ F: drivers/net/irda/
F: include/net/irda/ F: include/net/irda/
@ -4621,8 +4648,8 @@ S: Maintained
F: drivers/ata/sata_promise.* F: drivers/ata/sata_promise.*
PS3 NETWORK SUPPORT PS3 NETWORK SUPPORT
P: Masakazu Mokuno P: Geoff Levand
M: mokuno@sm.sony.co.jp M: geoffrey.levand@am.sony.com
L: netdev@vger.kernel.org L: netdev@vger.kernel.org
L: cbe-oss-dev@ozlabs.org L: cbe-oss-dev@ozlabs.org
S: Supported S: Supported
@ -4823,7 +4850,7 @@ F: drivers/net/r6040.c
RDS - RELIABLE DATAGRAM SOCKETS RDS - RELIABLE DATAGRAM SOCKETS
P: Andy Grover P: Andy Grover
M: andy.grover@oracle.com M: andy.grover@oracle.com
L: rds-devel@oss.oracle.com L: rds-devel@oss.oracle.com (moderated for non-subscribers)
S: Supported S: Supported
F: net/rds/ F: net/rds/
@ -4863,9 +4890,9 @@ S: Supported
F: fs/reiserfs/ F: fs/reiserfs/
RFKILL RFKILL
P: Ivo van Doorn P: Johannes Berg
M: IvDoorn@gmail.com M: johannes@sipsolutions.net
L: netdev@vger.kernel.org L: linux-wireless@vger.kernel.org
S: Maintained S: Maintained
F Documentation/rfkill.txt F Documentation/rfkill.txt
F: net/rfkill/ F: net/rfkill/

View File

@ -120,4 +120,6 @@
#define EOWNERDEAD 136 /* Owner died */ #define EOWNERDEAD 136 /* Owner died */
#define ENOTRECOVERABLE 137 /* State not recoverable */ #define ENOTRECOVERABLE 137 /* State not recoverable */
#define ERFKILL 138 /* Operation not possible due to RF-kill */
#endif #endif

View File

@ -536,7 +536,7 @@ setup_rt_frame(int usig, struct k_sigaction *ka, siginfo_t *info,
return err; return err;
} }
static inline void restart_syscall(struct pt_regs *regs) static inline void setup_syscall_restart(struct pt_regs *regs)
{ {
regs->ARM_r0 = regs->ARM_ORIG_r0; regs->ARM_r0 = regs->ARM_ORIG_r0;
regs->ARM_pc -= thumb_mode(regs) ? 2 : 4; regs->ARM_pc -= thumb_mode(regs) ? 2 : 4;
@ -571,7 +571,7 @@ handle_signal(unsigned long sig, struct k_sigaction *ka,
} }
/* fallthrough */ /* fallthrough */
case -ERESTARTNOINTR: case -ERESTARTNOINTR:
restart_syscall(regs); setup_syscall_restart(regs);
} }
} }
@ -695,7 +695,7 @@ static int do_signal(sigset_t *oldset, struct pt_regs *regs, int syscall)
if (regs->ARM_r0 == -ERESTARTNOHAND || if (regs->ARM_r0 == -ERESTARTNOHAND ||
regs->ARM_r0 == -ERESTARTSYS || regs->ARM_r0 == -ERESTARTSYS ||
regs->ARM_r0 == -ERESTARTNOINTR) { regs->ARM_r0 == -ERESTARTNOINTR) {
restart_syscall(regs); setup_syscall_restart(regs);
} }
} }
single_step_set(current); single_step_set(current);

View File

@ -35,21 +35,25 @@ static void tosa_bt_off(struct tosa_bt_data *data)
gpio_set_value(data->gpio_reset, 0); gpio_set_value(data->gpio_reset, 0);
} }
static int tosa_bt_toggle_radio(void *data, enum rfkill_state state) static int tosa_bt_set_block(void *data, bool blocked)
{ {
pr_info("BT_RADIO going: %s\n", pr_info("BT_RADIO going: %s\n", blocked ? "off" : "on");
state == RFKILL_STATE_ON ? "on" : "off");
if (state == RFKILL_STATE_ON) { if (!blocked) {
pr_info("TOSA_BT: going ON\n"); pr_info("TOSA_BT: going ON\n");
tosa_bt_on(data); tosa_bt_on(data);
} else { } else {
pr_info("TOSA_BT: going OFF\n"); pr_info("TOSA_BT: going OFF\n");
tosa_bt_off(data); tosa_bt_off(data);
} }
return 0; return 0;
} }
static const struct rfkill_ops tosa_bt_rfkill_ops = {
.set_block = tosa_bt_set_block,
};
static int tosa_bt_probe(struct platform_device *dev) static int tosa_bt_probe(struct platform_device *dev)
{ {
int rc; int rc;
@ -70,18 +74,14 @@ static int tosa_bt_probe(struct platform_device *dev)
if (rc) if (rc)
goto err_pwr_dir; goto err_pwr_dir;
rfk = rfkill_allocate(&dev->dev, RFKILL_TYPE_BLUETOOTH); rfk = rfkill_alloc("tosa-bt", &dev->dev, RFKILL_TYPE_BLUETOOTH,
&tosa_bt_rfkill_ops, data);
if (!rfk) { if (!rfk) {
rc = -ENOMEM; rc = -ENOMEM;
goto err_rfk_alloc; goto err_rfk_alloc;
} }
rfk->name = "tosa-bt"; rfkill_set_led_trigger_name(rfk, "tosa-bt");
rfk->toggle_radio = tosa_bt_toggle_radio;
rfk->data = data;
#ifdef CONFIG_RFKILL_LEDS
rfk->led_trigger.name = "tosa-bt";
#endif
rc = rfkill_register(rfk); rc = rfkill_register(rfk);
if (rc) if (rc)
@ -92,9 +92,7 @@ static int tosa_bt_probe(struct platform_device *dev)
return 0; return 0;
err_rfkill: err_rfkill:
if (rfk) rfkill_destroy(rfk);
rfkill_free(rfk);
rfk = NULL;
err_rfk_alloc: err_rfk_alloc:
tosa_bt_off(data); tosa_bt_off(data);
err_pwr_dir: err_pwr_dir:
@ -113,8 +111,10 @@ static int __devexit tosa_bt_remove(struct platform_device *dev)
platform_set_drvdata(dev, NULL); platform_set_drvdata(dev, NULL);
if (rfk) if (rfk) {
rfkill_unregister(rfk); rfkill_unregister(rfk);
rfkill_destroy(rfk);
}
rfk = NULL; rfk = NULL;
tosa_bt_off(data); tosa_bt_off(data);

View File

@ -31,7 +31,6 @@
#include <linux/input.h> #include <linux/input.h>
#include <linux/gpio.h> #include <linux/gpio.h>
#include <linux/pda_power.h> #include <linux/pda_power.h>
#include <linux/rfkill.h>
#include <linux/spi/spi.h> #include <linux/spi/spi.h>
#include <asm/setup.h> #include <asm/setup.h>

View File

@ -212,7 +212,7 @@ out:
return err; return err;
} }
static inline void restart_syscall(struct pt_regs *regs) static inline void setup_syscall_restart(struct pt_regs *regs)
{ {
if (regs->r12 == -ERESTART_RESTARTBLOCK) if (regs->r12 == -ERESTART_RESTARTBLOCK)
regs->r8 = __NR_restart_syscall; regs->r8 = __NR_restart_syscall;
@ -296,7 +296,7 @@ int do_signal(struct pt_regs *regs, sigset_t *oldset, int syscall)
} }
/* fall through */ /* fall through */
case -ERESTARTNOINTR: case -ERESTARTNOINTR:
restart_syscall(regs); setup_syscall_restart(regs);
} }
} }

View File

@ -6,59 +6,65 @@
mainmenu "Blackfin Kernel Configuration" mainmenu "Blackfin Kernel Configuration"
config MMU config MMU
bool def_bool n
default n
config FPU config FPU
bool def_bool n
default n
config RWSEM_GENERIC_SPINLOCK config RWSEM_GENERIC_SPINLOCK
bool def_bool y
default y
config RWSEM_XCHGADD_ALGORITHM config RWSEM_XCHGADD_ALGORITHM
bool def_bool n
default n
config BLACKFIN config BLACKFIN
bool def_bool y
default y select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_FUNCTION_TRACER
select HAVE_IDE select HAVE_IDE
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_BZIP2
select HAVE_KERNEL_LZMA
select HAVE_OPROFILE select HAVE_OPROFILE
select ARCH_WANT_OPTIONAL_GPIOLIB select ARCH_WANT_OPTIONAL_GPIOLIB
config GENERIC_BUG
def_bool y
depends on BUG
config ZONE_DMA config ZONE_DMA
bool def_bool y
default y
config GENERIC_FIND_NEXT_BIT config GENERIC_FIND_NEXT_BIT
bool def_bool y
default y
config GENERIC_HWEIGHT config GENERIC_HWEIGHT
bool def_bool y
default y
config GENERIC_HARDIRQS config GENERIC_HARDIRQS
bool def_bool y
default y
config GENERIC_IRQ_PROBE config GENERIC_IRQ_PROBE
bool def_bool y
default y
config GENERIC_GPIO config GENERIC_GPIO
bool def_bool y
default y
config FORCE_MAX_ZONEORDER config FORCE_MAX_ZONEORDER
int int
default "14" default "14"
config GENERIC_CALIBRATE_DELAY config GENERIC_CALIBRATE_DELAY
bool def_bool y
default y
config LOCKDEP_SUPPORT
def_bool y
config STACKTRACE_SUPPORT
def_bool y
config TRACE_IRQFLAGS_SUPPORT
def_bool y
source "init/Kconfig" source "init/Kconfig"
@ -408,12 +414,12 @@ comment "Clock/PLL Setup"
config CLKIN_HZ config CLKIN_HZ
int "Frequency of the crystal on the board in Hz" int "Frequency of the crystal on the board in Hz"
default "11059200" if BFIN533_STAMP
default "27000000" if BFIN533_EZKIT
default "25000000" if (BFIN537_STAMP || BFIN527_EZKIT || H8606_HVSISTEMAS || BLACKSTAMP || BFIN526_EZBRD || BFIN538_EZKIT || BFIN518F-EZBRD)
default "30000000" if BFIN561_EZKIT
default "24576000" if PNAV10
default "10000000" if BFIN532_IP0X default "10000000" if BFIN532_IP0X
default "11059200" if BFIN533_STAMP
default "24576000" if PNAV10
default "25000000" # most people use this
default "27000000" if BFIN533_EZKIT
default "30000000" if BFIN561_EZKIT
help help
The frequency of CLKIN crystal oscillator on the board in Hz. The frequency of CLKIN crystal oscillator on the board in Hz.
Warning: This value should match the crystal on the board. Otherwise, Warning: This value should match the crystal on the board. Otherwise,

View File

@ -137,7 +137,7 @@ archclean:
INSTALL_PATH ?= /tftpboot INSTALL_PATH ?= /tftpboot
boot := arch/$(ARCH)/boot boot := arch/$(ARCH)/boot
BOOT_TARGETS = vmImage BOOT_TARGETS = vmImage vmImage.bz2 vmImage.gz vmImage.lzma
PHONY += $(BOOT_TARGETS) install PHONY += $(BOOT_TARGETS) install
KBUILD_IMAGE := $(boot)/vmImage KBUILD_IMAGE := $(boot)/vmImage
@ -150,7 +150,10 @@ install:
$(Q)$(MAKE) $(build)=$(boot) BOOTIMAGE=$(KBUILD_IMAGE) install $(Q)$(MAKE) $(build)=$(boot) BOOTIMAGE=$(KBUILD_IMAGE) install
define archhelp define archhelp
echo '* vmImage - Kernel-only image for U-Boot (arch/$(ARCH)/boot/vmImage)' echo '* vmImage - Alias to selected kernel format (vmImage.gz by default)'
echo ' vmImage.bz2 - Kernel-only image for U-Boot (arch/$(ARCH)/boot/vmImage.bz2)'
echo '* vmImage.gz - Kernel-only image for U-Boot (arch/$(ARCH)/boot/vmImage.gz)'
echo ' vmImage.lzma - Kernel-only image for U-Boot (arch/$(ARCH)/boot/vmImage.lzma)'
echo ' install - Install kernel using' echo ' install - Install kernel using'
echo ' (your) ~/bin/$(CROSS_COMPILE)installkernel or' echo ' (your) ~/bin/$(CROSS_COMPILE)installkernel or'
echo ' (distribution) PATH: $(CROSS_COMPILE)installkernel or' echo ' (distribution) PATH: $(CROSS_COMPILE)installkernel or'

View File

@ -1 +1,2 @@
+vmImage vmImage*
vmlinux*

View File

@ -8,24 +8,41 @@
MKIMAGE := $(srctree)/scripts/mkuboot.sh MKIMAGE := $(srctree)/scripts/mkuboot.sh
targets := vmImage targets := vmImage vmImage.bz2 vmImage.gz vmImage.lzma
extra-y += vmlinux.bin vmlinux.gz extra-y += vmlinux.bin vmlinux.bin.gz vmlinux.bin.bz2 vmlinux.bin.lzma
quiet_cmd_uimage = UIMAGE $@ quiet_cmd_uimage = UIMAGE $@
cmd_uimage = $(CONFIG_SHELL) $(MKIMAGE) -A $(ARCH) -O linux -T kernel \ cmd_uimage = $(CONFIG_SHELL) $(MKIMAGE) -A $(ARCH) -O linux -T kernel \
-C gzip -n 'Linux-$(KERNELRELEASE)' -a $(CONFIG_BOOT_LOAD) \ -C $(2) -n 'Linux-$(KERNELRELEASE)' -a $(CONFIG_BOOT_LOAD) \
-e $(shell $(NM) vmlinux | awk '$$NF == "__start" {print $$1}') \ -e $(shell $(NM) vmlinux | awk '$$NF == "__start" {print $$1}') \
-d $< $@ -d $< $@
$(obj)/vmlinux.bin: vmlinux FORCE $(obj)/vmlinux.bin: vmlinux FORCE
$(call if_changed,objcopy) $(call if_changed,objcopy)
$(obj)/vmlinux.gz: $(obj)/vmlinux.bin FORCE $(obj)/vmlinux.bin.gz: $(obj)/vmlinux.bin FORCE
$(call if_changed,gzip) $(call if_changed,gzip)
$(obj)/vmImage: $(obj)/vmlinux.gz $(obj)/vmlinux.bin.bz2: $(obj)/vmlinux.bin FORCE
$(call if_changed,uimage) $(call if_changed,bzip2)
@$(kecho) 'Kernel: $@ is ready'
$(obj)/vmlinux.bin.lzma: $(obj)/vmlinux.bin FORCE
$(call if_changed,lzma)
$(obj)/vmImage.bz2: $(obj)/vmlinux.bin.bz2
$(call if_changed,uimage,bzip2)
$(obj)/vmImage.gz: $(obj)/vmlinux.bin.gz
$(call if_changed,uimage,gzip)
$(obj)/vmImage.lzma: $(obj)/vmlinux.bin.lzma
$(call if_changed,uimage,lzma)
suffix-$(CONFIG_KERNEL_GZIP) := gz
suffix-$(CONFIG_KERNEL_BZIP2) := bz2
suffix-$(CONFIG_KERNEL_LZMA) := lzma
$(obj)/vmImage: $(obj)/vmImage.$(suffix-y)
@ln -sf $(notdir $<) $@
install: install:
sh $(srctree)/$(src)/install.sh $(KERNELRELEASE) $(BOOTIMAGE) System.map "$(INSTALL_PATH)" sh $(srctree)/$(src)/install.sh $(KERNELRELEASE) $(BOOTIMAGE) System.map "$(INSTALL_PATH)"

View File

@ -90,7 +90,7 @@ static inline int atomic_test_mask(int mask, atomic_t *v)
static inline void atomic_add(int i, atomic_t *v) static inline void atomic_add(int i, atomic_t *v)
{ {
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter += i; v->counter += i;
@ -99,7 +99,7 @@ static inline void atomic_add(int i, atomic_t *v)
static inline void atomic_sub(int i, atomic_t *v) static inline void atomic_sub(int i, atomic_t *v)
{ {
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter -= i; v->counter -= i;
@ -110,7 +110,7 @@ static inline void atomic_sub(int i, atomic_t *v)
static inline int atomic_add_return(int i, atomic_t *v) static inline int atomic_add_return(int i, atomic_t *v)
{ {
int __temp = 0; int __temp = 0;
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter += i; v->counter += i;
@ -124,7 +124,7 @@ static inline int atomic_add_return(int i, atomic_t *v)
static inline int atomic_sub_return(int i, atomic_t *v) static inline int atomic_sub_return(int i, atomic_t *v)
{ {
int __temp = 0; int __temp = 0;
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter -= i; v->counter -= i;
@ -136,7 +136,7 @@ static inline int atomic_sub_return(int i, atomic_t *v)
static inline void atomic_inc(volatile atomic_t *v) static inline void atomic_inc(volatile atomic_t *v)
{ {
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter++; v->counter++;
@ -145,7 +145,7 @@ static inline void atomic_inc(volatile atomic_t *v)
static inline void atomic_dec(volatile atomic_t *v) static inline void atomic_dec(volatile atomic_t *v)
{ {
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter--; v->counter--;
@ -154,7 +154,7 @@ static inline void atomic_dec(volatile atomic_t *v)
static inline void atomic_clear_mask(unsigned int mask, atomic_t *v) static inline void atomic_clear_mask(unsigned int mask, atomic_t *v)
{ {
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter &= ~mask; v->counter &= ~mask;
@ -163,7 +163,7 @@ static inline void atomic_clear_mask(unsigned int mask, atomic_t *v)
static inline void atomic_set_mask(unsigned int mask, atomic_t *v) static inline void atomic_set_mask(unsigned int mask, atomic_t *v)
{ {
long flags; unsigned long flags;
local_irq_save_hw(flags); local_irq_save_hw(flags);
v->counter |= mask; v->counter |= mask;

View File

@ -31,7 +31,7 @@
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
#include <asm-generic/sections.h> #include <asm/sections.h>
#include <asm/ptrace.h> #include <asm/ptrace.h>
#include <asm/user.h> #include <asm/user.h>
#include <linux/linkage.h> #include <linux/linkage.h>
@ -99,15 +99,6 @@ extern const char bfin_board_name[];
extern unsigned long bfin_sic_iwr[]; extern unsigned long bfin_sic_iwr[];
extern unsigned vr_wakeup; extern unsigned vr_wakeup;
extern u16 _bfin_swrst; /* shadow for Software Reset Register (SWRST) */ extern u16 _bfin_swrst; /* shadow for Software Reset Register (SWRST) */
extern unsigned long _ramstart, _ramend, _rambase;
extern unsigned long memory_start, memory_end, physical_mem_end;
extern char _stext_l1[], _etext_l1[], _sdata_l1[], _edata_l1[], _sbss_l1[],
_ebss_l1[], _l1_lma_start[], _sdata_b_l1[], _sbss_b_l1[], _ebss_b_l1[],
_stext_l2[], _etext_l2[], _sdata_l2[], _edata_l2[], _sbss_l2[],
_ebss_l2[], _l2_lma_start[];
/* only used when MTD_UCLINUX */
extern unsigned long memory_mtd_start, memory_mtd_end, mtd_size;
#ifdef CONFIG_BFIN_ICACHE_LOCK #ifdef CONFIG_BFIN_ICACHE_LOCK
extern void cache_grab_lock(int way); extern void cache_grab_lock(int way);

View File

@ -109,7 +109,8 @@ static inline void clear_bit(int nr, volatile unsigned long *addr)
static inline void change_bit(int nr, volatile unsigned long *addr) static inline void change_bit(int nr, volatile unsigned long *addr)
{ {
int mask, flags; int mask;
unsigned long flags;
unsigned long *ADDR = (unsigned long *)addr; unsigned long *ADDR = (unsigned long *)addr;
ADDR += nr >> 5; ADDR += nr >> 5;

View File

@ -2,13 +2,58 @@
#define _BLACKFIN_BUG_H #define _BLACKFIN_BUG_H
#ifdef CONFIG_BUG #ifdef CONFIG_BUG
#define HAVE_ARCH_BUG
#define BUG() do { \ #define BFIN_BUG_OPCODE 0xefcd
dump_bfin_trace_buffer(); \
printk(KERN_EMERG "BUG: failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); \ #ifdef CONFIG_DEBUG_BUGVERBOSE
panic("BUG!"); \
} while (0) #define _BUG_OR_WARN(flags) \
asm volatile( \
"1: .hword %0\n" \
" .section __bug_table,\"a\",@progbits\n" \
"2: .long 1b\n" \
" .long %1\n" \
" .short %2\n" \
" .short %3\n" \
" .org 2b + %4\n" \
" .previous" \
: \
: "i"(BFIN_BUG_OPCODE), "i"(__FILE__), \
"i"(__LINE__), "i"(flags), \
"i"(sizeof(struct bug_entry)))
#else
#define _BUG_OR_WARN(flags) \
asm volatile( \
"1: .hword %0\n" \
" .section __bug_table,\"a\",@progbits\n" \
"2: .long 1b\n" \
" .short %1\n" \
" .org 2b + %2\n" \
" .previous" \
: \
: "i"(BFIN_BUG_OPCODE), "i"(flags), \
"i"(sizeof(struct bug_entry)))
#endif /* CONFIG_DEBUG_BUGVERBOSE */
#define BUG() \
do { \
_BUG_OR_WARN(0); \
for (;;); \
} while (0)
#define WARN_ON(condition) \
({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
_BUG_OR_WARN(BUGFLAG_WARNING); \
unlikely(__ret_warn_on); \
})
#define HAVE_ARCH_BUG
#define HAVE_ARCH_WARN_ON
#endif #endif

View File

@ -34,9 +34,13 @@
#define L1_CACHE_SHIFT_MAX 5 #define L1_CACHE_SHIFT_MAX 5
#if defined(CONFIG_SMP) && \ #if defined(CONFIG_SMP) && \
!defined(CONFIG_BFIN_CACHE_COHERENT) && \ !defined(CONFIG_BFIN_CACHE_COHERENT)
defined(CONFIG_BFIN_DCACHE) # if defined(CONFIG_BFIN_ICACHE)
#define __ARCH_SYNC_CORE_DCACHE # define __ARCH_SYNC_CORE_ICACHE
# endif
# if defined(CONFIG_BFIN_DCACHE)
# define __ARCH_SYNC_CORE_DCACHE
# endif
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
asmlinkage void __raw_smp_mark_barrier_asm(void); asmlinkage void __raw_smp_mark_barrier_asm(void);
asmlinkage void __raw_smp_check_barrier_asm(void); asmlinkage void __raw_smp_check_barrier_asm(void);
@ -51,6 +55,7 @@ static inline void smp_check_barrier(void)
} }
void resync_core_dcache(void); void resync_core_dcache(void);
void resync_core_icache(void);
#endif #endif
#endif #endif

View File

@ -37,6 +37,7 @@ extern void blackfin_dcache_flush_range(unsigned long start_address, unsigned lo
extern void blackfin_dcache_invalidate_range(unsigned long start_address, unsigned long end_address); extern void blackfin_dcache_invalidate_range(unsigned long start_address, unsigned long end_address);
extern void blackfin_dflush_page(void *page); extern void blackfin_dflush_page(void *page);
extern void blackfin_invalidate_entire_dcache(void); extern void blackfin_invalidate_entire_dcache(void);
extern void blackfin_invalidate_entire_icache(void);
#define flush_dcache_mmap_lock(mapping) do { } while (0) #define flush_dcache_mmap_lock(mapping) do { } while (0)
#define flush_dcache_mmap_unlock(mapping) do { } while (0) #define flush_dcache_mmap_unlock(mapping) do { } while (0)
@ -97,7 +98,7 @@ do { memcpy(dst, src, len); \
extern unsigned long reserved_mem_dcache_on; extern unsigned long reserved_mem_dcache_on;
extern unsigned long reserved_mem_icache_on; extern unsigned long reserved_mem_icache_on;
static inline int bfin_addr_dcachable(unsigned long addr) static inline int bfin_addr_dcacheable(unsigned long addr)
{ {
#ifdef CONFIG_BFIN_DCACHE #ifdef CONFIG_BFIN_DCACHE
if (addr < (_ramend - DMA_UNCACHED_REGION)) if (addr < (_ramend - DMA_UNCACHED_REGION))

View File

@ -34,6 +34,7 @@ struct blackfin_cpudata {
unsigned int dmemctl; unsigned int dmemctl;
unsigned long loops_per_jiffy; unsigned long loops_per_jiffy;
unsigned long dcache_invld_count; unsigned long dcache_invld_count;
unsigned long icache_invld_count;
}; };
DECLARE_PER_CPU(struct blackfin_cpudata, cpu_data); DECLARE_PER_CPU(struct blackfin_cpudata, cpu_data);

View File

@ -1 +1,13 @@
/* empty */ /*
* Blackfin ftrace code
*
* Copyright 2009 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#ifndef __ASM_BFIN_FTRACE_H__
#define __ASM_BFIN_FTRACE_H__
#define MCOUNT_INSN_SIZE 8 /* sizeof mcount call: LINK + CALL */
#endif

View File

@ -35,10 +35,10 @@
#include <asm/atomic.h> #include <asm/atomic.h>
#include <asm/traps.h> #include <asm/traps.h>
#define IPIPE_ARCH_STRING "1.9-01" #define IPIPE_ARCH_STRING "1.10-00"
#define IPIPE_MAJOR_NUMBER 1 #define IPIPE_MAJOR_NUMBER 1
#define IPIPE_MINOR_NUMBER 9 #define IPIPE_MINOR_NUMBER 10
#define IPIPE_PATCH_NUMBER 1 #define IPIPE_PATCH_NUMBER 0
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
#error "I-pipe/blackfin: SMP not implemented" #error "I-pipe/blackfin: SMP not implemented"
@ -54,10 +54,11 @@ do { \
#define task_hijacked(p) \ #define task_hijacked(p) \
({ \ ({ \
int __x__ = ipipe_current_domain != ipipe_root_domain; \ int __x__ = __ipipe_root_domain_p; \
/* We would need to clear the SYNC flag for the root domain */ \ __clear_bit(IPIPE_SYNC_FLAG, &ipipe_root_cpudom_var(status)); \
/* over the current processor in SMP mode. */ \ if (__x__) \
local_irq_enable_hw(); __x__; \ local_irq_enable_hw(); \
!__x__; \
}) })
struct ipipe_domain; struct ipipe_domain;
@ -179,23 +180,24 @@ static inline unsigned long __ipipe_ffnz(unsigned long ul)
#define __ipipe_run_isr(ipd, irq) \ #define __ipipe_run_isr(ipd, irq) \
do { \ do { \
if (ipd == ipipe_root_domain) { \ if (!__ipipe_pipeline_head_p(ipd)) \
local_irq_enable_hw(); \ local_irq_enable_hw(); \
if (ipipe_virtual_irq_p(irq)) \ if (ipd == ipipe_root_domain) { \
if (unlikely(ipipe_virtual_irq_p(irq))) { \
irq_enter(); \
ipd->irqs[irq].handler(irq, ipd->irqs[irq].cookie); \ ipd->irqs[irq].handler(irq, ipd->irqs[irq].cookie); \
else \ irq_exit(); \
} else \
ipd->irqs[irq].handler(irq, &__raw_get_cpu_var(__ipipe_tick_regs)); \ ipd->irqs[irq].handler(irq, &__raw_get_cpu_var(__ipipe_tick_regs)); \
local_irq_disable_hw(); \
} else { \ } else { \
__clear_bit(IPIPE_SYNC_FLAG, &ipipe_cpudom_var(ipd, status)); \ __clear_bit(IPIPE_SYNC_FLAG, &ipipe_cpudom_var(ipd, status)); \
local_irq_enable_nohead(ipd); \
ipd->irqs[irq].handler(irq, ipd->irqs[irq].cookie); \ ipd->irqs[irq].handler(irq, ipd->irqs[irq].cookie); \
/* Attempt to exit the outer interrupt level before \ /* Attempt to exit the outer interrupt level before \
* starting the deferred IRQ processing. */ \ * starting the deferred IRQ processing. */ \
local_irq_disable_nohead(ipd); \
__ipipe_run_irqtail(); \ __ipipe_run_irqtail(); \
__set_bit(IPIPE_SYNC_FLAG, &ipipe_cpudom_var(ipd, status)); \ __set_bit(IPIPE_SYNC_FLAG, &ipipe_cpudom_var(ipd, status)); \
} \ } \
local_irq_disable_hw(); \
} while (0) } while (0)
#define __ipipe_syscall_watched_p(p, sc) \ #define __ipipe_syscall_watched_p(p, sc) \

View File

@ -17,270 +17,17 @@
#ifndef _BFIN_IRQ_H_ #ifndef _BFIN_IRQ_H_
#define _BFIN_IRQ_H_ #define _BFIN_IRQ_H_
/* SYS_IRQS and NR_IRQS are defined in <mach-bf5xx/irq.h>*/ #include <linux/irqflags.h>
/* SYS_IRQS and NR_IRQS are defined in <mach-bf5xx/irq.h> */
#include <mach/irq.h> #include <mach/irq.h>
#include <asm/pda.h>
#include <asm/processor.h>
#ifdef CONFIG_SMP /* Xenomai IPIPE helpers */
/* Forward decl needed due to cdef inter dependencies */
static inline uint32_t __pure bfin_dspid(void);
# define blackfin_core_id() (bfin_dspid() & 0xff)
# define bfin_irq_flags cpu_pda[blackfin_core_id()].imask
#else
extern unsigned long bfin_irq_flags;
#endif
#ifdef CONFIG_IPIPE
#include <linux/ipipe_trace.h>
void __ipipe_unstall_root(void);
void __ipipe_restore_root(unsigned long flags);
#ifdef CONFIG_DEBUG_HWERR
# define __all_masked_irq_flags 0x3f
# define __save_and_cli_hw(x) \
__asm__ __volatile__( \
"cli %0;" \
"sti %1;" \
: "=&d"(x) \
: "d" (0x3F) \
)
#else
# define __all_masked_irq_flags 0x1f
# define __save_and_cli_hw(x) \
__asm__ __volatile__( \
"cli %0;" \
: "=&d"(x) \
)
#endif
#define irqs_enabled_from_flags_hw(x) ((x) != __all_masked_irq_flags)
#define raw_irqs_disabled_flags(flags) (!irqs_enabled_from_flags_hw(flags))
#define local_test_iflag_hw(x) irqs_enabled_from_flags_hw(x)
#define local_save_flags(x) \
do { \
(x) = __ipipe_test_root() ? \
__all_masked_irq_flags : bfin_irq_flags; \
barrier(); \
} while (0)
#define local_irq_save(x) \
do { \
(x) = __ipipe_test_and_stall_root() ? \
__all_masked_irq_flags : bfin_irq_flags; \
barrier(); \
} while (0)
static inline void local_irq_restore(unsigned long x)
{
barrier();
__ipipe_restore_root(x == __all_masked_irq_flags);
}
#define local_irq_disable() \
do { \
__ipipe_stall_root(); \
barrier(); \
} while (0)
static inline void local_irq_enable(void)
{
barrier();
__ipipe_unstall_root();
}
#define irqs_disabled() __ipipe_test_root()
#define local_save_flags_hw(x) \
__asm__ __volatile__( \
"cli %0;" \
"sti %0;" \
: "=d"(x) \
)
#define irqs_disabled_hw() \
({ \
unsigned long flags; \
local_save_flags_hw(flags); \
!irqs_enabled_from_flags_hw(flags); \
})
static inline unsigned long raw_mangle_irq_bits(int virt, unsigned long real)
{
/* Merge virtual and real interrupt mask bits into a single
32bit word. */
return (real & ~(1 << 31)) | ((virt != 0) << 31);
}
static inline int raw_demangle_irq_bits(unsigned long *x)
{
int virt = (*x & (1 << 31)) != 0;
*x &= ~(1L << 31);
return virt;
}
#ifdef CONFIG_IPIPE_TRACE_IRQSOFF
#define local_irq_disable_hw() \
do { \
int _tmp_dummy; \
if (!irqs_disabled_hw()) \
ipipe_trace_begin(0x80000000); \
__asm__ __volatile__ ("cli %0;" : "=d" (_tmp_dummy) : ); \
} while (0)
#define local_irq_enable_hw() \
do { \
if (irqs_disabled_hw()) \
ipipe_trace_end(0x80000000); \
__asm__ __volatile__ ("sti %0;" : : "d"(bfin_irq_flags)); \
} while (0)
#define local_irq_save_hw(x) \
do { \
__save_and_cli_hw(x); \
if (local_test_iflag_hw(x)) \
ipipe_trace_begin(0x80000001); \
} while (0)
#define local_irq_restore_hw(x) \
do { \
if (local_test_iflag_hw(x)) { \
ipipe_trace_end(0x80000001); \
local_irq_enable_hw_notrace(); \
} \
} while (0)
#define local_irq_disable_hw_notrace() \
do { \
int _tmp_dummy; \
__asm__ __volatile__ ("cli %0;" : "=d" (_tmp_dummy) : ); \
} while (0)
#define local_irq_enable_hw_notrace() \
__asm__ __volatile__( \
"sti %0;" \
: \
: "d"(bfin_irq_flags) \
)
#define local_irq_save_hw_notrace(x) __save_and_cli_hw(x)
#define local_irq_restore_hw_notrace(x) \
do { \
if (local_test_iflag_hw(x)) \
local_irq_enable_hw_notrace(); \
} while (0)
#else /* CONFIG_IPIPE_TRACE_IRQSOFF */
#define local_irq_enable_hw() \
__asm__ __volatile__( \
"sti %0;" \
: \
: "d"(bfin_irq_flags) \
)
#define local_irq_disable_hw() \
do { \
int _tmp_dummy; \
__asm__ __volatile__ ( \
"cli %0;" \
: "=d" (_tmp_dummy)); \
} while (0)
#define local_irq_restore_hw(x) \
do { \
if (irqs_enabled_from_flags_hw(x)) \
local_irq_enable_hw(); \
} while (0)
#define local_irq_save_hw(x) __save_and_cli_hw(x)
#define local_irq_disable_hw_notrace() local_irq_disable_hw()
#define local_irq_enable_hw_notrace() local_irq_enable_hw()
#define local_irq_save_hw_notrace(x) local_irq_save_hw(x)
#define local_irq_restore_hw_notrace(x) local_irq_restore_hw(x)
#endif /* CONFIG_IPIPE_TRACE_IRQSOFF */
#else /* !CONFIG_IPIPE */
/*
* Interrupt configuring macros.
*/
#define local_irq_disable() \
do { \
int __tmp_dummy; \
__asm__ __volatile__( \
"cli %0;" \
: "=d" (__tmp_dummy) \
); \
} while (0)
#define local_irq_enable() \
__asm__ __volatile__( \
"sti %0;" \
: \
: "d" (bfin_irq_flags) \
)
#ifdef CONFIG_DEBUG_HWERR
# define __save_and_cli(x) \
__asm__ __volatile__( \
"cli %0;" \
"sti %1;" \
: "=&d" (x) \
: "d" (0x3F) \
)
#else
# define __save_and_cli(x) \
__asm__ __volatile__( \
"cli %0;" \
: "=&d" (x) \
)
#endif
#define local_save_flags(x) \
__asm__ __volatile__( \
"cli %0;" \
"sti %0;" \
: "=d" (x) \
)
#ifdef CONFIG_DEBUG_HWERR
#define irqs_enabled_from_flags(x) (((x) & ~0x3f) != 0)
#else
#define irqs_enabled_from_flags(x) ((x) != 0x1f)
#endif
#define local_irq_restore(x) \
do { \
if (irqs_enabled_from_flags(x)) \
local_irq_enable(); \
} while (0)
/* For spinlocks etc */
#define local_irq_save(x) __save_and_cli(x)
#define irqs_disabled() \
({ \
unsigned long flags; \
local_save_flags(flags); \
!irqs_enabled_from_flags(flags); \
})
#define local_irq_save_hw(x) local_irq_save(x)
#define local_irq_restore_hw(x) local_irq_restore(x) #define local_irq_restore_hw(x) local_irq_restore(x)
#define local_irq_enable_hw() local_irq_enable() #define local_irq_save_hw(x) local_irq_save(x)
#define local_irq_disable_hw() local_irq_disable() #define local_irq_enable_hw(x) local_irq_enable(x)
#define irqs_disabled_hw() irqs_disabled() #define local_irq_disable_hw(x) local_irq_disable(x)
#define irqs_disabled_hw(x) irqs_disabled(x)
#endif /* !CONFIG_IPIPE */
#if ANOMALY_05000244 && defined(CONFIG_BFIN_ICACHE) #if ANOMALY_05000244 && defined(CONFIG_BFIN_ICACHE)
# define NOP_PAD_ANOMALY_05000244 "nop; nop;" # define NOP_PAD_ANOMALY_05000244 "nop; nop;"

View File

@ -0,0 +1,63 @@
/*
* interface to Blackfin CEC
*
* Copyright 2009 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#ifndef __ASM_BFIN_IRQFLAGS_H__
#define __ASM_BFIN_IRQFLAGS_H__
#ifdef CONFIG_SMP
# include <asm/pda.h>
# include <asm/processor.h>
/* Forward decl needed due to cdef inter dependencies */
static inline uint32_t __pure bfin_dspid(void);
# define blackfin_core_id() (bfin_dspid() & 0xff)
# define bfin_irq_flags cpu_pda[blackfin_core_id()].imask
#else
extern unsigned long bfin_irq_flags;
#endif
static inline void bfin_sti(unsigned long flags)
{
asm volatile("sti %0;" : : "d" (flags));
}
static inline unsigned long bfin_cli(void)
{
unsigned long flags;
asm volatile("cli %0;" : "=d" (flags));
return flags;
}
static inline void raw_local_irq_disable(void)
{
bfin_cli();
}
static inline void raw_local_irq_enable(void)
{
bfin_sti(bfin_irq_flags);
}
#define raw_local_save_flags(flags) do { (flags) = bfin_read_IMASK(); } while (0)
#define raw_irqs_disabled_flags(flags) (((flags) & ~0x3f) == 0)
static inline void raw_local_irq_restore(unsigned long flags)
{
if (!raw_irqs_disabled_flags(flags))
raw_local_irq_enable();
}
static inline unsigned long __raw_local_irq_save(void)
{
unsigned long flags = bfin_cli();
#ifdef CONFIG_DEBUG_HWERR
bfin_sti(0x3f);
#endif
return flags;
}
#define raw_local_irq_save(flags) do { (flags) = __raw_local_irq_save(); } while (0)
#endif

View File

@ -1,112 +0,0 @@
/*
* include/asm-generic/mutex-dec.h
*
* Generic implementation of the mutex fastpath, based on atomic
* decrement/increment.
*/
#ifndef _ASM_GENERIC_MUTEX_DEC_H
#define _ASM_GENERIC_MUTEX_DEC_H
/**
* __mutex_fastpath_lock - try to take the lock by moving the count
* from 1 to a 0 value
* @count: pointer of type atomic_t
* @fail_fn: function to call if the original value was not 1
*
* Change the count from 1 to a value lower than 1, and call <fail_fn> if
* it wasn't 1 originally. This function MUST leave the value lower than
* 1 even when the "1" assertion wasn't true.
*/
static inline void
__mutex_fastpath_lock(atomic_t *count, fastcall void (*fail_fn)(atomic_t *))
{
if (unlikely(atomic_dec_return(count) < 0))
fail_fn(count);
else
smp_mb();
}
/**
* __mutex_fastpath_lock_retval - try to take the lock by moving the count
* from 1 to a 0 value
* @count: pointer of type atomic_t
* @fail_fn: function to call if the original value was not 1
*
* Change the count from 1 to a value lower than 1, and call <fail_fn> if
* it wasn't 1 originally. This function returns 0 if the fastpath succeeds,
* or anything the slow path function returns.
*/
static inline int
__mutex_fastpath_lock_retval(atomic_t *count, fastcall int (*fail_fn)(atomic_t *))
{
if (unlikely(atomic_dec_return(count) < 0))
return fail_fn(count);
else {
smp_mb();
return 0;
}
}
/**
* __mutex_fastpath_unlock - try to promote the count from 0 to 1
* @count: pointer of type atomic_t
* @fail_fn: function to call if the original value was not 0
*
* Try to promote the count from 0 to 1. If it wasn't 0, call <fail_fn>.
* In the failure case, this function is allowed to either set the value to
* 1, or to set it to a value lower than 1.
*
* If the implementation sets it to a value of lower than 1, then the
* __mutex_slowpath_needs_to_unlock() macro needs to return 1, it needs
* to return 0 otherwise.
*/
static inline void
__mutex_fastpath_unlock(atomic_t *count, fastcall void (*fail_fn)(atomic_t *))
{
smp_mb();
if (unlikely(atomic_inc_return(count) <= 0))
fail_fn(count);
}
#define __mutex_slowpath_needs_to_unlock() 1
/**
* __mutex_fastpath_trylock - try to acquire the mutex, without waiting
*
* @count: pointer of type atomic_t
* @fail_fn: fallback function
*
* Change the count from 1 to a value lower than 1, and return 0 (failure)
* if it wasn't 1 originally, or return 1 (success) otherwise. This function
* MUST leave the value lower than 1 even when the "1" assertion wasn't true.
* Additionally, if the value was < 0 originally, this function must not leave
* it to 0 on failure.
*
* If the architecture has no effective trylock variant, it should call the
* <fail_fn> spinlock-based trylock variant unconditionally.
*/
static inline int
__mutex_fastpath_trylock(atomic_t *count, int (*fail_fn)(atomic_t *))
{
/*
* We have two variants here. The cmpxchg based one is the best one
* because it never induce a false contention state. It is included
* here because architectures using the inc/dec algorithms over the
* xchg ones are much more likely to support cmpxchg natively.
*
* If not we fall back to the spinlock based variant - that is
* just as efficient (and simpler) as a 'destructive' probing of
* the mutex state would be.
*/
#ifdef __HAVE_ARCH_CMPXCHG
if (likely(atomic_cmpxchg(count, 1, 0) == 1)) {
smp_mb();
return 1;
}
return 0;
#else
return fail_fn(count);
#endif
}
#endif

View File

@ -4,4 +4,15 @@
/* nothing to see, move along */ /* nothing to see, move along */
#include <asm-generic/sections.h> #include <asm-generic/sections.h>
/* only used when MTD_UCLINUX */
extern unsigned long memory_mtd_start, memory_mtd_end, mtd_size;
extern unsigned long _ramstart, _ramend, _rambase;
extern unsigned long memory_start, memory_end, physical_mem_end;
extern char _stext_l1[], _etext_l1[], _sdata_l1[], _edata_l1[], _sbss_l1[],
_ebss_l1[], _l1_lma_start[], _sdata_b_l1[], _sbss_b_l1[], _ebss_b_l1[],
_stext_l2[], _etext_l2[], _sdata_l2[], _edata_l2[], _sbss_l2[],
_ebss_l2[], _l2_lma_start[];
#endif #endif

View File

@ -35,10 +35,10 @@
#define _BLACKFIN_SYSTEM_H #define _BLACKFIN_SYSTEM_H
#include <linux/linkage.h> #include <linux/linkage.h>
#include <linux/compiler.h> #include <linux/irqflags.h>
#include <mach/anomaly.h> #include <mach/anomaly.h>
#include <asm/cache.h>
#include <asm/pda.h> #include <asm/pda.h>
#include <asm/processor.h>
#include <asm/irq.h> #include <asm/irq.h>
/* /*

View File

@ -380,8 +380,9 @@
#define __NR_inotify_init1 365 #define __NR_inotify_init1 365
#define __NR_preadv 366 #define __NR_preadv 366
#define __NR_pwritev 367 #define __NR_pwritev 367
#define __NR_rt_tgsigqueueinfo 368
#define __NR_syscall 368 #define __NR_syscall 369
#define NR_syscalls __NR_syscall #define NR_syscalls __NR_syscall
/* Old optional stuff no one actually uses */ /* Old optional stuff no one actually uses */

View File

@ -15,6 +15,10 @@ else
obj-y += time.o obj-y += time.o
endif endif
obj-$(CONFIG_FUNCTION_TRACER) += ftrace-entry.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
CFLAGS_REMOVE_ftrace.o = -pg
obj-$(CONFIG_IPIPE) += ipipe.o obj-$(CONFIG_IPIPE) += ipipe.o
obj-$(CONFIG_IPIPE_TRACE_MCOUNT) += mcount.o obj-$(CONFIG_IPIPE_TRACE_MCOUNT) += mcount.o
obj-$(CONFIG_BFIN_GPTIMERS) += gptimers.o obj-$(CONFIG_BFIN_GPTIMERS) += gptimers.o
@ -23,6 +27,7 @@ obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_KGDB) += kgdb.o obj-$(CONFIG_KGDB) += kgdb.o
obj-$(CONFIG_KGDB_TESTS) += kgdb_test.o obj-$(CONFIG_KGDB_TESTS) += kgdb_test.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
# the kgdb test puts code into L2 and without linker # the kgdb test puts code into L2 and without linker
# relaxation, we need to force long calls to/from it # relaxation, we need to force long calls to/from it

View File

@ -453,10 +453,10 @@ void *dma_memcpy(void *pdst, const void *psrc, size_t size)
unsigned long src = (unsigned long)psrc; unsigned long src = (unsigned long)psrc;
size_t bulk, rest; size_t bulk, rest;
if (bfin_addr_dcachable(src)) if (bfin_addr_dcacheable(src))
blackfin_dcache_flush_range(src, src + size); blackfin_dcache_flush_range(src, src + size);
if (bfin_addr_dcachable(dst)) if (bfin_addr_dcacheable(dst))
blackfin_dcache_invalidate_range(dst, dst + size); blackfin_dcache_invalidate_range(dst, dst + size);
bulk = size & ~0xffff; bulk = size & ~0xffff;

View File

@ -103,3 +103,8 @@ EXPORT_SYMBOL(__raw_smp_mark_barrier_asm);
EXPORT_SYMBOL(__raw_smp_check_barrier_asm); EXPORT_SYMBOL(__raw_smp_check_barrier_asm);
#endif #endif
#endif #endif
#ifdef CONFIG_FUNCTION_TRACER
extern void _mcount(void);
EXPORT_SYMBOL(_mcount);
#endif

View File

@ -151,7 +151,7 @@ static noinline int dcplb_miss(unsigned int cpu)
d_data = CPLB_SUPV_WR | CPLB_VALID | CPLB_DIRTY | PAGE_SIZE_4KB; d_data = CPLB_SUPV_WR | CPLB_VALID | CPLB_DIRTY | PAGE_SIZE_4KB;
#ifdef CONFIG_BFIN_DCACHE #ifdef CONFIG_BFIN_DCACHE
if (bfin_addr_dcachable(addr)) { if (bfin_addr_dcacheable(addr)) {
d_data |= CPLB_L1_CHBL | ANOMALY_05000158_WORKAROUND; d_data |= CPLB_L1_CHBL | ANOMALY_05000158_WORKAROUND;
#ifdef CONFIG_BFIN_WT #ifdef CONFIG_BFIN_WT
d_data |= CPLB_L1_AOW | CPLB_WT; d_data |= CPLB_L1_AOW | CPLB_WT;

View File

@ -28,6 +28,7 @@
#include <asm/cplbinit.h> #include <asm/cplbinit.h>
#include <asm/cplb.h> #include <asm/cplb.h>
#include <asm/mmu_context.h> #include <asm/mmu_context.h>
#include <asm/traps.h>
/* /*
* WARNING * WARNING
@ -100,28 +101,6 @@ static inline void write_icplb_data(int cpu, int idx, unsigned long data,
#endif #endif
} }
/*
* Given the contents of the status register, return the index of the
* CPLB that caused the fault.
*/
static inline int faulting_cplb_index(int status)
{
int signbits = __builtin_bfin_norm_fr1x32(status & 0xFFFF);
return 30 - signbits;
}
/*
* Given the contents of the status register and the DCPLB_DATA contents,
* return true if a write access should be permitted.
*/
static inline int write_permitted(int status, unsigned long data)
{
if (status & FAULT_USERSUPV)
return !!(data & CPLB_SUPV_WR);
else
return !!(data & CPLB_USER_WR);
}
/* Counters to implement round-robin replacement. */ /* Counters to implement round-robin replacement. */
static int icplb_rr_index[NR_CPUS] PDT_ATTR; static int icplb_rr_index[NR_CPUS] PDT_ATTR;
static int dcplb_rr_index[NR_CPUS] PDT_ATTR; static int dcplb_rr_index[NR_CPUS] PDT_ATTR;
@ -245,43 +224,16 @@ MGR_ATTR static int dcplb_miss(int cpu)
return CPLB_RELOADED; return CPLB_RELOADED;
} }
MGR_ATTR static noinline int dcplb_protection_fault(int cpu)
{
int status = bfin_read_DCPLB_STATUS();
nr_dcplb_prot[cpu]++;
if (likely(status & FAULT_RW)) {
int idx = faulting_cplb_index(status);
unsigned long regaddr = DCPLB_DATA0 + idx * 4;
unsigned long data = bfin_read32(regaddr);
/* Check if fault is to dirty a clean page */
if (!(data & CPLB_WT) && !(data & CPLB_DIRTY) &&
write_permitted(status, data)) {
dcplb_tbl[cpu][idx].data = data;
bfin_write32(regaddr, data);
return CPLB_RELOADED;
}
}
return CPLB_PROT_VIOL;
}
MGR_ATTR int cplb_hdr(int seqstat, struct pt_regs *regs) MGR_ATTR int cplb_hdr(int seqstat, struct pt_regs *regs)
{ {
int cause = seqstat & 0x3f; int cause = seqstat & 0x3f;
unsigned int cpu = smp_processor_id(); unsigned int cpu = smp_processor_id();
switch (cause) { switch (cause) {
case 0x2C: case VEC_CPLB_I_M:
return icplb_miss(cpu); return icplb_miss(cpu);
case 0x26: case VEC_CPLB_M:
return dcplb_miss(cpu); return dcplb_miss(cpu);
default: default:
if (unlikely(cause == 0x23))
return dcplb_protection_fault(cpu);
return CPLB_UNKNOWN_ERR; return CPLB_UNKNOWN_ERR;
} }
} }

View File

@ -202,11 +202,15 @@ asmlinkage void __init init_early_exception_vectors(void)
asmlinkage void __init early_trap_c(struct pt_regs *fp, void *retaddr) asmlinkage void __init early_trap_c(struct pt_regs *fp, void *retaddr)
{ {
/* This can happen before the uart is initialized, so initialize /* This can happen before the uart is initialized, so initialize
* the UART now * the UART now (but only if we are running on the processor we think
* we are compiled for - otherwise we write to MMRs that don't exist,
* and cause other problems. Nothing comes out the UART, but it does
* end up in the __buf_log.
*/ */
if (likely(early_console == NULL)) if (likely(early_console == NULL) && CPUID == bfin_cpuid())
setup_early_printk(DEFAULT_EARLY_PORT); setup_early_printk(DEFAULT_EARLY_PORT);
printk(KERN_EMERG "Early panic\n");
dump_bfin_mem(fp); dump_bfin_mem(fp);
show_regs(fp); show_regs(fp);
dump_bfin_trace_buffer(); dump_bfin_trace_buffer();

View File

@ -0,0 +1,140 @@
/*
* mcount and friends -- ftrace stuff
*
* Copyright (C) 2009 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#include <linux/linkage.h>
#include <asm/ftrace.h>
.text
/* GCC will have called us before setting up the function prologue, so we
* can clobber the normal scratch registers, but we need to make sure to
* save/restore the registers used for argument passing (R0-R2) in case
* the profiled function is using them. With data registers, R3 is the
* only one we can blow away. With pointer registers, we have P0-P2.
*
* Upon entry, the RETS will point to the top of the current profiled
* function. And since GCC setup the frame for us, the previous function
* will be waiting there. mmmm pie.
*/
ENTRY(__mcount)
/* save third function arg early so we can do testing below */
[--sp] = r2;
/* load the function pointer to the tracer */
p0.l = _ftrace_trace_function;
p0.h = _ftrace_trace_function;
r3 = [p0];
/* optional micro optimization: don't call the stub tracer */
r2.l = _ftrace_stub;
r2.h = _ftrace_stub;
cc = r2 == r3;
if ! cc jump .Ldo_trace;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* if the ftrace_graph_return function pointer is not set to
* the ftrace_stub entry, call prepare_ftrace_return().
*/
p0.l = _ftrace_graph_return;
p0.h = _ftrace_graph_return;
r3 = [p0];
cc = r2 == r3;
if ! cc jump _ftrace_graph_caller;
/* similarly, if the ftrace_graph_entry function pointer is not
* set to the ftrace_graph_entry_stub entry, ...
*/
p0.l = _ftrace_graph_entry;
p0.h = _ftrace_graph_entry;
r2.l = _ftrace_graph_entry_stub;
r2.h = _ftrace_graph_entry_stub;
r3 = [p0];
cc = r2 == r3;
if ! cc jump _ftrace_graph_caller;
#endif
r2 = [sp++];
rts;
.Ldo_trace:
/* save first/second function arg and the return register */
[--sp] = r0;
[--sp] = r1;
[--sp] = rets;
/* setup the tracer function */
p0 = r3;
/* tracer(ulong frompc, ulong selfpc):
* frompc: the pc that did the call to ...
* selfpc: ... this location
* the selfpc itself will need adjusting for the mcount call
*/
r1 = rets;
r0 = [fp + 4];
r1 += -MCOUNT_INSN_SIZE;
/* call the tracer */
call (p0);
/* restore state and get out of dodge */
.Lfinish_trace:
rets = [sp++];
r1 = [sp++];
r0 = [sp++];
r2 = [sp++];
.globl _ftrace_stub
_ftrace_stub:
rts;
ENDPROC(__mcount)
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* The prepare_ftrace_return() function is similar to the trace function
* except it takes a pointer to the location of the frompc. This is so
* the prepare_ftrace_return() can hijack it temporarily for probing
* purposes.
*/
ENTRY(_ftrace_graph_caller)
/* save first/second function arg and the return register */
[--sp] = r0;
[--sp] = r1;
[--sp] = rets;
r0 = fp;
r1 = rets;
r0 += 4;
r1 += -MCOUNT_INSN_SIZE;
call _prepare_ftrace_return;
jump .Lfinish_trace;
ENDPROC(_ftrace_graph_caller)
/* Undo the rewrite caused by ftrace_graph_caller(). The common function
* ftrace_return_to_handler() will return the original rets so we can
* restore it and be on our way.
*/
ENTRY(_return_to_handler)
/* make sure original return values are saved */
[--sp] = p0;
[--sp] = r0;
[--sp] = r1;
/* get original return address */
call _ftrace_return_to_handler;
rets = r0;
/* anomaly 05000371 - make sure we have at least three instructions
* between rets setting and the return
*/
r1 = [sp++];
r0 = [sp++];
p0 = [sp++];
rts;
ENDPROC(_return_to_handler)
#endif

View File

@ -0,0 +1,42 @@
/*
* ftrace graph code
*
* Copyright (C) 2009 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#include <linux/ftrace.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <asm/atomic.h>
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/*
* Hook the return address and push it in the stack of return addrs
* in current thread info.
*/
void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
{
struct ftrace_graph_ent trace;
unsigned long return_hooker = (unsigned long)&return_to_handler;
if (unlikely(atomic_read(&current->tracing_graph_pause)))
return;
if (ftrace_push_return_trace(*parent, self_addr, &trace.depth) == -EBUSY)
return;
trace.func = self_addr;
/* Only trace if the calling function expects to */
if (!ftrace_graph_entry(&trace)) {
current->curr_ret_stack--;
return;
}
/* all is well in the world ! hijack RETS ... */
*parent = return_hooker;
}
#endif

View File

@ -99,7 +99,7 @@ void __ipipe_handle_irq(unsigned irq, struct pt_regs *regs)
* interrupt. * interrupt.
*/ */
m_ack = (regs == NULL || irq == IRQ_SYSTMR || irq == IRQ_CORETMR); m_ack = (regs == NULL || irq == IRQ_SYSTMR || irq == IRQ_CORETMR);
this_domain = ipipe_current_domain; this_domain = __ipipe_current_domain;
if (unlikely(test_bit(IPIPE_STICKY_FLAG, &this_domain->irqs[irq].control))) if (unlikely(test_bit(IPIPE_STICKY_FLAG, &this_domain->irqs[irq].control)))
head = &this_domain->p_link; head = &this_domain->p_link;
@ -212,7 +212,9 @@ void __ipipe_unstall_root_raw(void)
int __ipipe_syscall_root(struct pt_regs *regs) int __ipipe_syscall_root(struct pt_regs *regs)
{ {
struct ipipe_percpu_domain_data *p;
unsigned long flags; unsigned long flags;
int ret;
/* /*
* We need to run the IRQ tail hook whenever we don't * We need to run the IRQ tail hook whenever we don't
@ -231,29 +233,31 @@ int __ipipe_syscall_root(struct pt_regs *regs)
/* /*
* This routine either returns: * This routine either returns:
* 0 -- if the syscall is to be passed to Linux; * 0 -- if the syscall is to be passed to Linux;
* 1 -- if the syscall should not be passed to Linux, and no * >0 -- if the syscall should not be passed to Linux, and no
* tail work should be performed; * tail work should be performed;
* -1 -- if the syscall should not be passed to Linux but the * <0 -- if the syscall should not be passed to Linux but the
* tail work has to be performed (for handling signals etc). * tail work has to be performed (for handling signals etc).
*/ */
if (__ipipe_event_monitored_p(IPIPE_EVENT_SYSCALL) && if (!__ipipe_event_monitored_p(IPIPE_EVENT_SYSCALL))
__ipipe_dispatch_event(IPIPE_EVENT_SYSCALL, regs) > 0) { return 0;
if (ipipe_root_domain_p && !in_atomic()) {
/* ret = __ipipe_dispatch_event(IPIPE_EVENT_SYSCALL, regs);
* Sync pending VIRQs before _TIF_NEED_RESCHED
* is tested.
*/
local_irq_save_hw(flags); local_irq_save_hw(flags);
if ((ipipe_root_cpudom_var(irqpend_himask) & IPIPE_IRQMASK_VIRT) != 0)
__ipipe_sync_pipeline(IPIPE_IRQMASK_VIRT); if (!__ipipe_root_domain_p) {
local_irq_restore_hw(flags); local_irq_restore_hw(flags);
return -1;
}
return 1; return 1;
} }
return 0; p = ipipe_root_cpudom_ptr();
if ((p->irqpend_himask & IPIPE_IRQMASK_VIRT) != 0)
__ipipe_sync_pipeline(IPIPE_IRQMASK_VIRT);
local_irq_restore_hw(flags);
return -ret;
} }
unsigned long ipipe_critical_enter(void (*syncfn) (void)) unsigned long ipipe_critical_enter(void (*syncfn) (void))
@ -329,9 +333,7 @@ asmlinkage void __ipipe_sync_root(void)
void ___ipipe_sync_pipeline(unsigned long syncmask) void ___ipipe_sync_pipeline(unsigned long syncmask)
{ {
struct ipipe_domain *ipd = ipipe_current_domain; if (__ipipe_root_domain_p) {
if (ipd == ipipe_root_domain) {
if (test_bit(IPIPE_SYNCDEFER_FLAG, &ipipe_root_cpudom_var(status))) if (test_bit(IPIPE_SYNCDEFER_FLAG, &ipipe_root_cpudom_var(status)))
return; return;
} }

View File

@ -1098,7 +1098,7 @@ static int show_cpuinfo(struct seq_file *m, void *v)
CPUID, bfin_cpuid()); CPUID, bfin_cpuid());
seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n" seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
"stepping\t: %d\n", "stepping\t: %d ",
cpu, cclk/1000000, sclk/1000000, cpu, cclk/1000000, sclk/1000000,
#ifdef CONFIG_MPU #ifdef CONFIG_MPU
"mpu on", "mpu on",
@ -1107,7 +1107,16 @@ static int show_cpuinfo(struct seq_file *m, void *v)
#endif #endif
revid); revid);
seq_printf(m, "cpu MHz\t\t: %lu.%03lu/%lu.%03lu\n", if (bfin_revid() != bfin_compiled_revid()) {
if (bfin_compiled_revid() == -1)
seq_printf(m, "(Compiled for Rev none)");
else if (bfin_compiled_revid() == 0xffff)
seq_printf(m, "(Compiled for Rev any)");
else
seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
}
seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
cclk/1000000, cclk%1000000, cclk/1000000, cclk%1000000,
sclk/1000000, sclk%1000000); sclk/1000000, sclk%1000000);
seq_printf(m, "bogomips\t: %lu.%02lu\n" seq_printf(m, "bogomips\t: %lu.%02lu\n"
@ -1172,6 +1181,9 @@ static int show_cpuinfo(struct seq_file *m, void *v)
#ifdef __ARCH_SYNC_CORE_DCACHE #ifdef __ARCH_SYNC_CORE_DCACHE
seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count); seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
#endif #endif
#ifdef __ARCH_SYNC_CORE_ICACHE
seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
#endif
#ifdef CONFIG_BFIN_ICACHE_LOCK #ifdef CONFIG_BFIN_ICACHE_LOCK
switch ((cpudata->imemctl >> 3) & WAYALL_L) { switch ((cpudata->imemctl >> 3) & WAYALL_L) {
case WAY0_L: case WAY0_L:

View File

@ -0,0 +1,53 @@
/*
* Blackfin stacktrace code (mostly copied from avr32)
*
* Copyright 2009 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#include <linux/sched.h>
#include <linux/stacktrace.h>
#include <linux/thread_info.h>
#include <linux/module.h>
register unsigned long current_frame_pointer asm("FP");
struct stackframe {
unsigned long fp;
unsigned long rets;
};
/*
* Save stack-backtrace addresses into a stack_trace buffer.
*/
void save_stack_trace(struct stack_trace *trace)
{
unsigned long low, high;
unsigned long fp;
struct stackframe *frame;
int skip = trace->skip;
low = (unsigned long)task_stack_page(current);
high = low + THREAD_SIZE;
fp = current_frame_pointer;
while (fp >= low && fp <= (high - sizeof(*frame))) {
frame = (struct stackframe *)fp;
if (skip) {
skip--;
} else {
trace->entries[trace->nr_entries++] = frame->rets;
if (trace->nr_entries >= trace->max_entries)
break;
}
/*
* The next frame must be at a higher address than the
* current frame.
*/
low = fp + sizeof(*frame);
fp = frame->fp;
}
}
EXPORT_SYMBOL_GPL(save_stack_trace);

View File

@ -27,6 +27,7 @@
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
#include <linux/bug.h>
#include <linux/uaccess.h> #include <linux/uaccess.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/module.h> #include <linux/module.h>
@ -238,6 +239,11 @@ asmlinkage void double_fault_c(struct pt_regs *fp)
} }
static int kernel_mode_regs(struct pt_regs *regs)
{
return regs->ipend & 0xffc0;
}
asmlinkage void trap_c(struct pt_regs *fp) asmlinkage void trap_c(struct pt_regs *fp)
{ {
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
@ -246,6 +252,7 @@ asmlinkage void trap_c(struct pt_regs *fp)
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
unsigned int cpu = smp_processor_id(); unsigned int cpu = smp_processor_id();
#endif #endif
const char *strerror = NULL;
int sig = 0; int sig = 0;
siginfo_t info; siginfo_t info;
unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE; unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
@ -259,27 +266,10 @@ asmlinkage void trap_c(struct pt_regs *fp)
* double faults if the stack has become corrupt * double faults if the stack has become corrupt
*/ */
/* If the fault was caused by a kernel thread, or interrupt handler #ifndef CONFIG_KGDB
* we will kernel panic, so the system reboots. /* IPEND is skipped if KGDB isn't enabled (see entry code) */
* If KGDB is enabled, don't set this for kernel breakpoints fp->ipend = bfin_read_IPEND();
*/
/* TODO: check to see if we are in some sort of deferred HWERR
* that we should be able to recover from, not kernel panic
*/
if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
#ifdef CONFIG_KGDB
&& (trapnr != VEC_EXCPT02)
#endif #endif
){
console_verbose();
oops_in_progress = 1;
} else if (current) {
if (current->mm == NULL) {
console_verbose();
oops_in_progress = 1;
}
}
/* trap_c() will be called for exceptions. During exceptions /* trap_c() will be called for exceptions. During exceptions
* processing, the pc value should be set with retx value. * processing, the pc value should be set with retx value.
@ -307,15 +297,15 @@ asmlinkage void trap_c(struct pt_regs *fp)
sig = SIGTRAP; sig = SIGTRAP;
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a breakpoint in kernel space */ /* Check if this is a breakpoint in kernel space */
if (fp->ipend & 0xffc0) if (kernel_mode_regs(fp))
return; goto traps_done;
else else
break; break;
/* 0x03 - User Defined, userspace stack overflow */ /* 0x03 - User Defined, userspace stack overflow */
case VEC_EXCPT03: case VEC_EXCPT03:
info.si_code = SEGV_STACKFLOW; info.si_code = SEGV_STACKFLOW;
sig = SIGSEGV; sig = SIGSEGV;
verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x03(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x02 - KGDB initial connection and break signal trap */ /* 0x02 - KGDB initial connection and break signal trap */
@ -324,7 +314,7 @@ asmlinkage void trap_c(struct pt_regs *fp)
info.si_code = TRAP_ILLTRAP; info.si_code = TRAP_ILLTRAP;
sig = SIGTRAP; sig = SIGTRAP;
CHK_DEBUGGER_TRAP(); CHK_DEBUGGER_TRAP();
return; goto traps_done;
#endif #endif
/* 0x04 - User Defined */ /* 0x04 - User Defined */
/* 0x05 - User Defined */ /* 0x05 - User Defined */
@ -344,7 +334,7 @@ asmlinkage void trap_c(struct pt_regs *fp)
case VEC_EXCPT04 ... VEC_EXCPT15: case VEC_EXCPT04 ... VEC_EXCPT15:
info.si_code = ILL_ILLPARAOP; info.si_code = ILL_ILLPARAOP;
sig = SIGILL; sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x04(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x10 HW Single step, handled here */ /* 0x10 HW Single step, handled here */
@ -353,15 +343,15 @@ asmlinkage void trap_c(struct pt_regs *fp)
sig = SIGTRAP; sig = SIGTRAP;
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a single step in kernel space */ /* Check if this is a single step in kernel space */
if (fp->ipend & 0xffc0) if (kernel_mode_regs(fp))
return; goto traps_done;
else else
break; break;
/* 0x11 - Trace Buffer Full, handled here */ /* 0x11 - Trace Buffer Full, handled here */
case VEC_OVFLOW: case VEC_OVFLOW:
info.si_code = TRAP_TRACEFLOW; info.si_code = TRAP_TRACEFLOW;
sig = SIGTRAP; sig = SIGTRAP;
verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x11(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x12 - Reserved, Caught by default */ /* 0x12 - Reserved, Caught by default */
@ -381,37 +371,54 @@ asmlinkage void trap_c(struct pt_regs *fp)
/* 0x20 - Reserved, Caught by default */ /* 0x20 - Reserved, Caught by default */
/* 0x21 - Undefined Instruction, handled here */ /* 0x21 - Undefined Instruction, handled here */
case VEC_UNDEF_I: case VEC_UNDEF_I:
#ifdef CONFIG_BUG
if (kernel_mode_regs(fp)) {
switch (report_bug(fp->pc, fp)) {
case BUG_TRAP_TYPE_NONE:
break;
case BUG_TRAP_TYPE_WARN:
dump_bfin_trace_buffer();
fp->pc += 2;
goto traps_done;
case BUG_TRAP_TYPE_BUG:
/* call to panic() will dump trace, and it is
* off at this point, so it won't be clobbered
*/
panic("BUG()");
}
}
#endif
info.si_code = ILL_ILLOPC; info.si_code = ILL_ILLOPC;
sig = SIGILL; sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x21(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x22 - Illegal Instruction Combination, handled here */ /* 0x22 - Illegal Instruction Combination, handled here */
case VEC_ILGAL_I: case VEC_ILGAL_I:
info.si_code = ILL_ILLPARAOP; info.si_code = ILL_ILLPARAOP;
sig = SIGILL; sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x22(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x23 - Data CPLB protection violation, handled here */ /* 0x23 - Data CPLB protection violation, handled here */
case VEC_CPLB_VL: case VEC_CPLB_VL:
info.si_code = ILL_CPLB_VI; info.si_code = ILL_CPLB_VI;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x23(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x24 - Data access misaligned, handled here */ /* 0x24 - Data access misaligned, handled here */
case VEC_MISALI_D: case VEC_MISALI_D:
info.si_code = BUS_ADRALN; info.si_code = BUS_ADRALN;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x24(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x25 - Unrecoverable Event, handled here */ /* 0x25 - Unrecoverable Event, handled here */
case VEC_UNCOV: case VEC_UNCOV:
info.si_code = ILL_ILLEXCPT; info.si_code = ILL_ILLEXCPT;
sig = SIGILL; sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x25(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr, /* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
@ -419,7 +426,7 @@ asmlinkage void trap_c(struct pt_regs *fp)
case VEC_CPLB_M: case VEC_CPLB_M:
info.si_code = BUS_ADRALN; info.si_code = BUS_ADRALN;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x26(KERN_NOTICE);
break; break;
/* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */ /* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
case VEC_CPLB_MHIT: case VEC_CPLB_MHIT:
@ -427,10 +434,10 @@ asmlinkage void trap_c(struct pt_regs *fp)
sig = SIGSEGV; sig = SIGSEGV;
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START) if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
verbose_printk(KERN_NOTICE "NULL pointer access\n"); strerror = KERN_NOTICE "NULL pointer access\n";
else else
#endif #endif
verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x27(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x28 - Emulation Watchpoint, handled here */ /* 0x28 - Emulation Watchpoint, handled here */
@ -440,8 +447,8 @@ asmlinkage void trap_c(struct pt_regs *fp)
pr_debug(EXC_0x28(KERN_DEBUG)); pr_debug(EXC_0x28(KERN_DEBUG));
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
/* Check if this is a watchpoint in kernel space */ /* Check if this is a watchpoint in kernel space */
if (fp->ipend & 0xffc0) if (kernel_mode_regs(fp))
return; goto traps_done;
else else
break; break;
#ifdef CONFIG_BF535 #ifdef CONFIG_BF535
@ -449,7 +456,7 @@ asmlinkage void trap_c(struct pt_regs *fp)
case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */ case VEC_ISTRU_VL: /* ADSP-BF535 only (MH) */
info.si_code = BUS_OPFETCH; info.si_code = BUS_OPFETCH;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n"); strerror = KERN_NOTICE "BF535: VEC_ISTRU_VL\n";
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
#else #else
@ -459,21 +466,21 @@ asmlinkage void trap_c(struct pt_regs *fp)
case VEC_MISALI_I: case VEC_MISALI_I:
info.si_code = BUS_ADRALN; info.si_code = BUS_ADRALN;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x2A(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x2B - Instruction CPLB protection violation, handled here */ /* 0x2B - Instruction CPLB protection violation, handled here */
case VEC_CPLB_I_VL: case VEC_CPLB_I_VL:
info.si_code = ILL_CPLB_VI; info.si_code = ILL_CPLB_VI;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x2B(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */ /* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
case VEC_CPLB_I_M: case VEC_CPLB_I_M:
info.si_code = ILL_CPLB_MISS; info.si_code = ILL_CPLB_MISS;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x2C(KERN_NOTICE);
break; break;
/* 0x2D - Instruction CPLB Multiple Hits, handled here */ /* 0x2D - Instruction CPLB Multiple Hits, handled here */
case VEC_CPLB_I_MHIT: case VEC_CPLB_I_MHIT:
@ -481,17 +488,17 @@ asmlinkage void trap_c(struct pt_regs *fp)
sig = SIGSEGV; sig = SIGSEGV;
#ifdef CONFIG_DEBUG_HUNT_FOR_ZERO #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START) if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
verbose_printk(KERN_NOTICE "Jump to NULL address\n"); strerror = KERN_NOTICE "Jump to NULL address\n";
else else
#endif #endif
verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x2D(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x2E - Illegal use of Supervisor Resource, handled here */ /* 0x2E - Illegal use of Supervisor Resource, handled here */
case VEC_ILL_RES: case VEC_ILL_RES:
info.si_code = ILL_PRVOPC; info.si_code = ILL_PRVOPC;
sig = SIGILL; sig = SIGILL;
verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE)); strerror = KERN_NOTICE EXC_0x2E(KERN_NOTICE);
CHK_DEBUGGER_TRAP_MAYBE(); CHK_DEBUGGER_TRAP_MAYBE();
break; break;
/* 0x2F - Reserved, Caught by default */ /* 0x2F - Reserved, Caught by default */
@ -519,17 +526,17 @@ asmlinkage void trap_c(struct pt_regs *fp)
case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR): case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
info.si_code = BUS_ADRALN; info.si_code = BUS_ADRALN;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE)); strerror = KERN_NOTICE HWC_x2(KERN_NOTICE);
break; break;
/* External Memory Addressing Error */ /* External Memory Addressing Error */
case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR): case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
info.si_code = BUS_ADRERR; info.si_code = BUS_ADRERR;
sig = SIGBUS; sig = SIGBUS;
verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE)); strerror = KERN_NOTICE HWC_x3(KERN_NOTICE);
break; break;
/* Performance Monitor Overflow */ /* Performance Monitor Overflow */
case (SEQSTAT_HWERRCAUSE_PERF_FLOW): case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE)); strerror = KERN_NOTICE HWC_x12(KERN_NOTICE);
break; break;
/* RAISE 5 instruction */ /* RAISE 5 instruction */
case (SEQSTAT_HWERRCAUSE_RAISE_5): case (SEQSTAT_HWERRCAUSE_RAISE_5):
@ -546,7 +553,6 @@ asmlinkage void trap_c(struct pt_regs *fp)
* if we get here we hit a reserved one, so panic * if we get here we hit a reserved one, so panic
*/ */
default: default:
oops_in_progress = 1;
info.si_code = ILL_ILLPARAOP; info.si_code = ILL_ILLPARAOP;
sig = SIGILL; sig = SIGILL;
verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n", verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
@ -557,6 +563,16 @@ asmlinkage void trap_c(struct pt_regs *fp)
BUG_ON(sig == 0); BUG_ON(sig == 0);
/* If the fault was caused by a kernel thread, or interrupt handler
* we will kernel panic, so the system reboots.
*/
if (kernel_mode_regs(fp) || (current && !current->mm)) {
console_verbose();
oops_in_progress = 1;
if (strerror)
verbose_printk(strerror);
}
if (sig != SIGTRAP) { if (sig != SIGTRAP) {
dump_bfin_process(fp); dump_bfin_process(fp);
dump_bfin_mem(fp); dump_bfin_mem(fp);
@ -606,8 +622,8 @@ asmlinkage void trap_c(struct pt_regs *fp)
if (ANOMALY_05000461 && trapnr == VEC_HWERR && !access_ok(VERIFY_READ, fp->pc, 8)) if (ANOMALY_05000461 && trapnr == VEC_HWERR && !access_ok(VERIFY_READ, fp->pc, 8))
fp->pc = SAFE_USER_INSTRUCTION; fp->pc = SAFE_USER_INSTRUCTION;
traps_done:
trace_buffer_restore(j); trace_buffer_restore(j);
return;
} }
/* Typical exception handling routines */ /* Typical exception handling routines */
@ -792,6 +808,18 @@ void dump_bfin_trace_buffer(void)
} }
EXPORT_SYMBOL(dump_bfin_trace_buffer); EXPORT_SYMBOL(dump_bfin_trace_buffer);
#ifdef CONFIG_BUG
int is_valid_bugaddr(unsigned long addr)
{
unsigned short opcode;
if (!get_instruction(&opcode, (unsigned short *)addr))
return 0;
return opcode == BFIN_BUG_OPCODE;
}
#endif
/* /*
* Checks to see if the address pointed to is either a * Checks to see if the address pointed to is either a
* 16-bit CALL instruction, or a 32-bit CALL instruction * 16-bit CALL instruction, or a 32-bit CALL instruction

View File

@ -54,6 +54,7 @@ SECTIONS
SCHED_TEXT SCHED_TEXT
#endif #endif
LOCK_TEXT LOCK_TEXT
IRQENTRY_TEXT
KPROBES_TEXT KPROBES_TEXT
*(.text.*) *(.text.*)
*(.fixup) *(.fixup)
@ -166,6 +167,20 @@ SECTIONS
} }
PERCPU(4) PERCPU(4)
SECURITY_INIT SECURITY_INIT
/* we have to discard exit text and such at runtime, not link time, to
* handle embedded cross-section references (alt instructions, bug
* table, eh_frame, etc...)
*/
.exit.text :
{
EXIT_TEXT
}
.exit.data :
{
EXIT_DATA
}
.init.ramfs : .init.ramfs :
{ {
. = ALIGN(4); . = ALIGN(4);
@ -264,8 +279,6 @@ SECTIONS
/DISCARD/ : /DISCARD/ :
{ {
EXIT_TEXT
EXIT_DATA
*(.exitcall.exit) *(.exitcall.exit)
} }
} }

View File

@ -116,6 +116,7 @@ __sum16 ip_compute_csum(const void *buff, int len)
{ {
return (__force __sum16)~do_csum(buff, len); return (__force __sum16)~do_csum(buff, len);
} }
EXPORT_SYMBOL(ip_compute_csum);
/* /*
* copy from fs while checksumming, otherwise like csum_partial * copy from fs while checksumming, otherwise like csum_partial
@ -130,6 +131,7 @@ csum_partial_copy_from_user(const void __user *src, void *dst,
memcpy(dst, (__force void *)src, len); memcpy(dst, (__force void *)src, len);
return csum_partial(dst, len, sum); return csum_partial(dst, len, sum);
} }
EXPORT_SYMBOL(csum_partial_copy_from_user);
/* /*
* copy from ds while checksumming, otherwise like csum_partial * copy from ds while checksumming, otherwise like csum_partial

View File

@ -246,7 +246,7 @@ static struct spi_board_info bfin_spi_board_info[] __initdata = {
.modalias = "m25p80", /* Name of spi_driver for this device */ .modalias = "m25p80", /* Name of spi_driver for this device */
.max_speed_hz = 25000000, /* max spi clock (SCK) speed in HZ */ .max_speed_hz = 25000000, /* max spi clock (SCK) speed in HZ */
.bus_num = 0, /* Framework bus number */ .bus_num = 0, /* Framework bus number */
.chip_select = 1, /* Framework chip select. On STAMP537 it is SPISSEL1*/ .chip_select = 2, /* On BF518F-EZBRD it's SPI0_SSEL2 */
.platform_data = &bfin_spi_flash_data, .platform_data = &bfin_spi_flash_data,
.controller_data = &spi_flash_chip_info, .controller_data = &spi_flash_chip_info,
.mode = SPI_MODE_3, .mode = SPI_MODE_3,
@ -369,6 +369,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI0, .start = CH_SPI0,
.end = CH_SPI0, .end = CH_SPI0,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI0,
.end = IRQ_SPI0,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
}; };
@ -399,6 +404,11 @@ static struct resource bfin_spi1_resource[] = {
[1] = { [1] = {
.start = CH_SPI1, .start = CH_SPI1,
.end = CH_SPI1, .end = CH_SPI1,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI1,
.end = IRQ_SPI1,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
}; };

View File

@ -664,6 +664,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
}; };

View File

@ -467,6 +467,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
}; };

View File

@ -723,6 +723,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
}; };

View File

@ -266,6 +266,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -162,6 +162,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -160,6 +160,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -196,6 +196,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -299,6 +299,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -182,8 +182,13 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} },
}; };
/* SPI controller data */ /* SPI controller data */

View File

@ -184,6 +184,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
}; };

View File

@ -398,8 +398,13 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} },
}; };
/* SPI controller data */ /* SPI controller data */

View File

@ -1345,7 +1345,7 @@ static struct i2c_board_info __initdata bfin_i2c_board_info[] = {
#if defined(CONFIG_PMIC_ADP5520) || defined(CONFIG_PMIC_ADP5520_MODULE) #if defined(CONFIG_PMIC_ADP5520) || defined(CONFIG_PMIC_ADP5520_MODULE)
{ {
I2C_BOARD_INFO("pmic-adp5520", 0x32), I2C_BOARD_INFO("pmic-adp5520", 0x32),
.irq = IRQ_PF7, .irq = IRQ_PG0,
.platform_data = (void *)&adp5520_pdev_data, .platform_data = (void *)&adp5520_pdev_data,
}, },
#endif #endif

View File

@ -182,6 +182,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -352,6 +352,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI0, .start = CH_SPI0,
.end = CH_SPI0, .end = CH_SPI0,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI0,
.end = IRQ_SPI0,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };
@ -366,6 +371,11 @@ static struct resource bfin_spi1_resource[] = {
[1] = { [1] = {
.start = CH_SPI1, .start = CH_SPI1,
.end = CH_SPI1, .end = CH_SPI1,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI1,
.end = IRQ_SPI1,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -612,6 +612,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI0, .start = CH_SPI0,
.end = CH_SPI0, .end = CH_SPI0,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI0,
.end = IRQ_SPI0,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };
@ -626,6 +631,11 @@ static struct resource bfin_spi1_resource[] = {
[1] = { [1] = {
.start = CH_SPI1, .start = CH_SPI1,
.end = CH_SPI1, .end = CH_SPI1,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI1,
.end = IRQ_SPI1,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -396,6 +396,8 @@ static struct platform_device bfin_sir3_device = {
#endif #endif
#if defined(CONFIG_SMSC911X) || defined(CONFIG_SMSC911X_MODULE) #if defined(CONFIG_SMSC911X) || defined(CONFIG_SMSC911X_MODULE)
#include <linux/smsc911x.h>
static struct resource smsc911x_resources[] = { static struct resource smsc911x_resources[] = {
{ {
.name = "smsc911x-memory", .name = "smsc911x-memory",
@ -409,11 +411,22 @@ static struct resource smsc911x_resources[] = {
.flags = IORESOURCE_IRQ | IORESOURCE_IRQ_LOWLEVEL, .flags = IORESOURCE_IRQ | IORESOURCE_IRQ_LOWLEVEL,
}, },
}; };
static struct smsc911x_platform_config smsc911x_config = {
.flags = SMSC911X_USE_32BIT,
.irq_polarity = SMSC911X_IRQ_POLARITY_ACTIVE_LOW,
.irq_type = SMSC911X_IRQ_TYPE_OPEN_DRAIN,
.phy_interface = PHY_INTERFACE_MODE_MII,
};
static struct platform_device smsc911x_device = { static struct platform_device smsc911x_device = {
.name = "smsc911x", .name = "smsc911x",
.id = 0, .id = 0,
.num_resources = ARRAY_SIZE(smsc911x_resources), .num_resources = ARRAY_SIZE(smsc911x_resources),
.resource = smsc911x_resources, .resource = smsc911x_resources,
.dev = {
.platform_data = &smsc911x_config,
},
}; };
#endif #endif
@ -741,6 +754,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI0, .start = CH_SPI0,
.end = CH_SPI0, .end = CH_SPI0,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI0,
.end = IRQ_SPI0,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };
@ -755,6 +773,11 @@ static struct resource bfin_spi1_resource[] = {
[1] = { [1] = {
.start = CH_SPI1, .start = CH_SPI1,
.end = CH_SPI1, .end = CH_SPI1,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI1,
.end = IRQ_SPI1,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -177,8 +177,13 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} },
}; };
/* SPI controller data */ /* SPI controller data */

View File

@ -304,6 +304,11 @@ static struct resource bfin_spi0_resource[] = {
[1] = { [1] = {
.start = CH_SPI, .start = CH_SPI,
.end = CH_SPI, .end = CH_SPI,
.flags = IORESOURCE_DMA,
},
[2] = {
.start = IRQ_SPI,
.end = IRQ_SPI,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
} }
}; };

View File

@ -16,9 +16,21 @@
void blackfin_invalidate_entire_dcache(void) void blackfin_invalidate_entire_dcache(void)
{ {
u32 dmem = bfin_read_DMEM_CONTROL(); u32 dmem = bfin_read_DMEM_CONTROL();
SSYNC();
bfin_write_DMEM_CONTROL(dmem & ~0xc); bfin_write_DMEM_CONTROL(dmem & ~0xc);
SSYNC(); SSYNC();
bfin_write_DMEM_CONTROL(dmem); bfin_write_DMEM_CONTROL(dmem);
SSYNC(); SSYNC();
} }
/* Invalidate the Entire Instruction cache by
* clearing IMC bit
*/
void blackfin_invalidate_entire_icache(void)
{
u32 imem = bfin_read_IMEM_CONTROL();
bfin_write_IMEM_CONTROL(imem & ~0x4);
SSYNC();
bfin_write_IMEM_CONTROL(imem);
SSYNC();
}

View File

@ -42,6 +42,7 @@
#include <asm/thread_info.h> /* TIF_NEED_RESCHED */ #include <asm/thread_info.h> /* TIF_NEED_RESCHED */
#include <asm/asm-offsets.h> #include <asm/asm-offsets.h>
#include <asm/trace.h> #include <asm/trace.h>
#include <asm/traps.h>
#include <asm/context.S> #include <asm/context.S>
@ -84,13 +85,15 @@ ENTRY(_ex_workaround_261)
if !cc jump _bfin_return_from_exception; if !cc jump _bfin_return_from_exception;
/* fall through */ /* fall through */
R7 = P4; R7 = P4;
R6 = 0x26; /* Data CPLB Miss */ R6 = VEC_CPLB_M; /* Data CPLB Miss */
cc = R6 == R7; cc = R6 == R7;
if cc jump _ex_dcplb_miss (BP); if cc jump _ex_dcplb_miss (BP);
R6 = 0x23; /* Data CPLB Miss */ #ifdef CONFIG_MPU
R6 = VEC_CPLB_VL; /* Data CPLB Violation */
cc = R6 == R7; cc = R6 == R7;
if cc jump _ex_dcplb_viol (BP); if cc jump _ex_dcplb_viol (BP);
/* Handle 0x23 Data CPLB Protection Violation #endif
/* Handle Data CPLB Protection Violation
* and Data CPLB Multiple Hits - Linux Trap Zero * and Data CPLB Multiple Hits - Linux Trap Zero
*/ */
jump _ex_trap_c; jump _ex_trap_c;
@ -270,7 +273,7 @@ ENTRY(_bfin_return_from_exception)
r6.l = lo(SEQSTAT_EXCAUSE); r6.l = lo(SEQSTAT_EXCAUSE);
r6.h = hi(SEQSTAT_EXCAUSE); r6.h = hi(SEQSTAT_EXCAUSE);
r7 = r7 & r6; r7 = r7 & r6;
r6 = 0x25; r6 = VEC_UNCOV;
CC = R7 == R6; CC = R7 == R6;
if CC JUMP _double_fault; if CC JUMP _double_fault;
#endif #endif
@ -1605,6 +1608,7 @@ ENTRY(_sys_call_table)
.long _sys_inotify_init1 /* 365 */ .long _sys_inotify_init1 /* 365 */
.long _sys_preadv .long _sys_preadv
.long _sys_pwritev .long _sys_pwritev
.long _sys_rt_tgsigqueueinfo
.rept NR_syscalls-(.-_sys_call_table)/4 .rept NR_syscalls-(.-_sys_call_table)/4
.long _sys_ni_syscall .long _sys_ni_syscall

View File

@ -144,7 +144,7 @@ static void ipi_call_function(unsigned int cpu, struct ipi_message *msg)
static irqreturn_t ipi_handler(int irq, void *dev_instance) static irqreturn_t ipi_handler(int irq, void *dev_instance)
{ {
struct ipi_message *msg, *mg; struct ipi_message *msg;
struct ipi_message_queue *msg_queue; struct ipi_message_queue *msg_queue;
unsigned int cpu = smp_processor_id(); unsigned int cpu = smp_processor_id();
@ -154,7 +154,8 @@ static irqreturn_t ipi_handler(int irq, void *dev_instance)
msg_queue->count++; msg_queue->count++;
spin_lock(&msg_queue->lock); spin_lock(&msg_queue->lock);
list_for_each_entry_safe(msg, mg, &msg_queue->head, list) { while (!list_empty(&msg_queue->head)) {
msg = list_entry(msg_queue->head.next, typeof(*msg), list);
list_del(&msg->list); list_del(&msg->list);
switch (msg->type) { switch (msg->type) {
case BFIN_IPI_RESCHEDULE: case BFIN_IPI_RESCHEDULE:
@ -221,7 +222,7 @@ int smp_call_function(void (*func)(void *info), void *info, int wait)
for_each_cpu_mask(cpu, callmap) { for_each_cpu_mask(cpu, callmap) {
msg_queue = &per_cpu(ipi_msg_queue, cpu); msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags); spin_lock_irqsave(&msg_queue->lock, flags);
list_add(&msg->list, &msg_queue->head); list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags); spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu); platform_send_ipi_cpu(cpu);
} }
@ -261,7 +262,7 @@ int smp_call_function_single(int cpuid, void (*func) (void *info), void *info,
msg_queue = &per_cpu(ipi_msg_queue, cpu); msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags); spin_lock_irqsave(&msg_queue->lock, flags);
list_add(&msg->list, &msg_queue->head); list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags); spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu); platform_send_ipi_cpu(cpu);
@ -292,7 +293,7 @@ void smp_send_reschedule(int cpu)
msg_queue = &per_cpu(ipi_msg_queue, cpu); msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags); spin_lock_irqsave(&msg_queue->lock, flags);
list_add(&msg->list, &msg_queue->head); list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags); spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu); platform_send_ipi_cpu(cpu);
@ -320,7 +321,7 @@ void smp_send_stop(void)
for_each_cpu_mask(cpu, callmap) { for_each_cpu_mask(cpu, callmap) {
msg_queue = &per_cpu(ipi_msg_queue, cpu); msg_queue = &per_cpu(ipi_msg_queue, cpu);
spin_lock_irqsave(&msg_queue->lock, flags); spin_lock_irqsave(&msg_queue->lock, flags);
list_add(&msg->list, &msg_queue->head); list_add_tail(&msg->list, &msg_queue->head);
spin_unlock_irqrestore(&msg_queue->lock, flags); spin_unlock_irqrestore(&msg_queue->lock, flags);
platform_send_ipi_cpu(cpu); platform_send_ipi_cpu(cpu);
} }
@ -468,6 +469,17 @@ void smp_icache_flush_range_others(unsigned long start, unsigned long end)
} }
EXPORT_SYMBOL_GPL(smp_icache_flush_range_others); EXPORT_SYMBOL_GPL(smp_icache_flush_range_others);
#ifdef __ARCH_SYNC_CORE_ICACHE
void resync_core_icache(void)
{
unsigned int cpu = get_cpu();
blackfin_invalidate_entire_icache();
++per_cpu(cpu_data, cpu).icache_invld_count;
put_cpu();
}
EXPORT_SYMBOL(resync_core_icache);
#endif
#ifdef __ARCH_SYNC_CORE_DCACHE #ifdef __ARCH_SYNC_CORE_DCACHE
unsigned long barrier_mask __attribute__ ((__section__(".l2.bss"))); unsigned long barrier_mask __attribute__ ((__section__(".l2.bss")));

View File

@ -8,7 +8,7 @@
#include <linux/sort.h> #include <linux/sort.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/module.h> #include <linux/module.h>
static int cmp_ex(const void *a, const void *b) static int cmp_ex(const void *a, const void *b)
{ {
@ -55,7 +55,7 @@ void sort_extable (struct exception_table_entry *start,
static inline unsigned long ex_to_addr(const struct exception_table_entry *x) static inline unsigned long ex_to_addr(const struct exception_table_entry *x)
{ {
return (unsigned long)&x->insn + x->insn; return (unsigned long)&x->addr + x->addr;
} }
#ifdef CONFIG_MODULES #ifdef CONFIG_MODULES

View File

@ -963,7 +963,7 @@ CONFIG_EEPROM_LEGACY=y
CONFIG_SENSORS_PCF8574=y CONFIG_SENSORS_PCF8574=y
# CONFIG_PCF8575 is not set # CONFIG_PCF8575 is not set
CONFIG_SENSORS_PCF8591=y CONFIG_SENSORS_PCF8591=y
CONFIG_SENSORS_MAX6875=y CONFIG_EEPROM_MAX6875=y
# CONFIG_SENSORS_TSL2550 is not set # CONFIG_SENSORS_TSL2550 is not set
CONFIG_I2C_DEBUG_CORE=y CONFIG_I2C_DEBUG_CORE=y
CONFIG_I2C_DEBUG_ALGO=y CONFIG_I2C_DEBUG_ALGO=y

View File

@ -1849,7 +1849,7 @@ CONFIG_EEPROM_LEGACY=m
CONFIG_SENSORS_PCF8574=m CONFIG_SENSORS_PCF8574=m
CONFIG_SENSORS_PCA9539=m CONFIG_SENSORS_PCA9539=m
CONFIG_SENSORS_PCF8591=m CONFIG_SENSORS_PCF8591=m
CONFIG_SENSORS_MAX6875=m CONFIG_EEPROM_MAX6875=m
# CONFIG_SENSORS_TSL2550 is not set # CONFIG_SENSORS_TSL2550 is not set
# CONFIG_I2C_DEBUG_CORE is not set # CONFIG_I2C_DEBUG_CORE is not set
# CONFIG_I2C_DEBUG_ALGO is not set # CONFIG_I2C_DEBUG_ALGO is not set

View File

@ -119,6 +119,8 @@
#define EOWNERDEAD 165 /* Owner died */ #define EOWNERDEAD 165 /* Owner died */
#define ENOTRECOVERABLE 166 /* State not recoverable */ #define ENOTRECOVERABLE 166 /* State not recoverable */
#define ERFKILL 167 /* Operation not possible due to RF-kill */
#define EDQUOT 1133 /* Quota exceeded */ #define EDQUOT 1133 /* Quota exceeded */
#ifdef __KERNEL__ #ifdef __KERNEL__

View File

@ -120,5 +120,6 @@
#define EOWNERDEAD 254 /* Owner died */ #define EOWNERDEAD 254 /* Owner died */
#define ENOTRECOVERABLE 255 /* State not recoverable */ #define ENOTRECOVERABLE 255 /* State not recoverable */
#define ERFKILL 256 /* Operation not possible due to RF-kill */
#endif #endif

View File

@ -1808,7 +1808,7 @@ CONFIG_PCF8575=m
CONFIG_SENSORS_PCA9539=m CONFIG_SENSORS_PCA9539=m
CONFIG_SENSORS_PCF8591=m CONFIG_SENSORS_PCF8591=m
# CONFIG_TPS65010 is not set # CONFIG_TPS65010 is not set
CONFIG_SENSORS_MAX6875=m CONFIG_EEPROM_MAX6875=m
CONFIG_SENSORS_TSL2550=m CONFIG_SENSORS_TSL2550=m
CONFIG_MCU_MPC8349EMITX=m CONFIG_MCU_MPC8349EMITX=m
# CONFIG_I2C_DEBUG_CORE is not set # CONFIG_I2C_DEBUG_CORE is not set

View File

@ -675,6 +675,8 @@ struct ucc_slow_pram {
#define UCC_GETH_UPSMR_RMM 0x00001000 #define UCC_GETH_UPSMR_RMM 0x00001000
#define UCC_GETH_UPSMR_CAM 0x00000400 #define UCC_GETH_UPSMR_CAM 0x00000400
#define UCC_GETH_UPSMR_BRO 0x00000200 #define UCC_GETH_UPSMR_BRO 0x00000200
#define UCC_GETH_UPSMR_SMM 0x00000080
#define UCC_GETH_UPSMR_SGMM 0x00000020
/* UCC Transmit On Demand Register (UTODR) */ /* UCC Transmit On Demand Register (UTODR) */
#define UCC_SLOW_TOD 0x8000 #define UCC_SLOW_TOD 0x8000

View File

@ -14,6 +14,7 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/fsl_devices.h> #include <linux/fsl_devices.h>
#include <linux/mdio-bitbang.h> #include <linux/mdio-bitbang.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h> #include <linux/of_platform.h>
#include <asm/io.h> #include <asm/io.h>
@ -115,7 +116,7 @@ static int __devinit ep8248e_mdio_probe(struct of_device *ofdev,
struct mii_bus *bus; struct mii_bus *bus;
struct resource res; struct resource res;
struct device_node *node; struct device_node *node;
int ret, i; int ret;
node = of_get_parent(ofdev->node); node = of_get_parent(ofdev->node);
of_node_put(node); of_node_put(node);
@ -130,17 +131,13 @@ static int __devinit ep8248e_mdio_probe(struct of_device *ofdev,
if (!bus) if (!bus)
return -ENOMEM; return -ENOMEM;
bus->phy_mask = 0;
bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
for (i = 0; i < PHY_MAX_ADDR; i++)
bus->irq[i] = -1;
bus->name = "ep8248e-mdio-bitbang"; bus->name = "ep8248e-mdio-bitbang";
bus->parent = &ofdev->dev; bus->parent = &ofdev->dev;
snprintf(bus->id, MII_BUS_ID_SIZE, "%x", res.start); snprintf(bus->id, MII_BUS_ID_SIZE, "%x", res.start);
return mdiobus_register(bus); return of_mdiobus_register(bus, ofdev->node);
} }
static int ep8248e_mdio_remove(struct of_device *ofdev) static int ep8248e_mdio_remove(struct of_device *ofdev)

View File

@ -29,7 +29,7 @@
#include <linux/ioport.h> #include <linux/ioport.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/phy.h> #include <linux/phy.h>
#include <linux/platform_device.h> #include <linux/of_mdio.h>
#include <linux/of_platform.h> #include <linux/of_platform.h>
#define DELAY 1 #define DELAY 1
@ -39,6 +39,7 @@ static void __iomem *gpio_regs;
struct gpio_priv { struct gpio_priv {
int mdc_pin; int mdc_pin;
int mdio_pin; int mdio_pin;
int mdio_irqs[PHY_MAX_ADDR];
}; };
#define MDC_PIN(bus) (((struct gpio_priv *)bus->priv)->mdc_pin) #define MDC_PIN(bus) (((struct gpio_priv *)bus->priv)->mdc_pin)
@ -218,12 +219,11 @@ static int __devinit gpio_mdio_probe(struct of_device *ofdev,
const struct of_device_id *match) const struct of_device_id *match)
{ {
struct device *dev = &ofdev->dev; struct device *dev = &ofdev->dev;
struct device_node *phy_dn, *np = ofdev->node; struct device_node *np = ofdev->node;
struct mii_bus *new_bus; struct mii_bus *new_bus;
struct gpio_priv *priv; struct gpio_priv *priv;
const unsigned int *prop; const unsigned int *prop;
int err; int err;
int i;
err = -ENOMEM; err = -ENOMEM;
priv = kzalloc(sizeof(struct gpio_priv), GFP_KERNEL); priv = kzalloc(sizeof(struct gpio_priv), GFP_KERNEL);
@ -244,27 +244,7 @@ static int __devinit gpio_mdio_probe(struct of_device *ofdev,
snprintf(new_bus->id, MII_BUS_ID_SIZE, "%x", *prop); snprintf(new_bus->id, MII_BUS_ID_SIZE, "%x", *prop);
new_bus->priv = priv; new_bus->priv = priv;
new_bus->phy_mask = 0; new_bus->irq = priv->mdio_irqs;
new_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
if (!new_bus->irq)
goto out_free_bus;
for (i = 0; i < PHY_MAX_ADDR; i++)
new_bus->irq[i] = NO_IRQ;
for (phy_dn = of_get_next_child(np, NULL);
phy_dn != NULL;
phy_dn = of_get_next_child(np, phy_dn)) {
const unsigned int *ip, *regp;
ip = of_get_property(phy_dn, "interrupts", NULL);
regp = of_get_property(phy_dn, "reg", NULL);
if (!ip || !regp || *regp >= PHY_MAX_ADDR)
continue;
new_bus->irq[*regp] = irq_create_mapping(NULL, *ip);
}
prop = of_get_property(np, "mdc-pin", NULL); prop = of_get_property(np, "mdc-pin", NULL);
priv->mdc_pin = *prop; priv->mdc_pin = *prop;
@ -275,7 +255,7 @@ static int __devinit gpio_mdio_probe(struct of_device *ofdev,
new_bus->parent = dev; new_bus->parent = dev;
dev_set_drvdata(dev, new_bus); dev_set_drvdata(dev, new_bus);
err = mdiobus_register(new_bus); err = of_mdiobus_register(new_bus, np);
if (err != 0) { if (err != 0) {
printk(KERN_ERR "%s: Cannot register as MDIO bus, err %d\n", printk(KERN_ERR "%s: Cannot register as MDIO bus, err %d\n",
@ -286,8 +266,6 @@ static int __devinit gpio_mdio_probe(struct of_device *ofdev,
return 0; return 0;
out_free_irq: out_free_irq:
kfree(new_bus->irq);
out_free_bus:
kfree(new_bus); kfree(new_bus);
out_free_priv: out_free_priv:
kfree(priv); kfree(priv);

View File

@ -348,6 +348,9 @@ config ARCH_ENABLE_MEMORY_HOTPLUG
config ARCH_ENABLE_MEMORY_HOTREMOVE config ARCH_ENABLE_MEMORY_HOTREMOVE
def_bool y def_bool y
config ARCH_HIBERNATION_POSSIBLE
def_bool y if 64BIT
source "mm/Kconfig" source "mm/Kconfig"
comment "I/O subsystem configuration" comment "I/O subsystem configuration"
@ -592,6 +595,12 @@ config SECCOMP
endmenu endmenu
menu "Power Management"
source "kernel/power/Kconfig"
endmenu
source "net/Kconfig" source "net/Kconfig"
config PCMCIA config PCMCIA

View File

@ -88,7 +88,9 @@ LDFLAGS_vmlinux := -e start
head-y := arch/s390/kernel/head.o arch/s390/kernel/init_task.o head-y := arch/s390/kernel/head.o arch/s390/kernel/init_task.o
core-y += arch/s390/mm/ arch/s390/kernel/ arch/s390/crypto/ \ core-y += arch/s390/mm/ arch/s390/kernel/ arch/s390/crypto/ \
arch/s390/appldata/ arch/s390/hypfs/ arch/s390/kvm/ arch/s390/appldata/ arch/s390/hypfs/ arch/s390/kvm/ \
arch/s390/power/
libs-y += arch/s390/lib/ libs-y += arch/s390/lib/
drivers-y += drivers/s390/ drivers-y += drivers/s390/
drivers-$(CONFIG_MATHEMU) += arch/s390/math-emu/ drivers-$(CONFIG_MATHEMU) += arch/s390/math-emu/

View File

@ -5,7 +5,7 @@
* Exports appldata_register_ops() and appldata_unregister_ops() for the * Exports appldata_register_ops() and appldata_unregister_ops() for the
* data gathering modules. * data gathering modules.
* *
* Copyright IBM Corp. 2003, 2008 * Copyright IBM Corp. 2003, 2009
* *
* Author: Gerald Schaefer <gerald.schaefer@de.ibm.com> * Author: Gerald Schaefer <gerald.schaefer@de.ibm.com>
*/ */
@ -26,6 +26,8 @@
#include <linux/notifier.h> #include <linux/notifier.h>
#include <linux/cpu.h> #include <linux/cpu.h>
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/suspend.h>
#include <linux/platform_device.h>
#include <asm/appldata.h> #include <asm/appldata.h>
#include <asm/timer.h> #include <asm/timer.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
@ -41,6 +43,9 @@
#define TOD_MICRO 0x01000 /* nr. of TOD clock units #define TOD_MICRO 0x01000 /* nr. of TOD clock units
for 1 microsecond */ for 1 microsecond */
static struct platform_device *appldata_pdev;
/* /*
* /proc entries (sysctl) * /proc entries (sysctl)
*/ */
@ -86,6 +91,7 @@ static atomic_t appldata_expire_count = ATOMIC_INIT(0);
static DEFINE_SPINLOCK(appldata_timer_lock); static DEFINE_SPINLOCK(appldata_timer_lock);
static int appldata_interval = APPLDATA_CPU_INTERVAL; static int appldata_interval = APPLDATA_CPU_INTERVAL;
static int appldata_timer_active; static int appldata_timer_active;
static int appldata_timer_suspended = 0;
/* /*
* Work queue * Work queue
@ -475,6 +481,93 @@ void appldata_unregister_ops(struct appldata_ops *ops)
/********************** module-ops management <END> **************************/ /********************** module-ops management <END> **************************/
/**************************** suspend / resume *******************************/
static int appldata_freeze(struct device *dev)
{
struct appldata_ops *ops;
int rc;
struct list_head *lh;
get_online_cpus();
spin_lock(&appldata_timer_lock);
if (appldata_timer_active) {
__appldata_vtimer_setup(APPLDATA_DEL_TIMER);
appldata_timer_suspended = 1;
}
spin_unlock(&appldata_timer_lock);
put_online_cpus();
mutex_lock(&appldata_ops_mutex);
list_for_each(lh, &appldata_ops_list) {
ops = list_entry(lh, struct appldata_ops, list);
if (ops->active == 1) {
rc = appldata_diag(ops->record_nr, APPLDATA_STOP_REC,
(unsigned long) ops->data, ops->size,
ops->mod_lvl);
if (rc != 0)
pr_err("Stopping the data collection for %s "
"failed with rc=%d\n", ops->name, rc);
}
}
mutex_unlock(&appldata_ops_mutex);
return 0;
}
static int appldata_restore(struct device *dev)
{
struct appldata_ops *ops;
int rc;
struct list_head *lh;
get_online_cpus();
spin_lock(&appldata_timer_lock);
if (appldata_timer_suspended) {
__appldata_vtimer_setup(APPLDATA_ADD_TIMER);
appldata_timer_suspended = 0;
}
spin_unlock(&appldata_timer_lock);
put_online_cpus();
mutex_lock(&appldata_ops_mutex);
list_for_each(lh, &appldata_ops_list) {
ops = list_entry(lh, struct appldata_ops, list);
if (ops->active == 1) {
ops->callback(ops->data); // init record
rc = appldata_diag(ops->record_nr,
APPLDATA_START_INTERVAL_REC,
(unsigned long) ops->data, ops->size,
ops->mod_lvl);
if (rc != 0) {
pr_err("Starting the data collection for %s "
"failed with rc=%d\n", ops->name, rc);
}
}
}
mutex_unlock(&appldata_ops_mutex);
return 0;
}
static int appldata_thaw(struct device *dev)
{
return appldata_restore(dev);
}
static struct dev_pm_ops appldata_pm_ops = {
.freeze = appldata_freeze,
.thaw = appldata_thaw,
.restore = appldata_restore,
};
static struct platform_driver appldata_pdrv = {
.driver = {
.name = "appldata",
.owner = THIS_MODULE,
.pm = &appldata_pm_ops,
},
};
/************************* suspend / resume <END> ****************************/
/******************************* init / exit *********************************/ /******************************* init / exit *********************************/
static void __cpuinit appldata_online_cpu(int cpu) static void __cpuinit appldata_online_cpu(int cpu)
@ -531,11 +624,23 @@ static struct notifier_block __cpuinitdata appldata_nb = {
*/ */
static int __init appldata_init(void) static int __init appldata_init(void)
{ {
int i; int i, rc;
rc = platform_driver_register(&appldata_pdrv);
if (rc)
return rc;
appldata_pdev = platform_device_register_simple("appldata", -1, NULL,
0);
if (IS_ERR(appldata_pdev)) {
rc = PTR_ERR(appldata_pdev);
goto out_driver;
}
appldata_wq = create_singlethread_workqueue("appldata"); appldata_wq = create_singlethread_workqueue("appldata");
if (!appldata_wq) if (!appldata_wq) {
return -ENOMEM; rc = -ENOMEM;
goto out_device;
}
get_online_cpus(); get_online_cpus();
for_each_online_cpu(i) for_each_online_cpu(i)
@ -547,6 +652,12 @@ static int __init appldata_init(void)
appldata_sysctl_header = register_sysctl_table(appldata_dir_table); appldata_sysctl_header = register_sysctl_table(appldata_dir_table);
return 0; return 0;
out_device:
platform_device_unregister(appldata_pdev);
out_driver:
platform_driver_unregister(&appldata_pdrv);
return rc;
} }
__initcall(appldata_init); __initcall(appldata_init);

View File

@ -1,8 +1,6 @@
/* /*
* include/asm-s390/ccwdev.h * Copyright IBM Corp. 2002, 2009
* include/asm-s390x/ccwdev.h
* *
* Copyright (C) 2002 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Arnd Bergmann <arndb@de.ibm.com> * Author(s): Arnd Bergmann <arndb@de.ibm.com>
* *
* Interface for CCW device drivers * Interface for CCW device drivers
@ -104,6 +102,11 @@ struct ccw_device {
* @set_offline: called when setting device offline * @set_offline: called when setting device offline
* @notify: notify driver of device state changes * @notify: notify driver of device state changes
* @shutdown: called at device shutdown * @shutdown: called at device shutdown
* @prepare: prepare for pm state transition
* @complete: undo work done in @prepare
* @freeze: callback for freezing during hibernation snapshotting
* @thaw: undo work done in @freeze
* @restore: callback for restoring after hibernation
* @driver: embedded device driver structure * @driver: embedded device driver structure
* @name: device driver name * @name: device driver name
*/ */
@ -116,6 +119,11 @@ struct ccw_driver {
int (*set_offline) (struct ccw_device *); int (*set_offline) (struct ccw_device *);
int (*notify) (struct ccw_device *, int); int (*notify) (struct ccw_device *, int);
void (*shutdown) (struct ccw_device *); void (*shutdown) (struct ccw_device *);
int (*prepare) (struct ccw_device *);
void (*complete) (struct ccw_device *);
int (*freeze)(struct ccw_device *);
int (*thaw) (struct ccw_device *);
int (*restore)(struct ccw_device *);
struct device_driver driver; struct device_driver driver;
char *name; char *name;
}; };
@ -184,6 +192,7 @@ extern void ccw_device_get_id(struct ccw_device *, struct ccw_dev_id *);
#define to_ccwdrv(n) container_of(n, struct ccw_driver, driver) #define to_ccwdrv(n) container_of(n, struct ccw_driver, driver)
extern struct ccw_device *ccw_device_probe_console(void); extern struct ccw_device *ccw_device_probe_console(void);
extern int ccw_device_force_console(void);
// FIXME: these have to go // FIXME: these have to go
extern int _ccw_device_get_subchannel_number(struct ccw_device *); extern int _ccw_device_get_subchannel_number(struct ccw_device *);

View File

@ -38,6 +38,11 @@ struct ccwgroup_device {
* @set_online: function called when device is set online * @set_online: function called when device is set online
* @set_offline: function called when device is set offline * @set_offline: function called when device is set offline
* @shutdown: function called when device is shut down * @shutdown: function called when device is shut down
* @prepare: prepare for pm state transition
* @complete: undo work done in @prepare
* @freeze: callback for freezing during hibernation snapshotting
* @thaw: undo work done in @freeze
* @restore: callback for restoring after hibernation
* @driver: embedded driver structure * @driver: embedded driver structure
*/ */
struct ccwgroup_driver { struct ccwgroup_driver {
@ -51,6 +56,11 @@ struct ccwgroup_driver {
int (*set_online) (struct ccwgroup_device *); int (*set_online) (struct ccwgroup_device *);
int (*set_offline) (struct ccwgroup_device *); int (*set_offline) (struct ccwgroup_device *);
void (*shutdown)(struct ccwgroup_device *); void (*shutdown)(struct ccwgroup_device *);
int (*prepare) (struct ccwgroup_device *);
void (*complete) (struct ccwgroup_device *);
int (*freeze)(struct ccwgroup_device *);
int (*thaw) (struct ccwgroup_device *);
int (*restore)(struct ccwgroup_device *);
struct device_driver driver; struct device_driver driver;
}; };

View File

@ -0,0 +1,10 @@
#ifndef __ASM_S390_SUSPEND_H
#define __ASM_S390_SUSPEND_H
static inline int arch_prepare_suspend(void)
{
return 0;
}
#endif

View File

@ -1,11 +1,7 @@
/* /*
* include/asm-s390/system.h * Copyright IBM Corp. 1999, 2009
* *
* S390 version * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
* Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
*
* Derived from "include/asm-i386/system.h"
*/ */
#ifndef __ASM_SYSTEM_H #ifndef __ASM_SYSTEM_H
@ -469,6 +465,20 @@ extern psw_t sysc_restore_trace_psw;
extern psw_t io_restore_trace_psw; extern psw_t io_restore_trace_psw;
#endif #endif
static inline int tprot(unsigned long addr)
{
int rc = -EFAULT;
asm volatile(
" tprot 0(%1),0\n"
"0: ipm %0\n"
" srl %0,28\n"
"1:\n"
EX_TABLE(0b,1b)
: "+d" (rc) : "a" (addr) : "cc");
return rc;
}
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
#endif #endif

Some files were not shown because too many files have changed in this diff Show More