2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 19:14:01 +08:00

CRIS: remove SMP code

The CRIS SMP code cannot be built since there is no (and appears to
never have been) a CONFIG_SMP Kconfig option in arch/cris/.  Remove it.

Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Jesper Nilsson <jespern@axis.com>
This commit is contained in:
Rabin Vincent 2015-02-19 17:35:28 +01:00 committed by Jesper Nilsson
parent 06aca92424
commit 47a8f6fb34
17 changed files with 1 additions and 638 deletions

View File

@ -46,7 +46,6 @@ config CRIS
select ARCH_WANT_IPC_PARSE_VERSION
select GENERIC_IRQ_SHOW
select GENERIC_IOMAP
select GENERIC_SMP_IDLE_THREAD if ETRAX_ARCH_V32
select GENERIC_CMOS_UPDATE
select MODULES_USE_ELF_RELA
select CLONE_BACKWARDS2

View File

@ -9,7 +9,6 @@ obj-y := entry.o traps.o irq.o debugport.o \
process.o ptrace.o setup.o signal.o traps.o time.o \
cache.o cacheflush.o
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_ETRAX_KGDB) += kgdb.o kgdb_asm.o
obj-$(CONFIG_ETRAX_FAST_TIMER) += fasttimer.o
obj-$(CONFIG_MODULES) += crisksyms.o

View File

@ -52,11 +52,6 @@ tstart:
GIO_INIT
#ifdef CONFIG_SMP
secondary_cpu_entry: /* Entry point for secondary CPUs */
di
#endif
;; Setup and enable the MMU. Use same configuration for both the data
;; and the instruction MMU.
;;
@ -164,33 +159,6 @@ secondary_cpu_entry: /* Entry point for secondary CPUs */
nop
nop
#ifdef CONFIG_SMP
;; Read CPU ID
move 0, $srs
nop
nop
nop
move $s12, $r0
cmpq 0, $r0
beq master_cpu
nop
slave_cpu:
; Time to boot-up. Get stack location provided by master CPU.
move.d smp_init_current_idle_thread, $r1
move.d [$r1], $sp
add.d 8192, $sp
move.d ebp_start, $r0 ; Defined in linker-script.
move $r0, $ebp
jsr smp_callin
nop
master_cpu:
/* Set up entry point for secondary CPUs. The boot ROM has set up
* EBP at start of internal memory. The CPU will get there
* later when we issue an IPI to them... */
move.d MEM_INTMEM_START + IPI_INTR_VECT * 4, $r0
move.d secondary_cpu_entry, $r1
move.d $r1, [$r0]
#endif
; Check if starting from DRAM (network->RAM boot or unpacked
; compressed kernel), or directly from flash.
lapcq ., $r0

View File

@ -58,9 +58,6 @@ struct cris_irq_allocation irq_allocations[NR_REAL_IRQS] =
static unsigned long irq_regs[NR_CPUS] =
{
regi_irq,
#ifdef CONFIG_SMP
regi_irq2,
#endif
};
#if NR_REAL_IRQS > 32

View File

@ -63,11 +63,6 @@ int show_cpuinfo(struct seq_file *m, void *v)
info = &cpinfo[ARRAY_SIZE(cpinfo) - 1];
#ifdef CONFIG_SMP
if (!cpu_online(cpu))
return 0;
#endif
revision = rdvr();
for (i = 0; i < ARRAY_SIZE(cpinfo); i++) {

View File

@ -1,358 +0,0 @@
#include <linux/types.h>
#include <asm/delay.h>
#include <irq.h>
#include <hwregs/intr_vect.h>
#include <hwregs/intr_vect_defs.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <hwregs/asm/mmu_defs_asm.h>
#include <hwregs/supp_reg.h>
#include <linux/atomic.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#define IPI_SCHEDULE 1
#define IPI_CALL 2
#define IPI_FLUSH_TLB 4
#define IPI_BOOT 8
#define FLUSH_ALL (void*)0xffffffff
/* Vector of locks used for various atomic operations */
spinlock_t cris_atomic_locks[] = {
[0 ... LOCK_COUNT - 1] = __SPIN_LOCK_UNLOCKED(cris_atomic_locks)
};
/* CPU masks */
cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
EXPORT_SYMBOL(phys_cpu_present_map);
/* Variables used during SMP boot */
volatile int cpu_now_booting = 0;
volatile struct thread_info *smp_init_current_idle_thread;
/* Variables used during IPI */
static DEFINE_SPINLOCK(call_lock);
static DEFINE_SPINLOCK(tlbstate_lock);
struct call_data_struct {
void (*func) (void *info);
void *info;
int wait;
};
static struct call_data_struct * call_data;
static struct mm_struct* flush_mm;
static struct vm_area_struct* flush_vma;
static unsigned long flush_addr;
/* Mode registers */
static unsigned long irq_regs[NR_CPUS] = {
regi_irq,
regi_irq2
};
static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
static struct irqaction irq_ipi = {
.handler = crisv32_ipi_interrupt,
.flags = 0,
.name = "ipi",
};
extern void cris_mmu_init(void);
extern void cris_timer_init(void);
/* SMP initialization */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
int i;
/* From now on we can expect IPIs so set them up */
setup_irq(IPI_INTR_VECT, &irq_ipi);
/* Mark all possible CPUs as present */
for (i = 0; i < max_cpus; i++)
cpumask_set_cpu(i, &phys_cpu_present_map);
}
void smp_prepare_boot_cpu(void)
{
/* PGD pointer has moved after per_cpu initialization so
* update the MMU.
*/
pgd_t **pgd;
pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
SUPP_BANK_SEL(1);
SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
SUPP_BANK_SEL(2);
SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
set_cpu_online(0, true);
cpumask_set_cpu(0, &phys_cpu_present_map);
set_cpu_possible(0, true);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
}
/* Bring one cpu online.*/
static int __init
smp_boot_one_cpu(int cpuid, struct task_struct idle)
{
unsigned timeout;
cpumask_t cpu_mask;
cpumask_clear(&cpu_mask);
task_thread_info(idle)->cpu = cpuid;
/* Information to the CPU that is about to boot */
smp_init_current_idle_thread = task_thread_info(idle);
cpu_now_booting = cpuid;
/* Kick it */
set_cpu_online(cpuid, true);
cpumask_set_cpu(cpuid, &cpu_mask);
send_ipi(IPI_BOOT, 0, cpu_mask);
set_cpu_online(cpuid, false);
/* Wait for CPU to come online */
for (timeout = 0; timeout < 10000; timeout++) {
if(cpu_online(cpuid)) {
cpu_now_booting = 0;
smp_init_current_idle_thread = NULL;
return 0; /* CPU online */
}
udelay(100);
barrier();
}
printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
return -1;
}
/* Secondary CPUs starts using C here. Here we need to setup CPU
* specific stuff such as the local timer and the MMU. */
void __init smp_callin(void)
{
int cpu = cpu_now_booting;
reg_intr_vect_rw_mask vect_mask = {0};
/* Initialise the idle task for this CPU */
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
/* Set up MMU */
cris_mmu_init();
__flush_tlb_all();
/* Setup local timer. */
cris_timer_init();
/* Enable IRQ and idle */
REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
crisv32_unmask_irq(IPI_INTR_VECT);
crisv32_unmask_irq(TIMER0_INTR_VECT);
preempt_disable();
notify_cpu_starting(cpu);
local_irq_enable();
set_cpu_online(cpu, true);
cpu_startup_entry(CPUHP_ONLINE);
}
/* Stop execution on this CPU.*/
void stop_this_cpu(void* dummy)
{
local_irq_disable();
asm volatile("halt");
}
/* Other calls */
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 0);
}
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}
/* cache_decay_ticks is used by the scheduler to decide if a process
* is "hot" on one CPU. A higher value means a higher penalty to move
* a process to another CPU. Our cache is rather small so we report
* 1 tick.
*/
unsigned long cache_decay_ticks = 1;
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
smp_boot_one_cpu(cpu, tidle);
return cpu_online(cpu) ? 0 : -ENOSYS;
}
void smp_send_reschedule(int cpu)
{
cpumask_t cpu_mask;
cpumask_clear(&cpu_mask);
cpumask_set_cpu(cpu, &cpu_mask);
send_ipi(IPI_SCHEDULE, 0, cpu_mask);
}
/* TLB flushing
*
* Flush needs to be done on the local CPU and on any other CPU that
* may have the same mapping. The mm->cpu_vm_mask is used to keep track
* of which CPUs that a specific process has been executed on.
*/
void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
{
unsigned long flags;
cpumask_t cpu_mask;
spin_lock_irqsave(&tlbstate_lock, flags);
cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
flush_mm = mm;
flush_vma = vma;
flush_addr = addr;
send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
spin_unlock_irqrestore(&tlbstate_lock, flags);
}
void flush_tlb_all(void)
{
__flush_tlb_all();
flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
}
void flush_tlb_mm(struct mm_struct *mm)
{
__flush_tlb_mm(mm);
flush_tlb_common(mm, FLUSH_ALL, 0);
/* No more mappings in other CPUs */
cpumask_clear(mm_cpumask(mm));
cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
}
void flush_tlb_page(struct vm_area_struct *vma,
unsigned long addr)
{
__flush_tlb_page(vma, addr);
flush_tlb_common(vma->vm_mm, vma, addr);
}
/* Inter processor interrupts
*
* The IPIs are used for:
* * Force a schedule on a CPU
* * FLush TLB on other CPUs
* * Call a function on other CPUs
*/
int send_ipi(int vector, int wait, cpumask_t cpu_mask)
{
int i = 0;
reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
int ret = 0;
/* Calculate CPUs to send to. */
cpumask_and(&cpu_mask, &cpu_mask, cpu_online_mask);
/* Send the IPI. */
for_each_cpu(i, &cpu_mask)
{
ipi.vector |= vector;
REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
}
/* Wait for IPI to finish on other CPUS */
if (wait) {
for_each_cpu(i, &cpu_mask) {
int j;
for (j = 0 ; j < 1000; j++) {
ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
if (!ipi.vector)
break;
udelay(100);
}
/* Timeout? */
if (ipi.vector) {
printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
ret = -ETIMEDOUT;
dump_stack();
}
}
}
return ret;
}
/*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler.
*/
int smp_call_function(void (*func)(void *info), void *info, int wait)
{
cpumask_t cpu_mask;
struct call_data_struct data;
int ret;
cpumask_setall(&cpu_mask);
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
WARN_ON(irqs_disabled());
data.func = func;
data.info = info;
data.wait = wait;
spin_lock(&call_lock);
call_data = &data;
ret = send_ipi(IPI_CALL, wait, cpu_mask);
spin_unlock(&call_lock);
return ret;
}
irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
{
void (*func) (void *info) = call_data->func;
void *info = call_data->info;
reg_intr_vect_rw_ipi ipi;
ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
if (ipi.vector & IPI_SCHEDULE) {
scheduler_ipi();
}
if (ipi.vector & IPI_CALL) {
func(info);
}
if (ipi.vector & IPI_FLUSH_TLB) {
if (flush_mm == FLUSH_ALL)
__flush_tlb_all();
else if (flush_vma == FLUSH_ALL)
__flush_tlb_mm(flush_mm);
else
__flush_tlb_page(flush_vma, flush_addr);
}
ipi.vector = 0;
REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
return IRQ_HANDLED;
}

View File

@ -60,9 +60,6 @@ arch_initcall(etrax_init_cont_rotime);
unsigned long timer_regs[NR_CPUS] =
{
regi_timer0,
#ifdef CONFIG_SMP
regi_timer2
#endif
};
extern int set_rtc_mmss(unsigned long nowtime);

View File

@ -3,5 +3,5 @@
#
lib-y = checksum.o checksumcopy.o string.o usercopy.o memset.o \
csumcpfruser.o spinlock.o delay.o strcmp.o
csumcpfruser.o delay.o strcmp.o

View File

@ -1,40 +0,0 @@
;; Core of the spinlock implementation
;;
;; Copyright (C) 2004 Axis Communications AB.
;;
;; Author: Mikael Starvik
.global cris_spin_lock
.type cris_spin_lock,@function
.global cris_spin_trylock
.type cris_spin_trylock,@function
.text
cris_spin_lock:
clearf p
1: test.b [$r10]
beq 1b
clearf p
ax
clear.b [$r10]
bcs 1b
clearf p
ret
nop
.size cris_spin_lock, . - cris_spin_lock
cris_spin_trylock:
clearf p
1: move.b [$r10], $r11
ax
clear.b [$r10]
bcs 1b
clearf p
ret
movu.b $r11,$r10
.size cris_spin_trylock, . - cris_spin_trylock

View File

@ -40,17 +40,6 @@ void __init cris_mmu_init(void)
*/
per_cpu(current_pgd, smp_processor_id()) = init_mm.pgd;
#ifdef CONFIG_SMP
{
pgd_t **pgd;
pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
SUPP_BANK_SEL(1);
SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
SUPP_BANK_SEL(2);
SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
}
#endif
/* Initialise the TLB. Function found in tlb.c. */
tlb_init();

View File

@ -115,11 +115,7 @@
move.d $r0, [$r1] ; last_refill_cause = rw_mm_cause
3: ; Probably not in a loop, continue normal processing
#ifdef CONFIG_SMP
move $s7, $acr ; PGD
#else
move.d current_pgd, $acr ; PGD
#endif
; Look up PMD in PGD
lsrq 24, $r0 ; Get PMD index into PGD (bit 24-31)
move.d [$acr], $acr ; PGD for the current process

View File

@ -1,36 +1,8 @@
#ifndef __ASM_CRIS_ARCH_ATOMIC__
#define __ASM_CRIS_ARCH_ATOMIC__
#include <linux/spinlock_types.h>
extern void cris_spin_unlock(void *l, int val);
extern void cris_spin_lock(void *l);
extern int cris_spin_trylock(void* l);
#ifndef CONFIG_SMP
#define cris_atomic_save(addr, flags) local_irq_save(flags);
#define cris_atomic_restore(addr, flags) local_irq_restore(flags);
#else
extern spinlock_t cris_atomic_locks[];
#define LOCK_COUNT 128
#define HASH_ADDR(a) (((int)a) & 127)
#define cris_atomic_save(addr, flags) \
local_irq_save(flags); \
cris_spin_lock((void *)&cris_atomic_locks[HASH_ADDR(addr)].raw_lock.slock);
#define cris_atomic_restore(addr, flags) \
{ \
spinlock_t *lock = (void*)&cris_atomic_locks[HASH_ADDR(addr)]; \
__asm__ volatile ("move.d %1,%0" \
: "=m" (lock->raw_lock.slock) \
: "r" (1) \
: "memory"); \
local_irq_restore(flags); \
}
#endif
#endif

View File

@ -1,131 +0,0 @@
#ifndef __ASM_ARCH_SPINLOCK_H
#define __ASM_ARCH_SPINLOCK_H
#include <linux/spinlock_types.h>
#define RW_LOCK_BIAS 0x01000000
extern void cris_spin_unlock(void *l, int val);
extern void cris_spin_lock(void *l);
extern int cris_spin_trylock(void *l);
static inline int arch_spin_is_locked(arch_spinlock_t *x)
{
return *(volatile signed char *)(&(x)->slock) <= 0;
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
__asm__ volatile ("move.d %1,%0" \
: "=m" (lock->slock) \
: "r" (1) \
: "memory");
}
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
while (arch_spin_is_locked(lock))
cpu_relax();
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
return cris_spin_trylock((void *)&lock->slock);
}
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
cris_spin_lock((void *)&lock->slock);
}
static inline void
arch_spin_lock_flags(arch_spinlock_t *lock, unsigned long flags)
{
arch_spin_lock(lock);
}
/*
* Read-write spinlocks, allowing multiple readers
* but only one writer.
*
* NOTE! it is quite common to have readers in interrupts
* but no interrupt writers. For those circumstances we
* can "mix" irq-safe locks - any writer needs to get a
* irq-safe write-lock, but readers can get non-irqsafe
* read-locks.
*
*/
static inline int arch_read_can_lock(arch_rwlock_t *x)
{
return (int)(x)->lock > 0;
}
static inline int arch_write_can_lock(arch_rwlock_t *x)
{
return (x)->lock == RW_LOCK_BIAS;
}
static inline void arch_read_lock(arch_rwlock_t *rw)
{
arch_spin_lock(&rw->slock);
while (rw->lock == 0);
rw->lock--;
arch_spin_unlock(&rw->slock);
}
static inline void arch_write_lock(arch_rwlock_t *rw)
{
arch_spin_lock(&rw->slock);
while (rw->lock != RW_LOCK_BIAS);
rw->lock = 0;
arch_spin_unlock(&rw->slock);
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
arch_spin_lock(&rw->slock);
rw->lock++;
arch_spin_unlock(&rw->slock);
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
arch_spin_lock(&rw->slock);
while (rw->lock != RW_LOCK_BIAS);
rw->lock = RW_LOCK_BIAS;
arch_spin_unlock(&rw->slock);
}
static inline int arch_read_trylock(arch_rwlock_t *rw)
{
int ret = 0;
arch_spin_lock(&rw->slock);
if (rw->lock != 0) {
rw->lock--;
ret = 1;
}
arch_spin_unlock(&rw->slock);
return ret;
}
static inline int arch_write_trylock(arch_rwlock_t *rw)
{
int ret = 0;
arch_spin_lock(&rw->slock);
if (rw->lock == RW_LOCK_BIAS) {
rw->lock = 0;
ret = 1;
}
arch_spin_unlock(&rw->slock);
return ret;
}
#define _raw_read_lock_flags(lock, flags) _raw_read_lock(lock)
#define _raw_write_lock_flags(lock, flags) _raw_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* __ASM_ARCH_SPINLOCK_H */

View File

@ -46,8 +46,6 @@ static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int siz
(unsigned long)(n), sizeof(*(ptr))))
#define cmpxchg64_local(ptr, o, n) __cmpxchg64_local_generic((ptr), (o), (n))
#ifndef CONFIG_SMP
#include <asm-generic/cmpxchg.h>
#endif
#endif /* __ASM_CRIS_CMPXCHG__ */

View File

@ -1,10 +0,0 @@
#ifndef __ASM_SMP_H
#define __ASM_SMP_H
#include <linux/cpumask.h>
extern cpumask_t phys_cpu_present_map;
#define raw_smp_processor_id() (current_thread_info()->cpu)
#endif

View File

@ -1 +0,0 @@
#include <arch/spinlock.h>

View File

@ -22,16 +22,9 @@ extern void __flush_tlb_mm(struct mm_struct *mm);
extern void __flush_tlb_page(struct vm_area_struct *vma,
unsigned long addr);
#ifdef CONFIG_SMP
extern void flush_tlb_all(void);
extern void flush_tlb_mm(struct mm_struct *mm);
extern void flush_tlb_page(struct vm_area_struct *vma,
unsigned long addr);
#else
#define flush_tlb_all __flush_tlb_all
#define flush_tlb_mm __flush_tlb_mm
#define flush_tlb_page __flush_tlb_page
#endif
static inline void flush_tlb_range(struct vm_area_struct * vma, unsigned long start, unsigned long end)
{