mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 06:34:17 +08:00
fscrypt updates for 6.1
This release contains some implementation changes, but no new features: - Rework the implementation of the fscrypt filesystem-level keyring to not be as tightly coupled to the keyrings subsystem. This resolves several issues. - Eliminate most direct uses of struct request_queue from fs/crypto/, since struct request_queue is considered to be a block layer implementation detail. - Stop using the PG_error flag to track decryption failures. This is a prerequisite for freeing up PG_error for other uses. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCYzpMMRQcZWJpZ2dlcnNA Z29vZ2xlLmNvbQAKCRDzXCl4vpKOKxYbAP0VrWjlqonO75gYkIxwX0aTxajoKC3m awUDAC/feQ910gD6A4WbJivanLngJKgcxfbhN5paalZJEGNOBBrOUB1WLgs= =CxSh -----END PGP SIGNATURE----- Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt Pull fscrypt updates from Eric Biggers: "This release contains some implementation changes, but no new features: - Rework the implementation of the fscrypt filesystem-level keyring to not be as tightly coupled to the keyrings subsystem. This resolves several issues. - Eliminate most direct uses of struct request_queue from fs/crypto/, since struct request_queue is considered to be a block layer implementation detail. - Stop using the PG_error flag to track decryption failures. This is a prerequisite for freeing up PG_error for other uses" * tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt: fscrypt: work on block_devices instead of request_queues fscrypt: stop holding extra request_queue references fscrypt: stop using keyrings subsystem for fscrypt_master_key fscrypt: stop using PG_error to track error status fscrypt: remove fscrypt_set_test_dummy_encryption()
This commit is contained in:
commit
438b2cdd17
@ -25,21 +25,25 @@
|
||||
* then this function isn't applicable. This function may sleep, so it must be
|
||||
* called from a workqueue rather than from the bio's bi_end_io callback.
|
||||
*
|
||||
* This function sets PG_error on any pages that contain any blocks that failed
|
||||
* to be decrypted. The filesystem must not mark such pages uptodate.
|
||||
* Return: %true on success; %false on failure. On failure, bio->bi_status is
|
||||
* also set to an error status.
|
||||
*/
|
||||
void fscrypt_decrypt_bio(struct bio *bio)
|
||||
bool fscrypt_decrypt_bio(struct bio *bio)
|
||||
{
|
||||
struct bio_vec *bv;
|
||||
struct bvec_iter_all iter_all;
|
||||
|
||||
bio_for_each_segment_all(bv, bio, iter_all) {
|
||||
struct page *page = bv->bv_page;
|
||||
int ret = fscrypt_decrypt_pagecache_blocks(page, bv->bv_len,
|
||||
int err = fscrypt_decrypt_pagecache_blocks(page, bv->bv_len,
|
||||
bv->bv_offset);
|
||||
if (ret)
|
||||
SetPageError(page);
|
||||
|
||||
if (err) {
|
||||
bio->bi_status = errno_to_blk_status(err);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
EXPORT_SYMBOL(fscrypt_decrypt_bio);
|
||||
|
||||
|
@ -184,7 +184,7 @@ struct fscrypt_symlink_data {
|
||||
struct fscrypt_prepared_key {
|
||||
struct crypto_skcipher *tfm;
|
||||
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
|
||||
struct fscrypt_blk_crypto_key *blk_key;
|
||||
struct blk_crypto_key *blk_key;
|
||||
#endif
|
||||
};
|
||||
|
||||
@ -225,7 +225,7 @@ struct fscrypt_info {
|
||||
* will be NULL if the master key was found in a process-subscribed
|
||||
* keyring rather than in the filesystem-level keyring.
|
||||
*/
|
||||
struct key *ci_master_key;
|
||||
struct fscrypt_master_key *ci_master_key;
|
||||
|
||||
/*
|
||||
* Link in list of inodes that were unlocked with the master key.
|
||||
@ -344,7 +344,8 @@ int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
|
||||
const u8 *raw_key,
|
||||
const struct fscrypt_info *ci);
|
||||
|
||||
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key);
|
||||
void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
|
||||
struct fscrypt_prepared_key *prep_key);
|
||||
|
||||
/*
|
||||
* Check whether the crypto transform or blk-crypto key has been allocated in
|
||||
@ -390,7 +391,8 @@ fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
|
||||
}
|
||||
|
||||
static inline void
|
||||
fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
|
||||
fscrypt_destroy_inline_crypt_key(struct super_block *sb,
|
||||
struct fscrypt_prepared_key *prep_key)
|
||||
{
|
||||
}
|
||||
|
||||
@ -436,6 +438,40 @@ struct fscrypt_master_key_secret {
|
||||
*/
|
||||
struct fscrypt_master_key {
|
||||
|
||||
/*
|
||||
* Back-pointer to the super_block of the filesystem to which this
|
||||
* master key has been added. Only valid if ->mk_active_refs > 0.
|
||||
*/
|
||||
struct super_block *mk_sb;
|
||||
|
||||
/*
|
||||
* Link in ->mk_sb->s_master_keys->key_hashtable.
|
||||
* Only valid if ->mk_active_refs > 0.
|
||||
*/
|
||||
struct hlist_node mk_node;
|
||||
|
||||
/* Semaphore that protects ->mk_secret and ->mk_users */
|
||||
struct rw_semaphore mk_sem;
|
||||
|
||||
/*
|
||||
* Active and structural reference counts. An active ref guarantees
|
||||
* that the struct continues to exist, continues to be in the keyring
|
||||
* ->mk_sb->s_master_keys, and that any embedded subkeys (e.g.
|
||||
* ->mk_direct_keys) that have been prepared continue to exist.
|
||||
* A structural ref only guarantees that the struct continues to exist.
|
||||
*
|
||||
* There is one active ref associated with ->mk_secret being present,
|
||||
* and one active ref for each inode in ->mk_decrypted_inodes.
|
||||
*
|
||||
* There is one structural ref associated with the active refcount being
|
||||
* nonzero. Finding a key in the keyring also takes a structural ref,
|
||||
* which is then held temporarily while the key is operated on.
|
||||
*/
|
||||
refcount_t mk_active_refs;
|
||||
refcount_t mk_struct_refs;
|
||||
|
||||
struct rcu_head mk_rcu_head;
|
||||
|
||||
/*
|
||||
* The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
|
||||
* executed, this is wiped and no new inodes can be unlocked with this
|
||||
@ -444,7 +480,10 @@ struct fscrypt_master_key {
|
||||
* FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
|
||||
* FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
|
||||
*
|
||||
* Locking: protected by this master key's key->sem.
|
||||
* While ->mk_secret is present, one ref in ->mk_active_refs is held.
|
||||
*
|
||||
* Locking: protected by ->mk_sem. The manipulation of ->mk_active_refs
|
||||
* associated with this field is protected by ->mk_sem as well.
|
||||
*/
|
||||
struct fscrypt_master_key_secret mk_secret;
|
||||
|
||||
@ -465,22 +504,12 @@ struct fscrypt_master_key {
|
||||
*
|
||||
* This is NULL for v1 policy keys; those can only be added by root.
|
||||
*
|
||||
* Locking: in addition to this keyring's own semaphore, this is
|
||||
* protected by this master key's key->sem, so we can do atomic
|
||||
* search+insert. It can also be searched without taking any locks, but
|
||||
* in that case the returned key may have already been removed.
|
||||
* Locking: protected by ->mk_sem. (We don't just rely on the keyrings
|
||||
* subsystem semaphore ->mk_users->sem, as we need support for atomic
|
||||
* search+insert along with proper synchronization with ->mk_secret.)
|
||||
*/
|
||||
struct key *mk_users;
|
||||
|
||||
/*
|
||||
* Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
|
||||
* Once this goes to 0, the master key is removed from ->s_master_keys.
|
||||
* The 'struct fscrypt_master_key' will continue to live as long as the
|
||||
* 'struct key' whose payload it is, but we won't let this reference
|
||||
* count rise again.
|
||||
*/
|
||||
refcount_t mk_refcount;
|
||||
|
||||
/*
|
||||
* List of inodes that were unlocked using this key. This allows the
|
||||
* inodes to be evicted efficiently if the key is removed.
|
||||
@ -506,10 +535,10 @@ static inline bool
|
||||
is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
|
||||
{
|
||||
/*
|
||||
* The READ_ONCE() is only necessary for fscrypt_drop_inode() and
|
||||
* fscrypt_key_describe(). These run in atomic context, so they can't
|
||||
* take the key semaphore and thus 'secret' can change concurrently
|
||||
* which would be a data race. But they only need to know whether the
|
||||
* The READ_ONCE() is only necessary for fscrypt_drop_inode().
|
||||
* fscrypt_drop_inode() runs in atomic context, so it can't take the key
|
||||
* semaphore and thus 'secret' can change concurrently which would be a
|
||||
* data race. But fscrypt_drop_inode() only need to know whether the
|
||||
* secret *was* present at the time of check, so READ_ONCE() suffices.
|
||||
*/
|
||||
return READ_ONCE(secret->size) != 0;
|
||||
@ -538,7 +567,11 @@ static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct key *
|
||||
void fscrypt_put_master_key(struct fscrypt_master_key *mk);
|
||||
|
||||
void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk);
|
||||
|
||||
struct fscrypt_master_key *
|
||||
fscrypt_find_master_key(struct super_block *sb,
|
||||
const struct fscrypt_key_specifier *mk_spec);
|
||||
|
||||
@ -569,7 +602,8 @@ extern struct fscrypt_mode fscrypt_modes[];
|
||||
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
|
||||
const u8 *raw_key, const struct fscrypt_info *ci);
|
||||
|
||||
void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key);
|
||||
void fscrypt_destroy_prepared_key(struct super_block *sb,
|
||||
struct fscrypt_prepared_key *prep_key);
|
||||
|
||||
int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key);
|
||||
|
||||
|
@ -5,8 +5,6 @@
|
||||
* Encryption hooks for higher-level filesystem operations.
|
||||
*/
|
||||
|
||||
#include <linux/key.h>
|
||||
|
||||
#include "fscrypt_private.h"
|
||||
|
||||
/**
|
||||
@ -142,7 +140,6 @@ int fscrypt_prepare_setflags(struct inode *inode,
|
||||
unsigned int oldflags, unsigned int flags)
|
||||
{
|
||||
struct fscrypt_info *ci;
|
||||
struct key *key;
|
||||
struct fscrypt_master_key *mk;
|
||||
int err;
|
||||
|
||||
@ -158,14 +155,13 @@ int fscrypt_prepare_setflags(struct inode *inode,
|
||||
ci = inode->i_crypt_info;
|
||||
if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
|
||||
return -EINVAL;
|
||||
key = ci->ci_master_key;
|
||||
mk = key->payload.data[0];
|
||||
down_read(&key->sem);
|
||||
mk = ci->ci_master_key;
|
||||
down_read(&mk->mk_sem);
|
||||
if (is_master_key_secret_present(&mk->mk_secret))
|
||||
err = fscrypt_derive_dirhash_key(ci, mk);
|
||||
else
|
||||
err = -ENOKEY;
|
||||
up_read(&key->sem);
|
||||
up_read(&mk->mk_sem);
|
||||
return err;
|
||||
}
|
||||
return 0;
|
||||
|
@ -21,26 +21,22 @@
|
||||
|
||||
#include "fscrypt_private.h"
|
||||
|
||||
struct fscrypt_blk_crypto_key {
|
||||
struct blk_crypto_key base;
|
||||
int num_devs;
|
||||
struct request_queue *devs[];
|
||||
};
|
||||
|
||||
static int fscrypt_get_num_devices(struct super_block *sb)
|
||||
static struct block_device **fscrypt_get_devices(struct super_block *sb,
|
||||
unsigned int *num_devs)
|
||||
{
|
||||
if (sb->s_cop->get_num_devices)
|
||||
return sb->s_cop->get_num_devices(sb);
|
||||
return 1;
|
||||
}
|
||||
struct block_device **devs;
|
||||
|
||||
static void fscrypt_get_devices(struct super_block *sb, int num_devs,
|
||||
struct request_queue **devs)
|
||||
{
|
||||
if (num_devs == 1)
|
||||
devs[0] = bdev_get_queue(sb->s_bdev);
|
||||
else
|
||||
sb->s_cop->get_devices(sb, devs);
|
||||
if (sb->s_cop->get_devices) {
|
||||
devs = sb->s_cop->get_devices(sb, num_devs);
|
||||
if (devs)
|
||||
return devs;
|
||||
}
|
||||
devs = kmalloc(sizeof(*devs), GFP_KERNEL);
|
||||
if (!devs)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
devs[0] = sb->s_bdev;
|
||||
*num_devs = 1;
|
||||
return devs;
|
||||
}
|
||||
|
||||
static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
|
||||
@ -74,15 +70,17 @@ static unsigned int fscrypt_get_dun_bytes(const struct fscrypt_info *ci)
|
||||
* helpful for debugging problems where the "wrong" implementation is used.
|
||||
*/
|
||||
static void fscrypt_log_blk_crypto_impl(struct fscrypt_mode *mode,
|
||||
struct request_queue **devs,
|
||||
int num_devs,
|
||||
struct block_device **devs,
|
||||
unsigned int num_devs,
|
||||
const struct blk_crypto_config *cfg)
|
||||
{
|
||||
int i;
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < num_devs; i++) {
|
||||
struct request_queue *q = bdev_get_queue(devs[i]);
|
||||
|
||||
if (!IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
|
||||
__blk_crypto_cfg_supported(devs[i]->crypto_profile, cfg)) {
|
||||
__blk_crypto_cfg_supported(q->crypto_profile, cfg)) {
|
||||
if (!xchg(&mode->logged_blk_crypto_native, 1))
|
||||
pr_info("fscrypt: %s using blk-crypto (native)\n",
|
||||
mode->friendly_name);
|
||||
@ -99,9 +97,9 @@ int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
|
||||
const struct inode *inode = ci->ci_inode;
|
||||
struct super_block *sb = inode->i_sb;
|
||||
struct blk_crypto_config crypto_cfg;
|
||||
int num_devs;
|
||||
struct request_queue **devs;
|
||||
int i;
|
||||
struct block_device **devs;
|
||||
unsigned int num_devs;
|
||||
unsigned int i;
|
||||
|
||||
/* The file must need contents encryption, not filenames encryption */
|
||||
if (!S_ISREG(inode->i_mode))
|
||||
@ -129,20 +127,20 @@ int fscrypt_select_encryption_impl(struct fscrypt_info *ci)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* On all the filesystem's devices, blk-crypto must support the crypto
|
||||
* configuration that the file would use.
|
||||
* On all the filesystem's block devices, blk-crypto must support the
|
||||
* crypto configuration that the file would use.
|
||||
*/
|
||||
crypto_cfg.crypto_mode = ci->ci_mode->blk_crypto_mode;
|
||||
crypto_cfg.data_unit_size = sb->s_blocksize;
|
||||
crypto_cfg.dun_bytes = fscrypt_get_dun_bytes(ci);
|
||||
num_devs = fscrypt_get_num_devices(sb);
|
||||
devs = kmalloc_array(num_devs, sizeof(*devs), GFP_KERNEL);
|
||||
if (!devs)
|
||||
return -ENOMEM;
|
||||
fscrypt_get_devices(sb, num_devs, devs);
|
||||
|
||||
devs = fscrypt_get_devices(sb, &num_devs);
|
||||
if (IS_ERR(devs))
|
||||
return PTR_ERR(devs);
|
||||
|
||||
for (i = 0; i < num_devs; i++) {
|
||||
if (!blk_crypto_config_supported(devs[i], &crypto_cfg))
|
||||
if (!blk_crypto_config_supported(bdev_get_queue(devs[i]),
|
||||
&crypto_cfg))
|
||||
goto out_free_devs;
|
||||
}
|
||||
|
||||
@ -162,49 +160,41 @@ int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
|
||||
const struct inode *inode = ci->ci_inode;
|
||||
struct super_block *sb = inode->i_sb;
|
||||
enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
|
||||
int num_devs = fscrypt_get_num_devices(sb);
|
||||
int queue_refs = 0;
|
||||
struct fscrypt_blk_crypto_key *blk_key;
|
||||
struct blk_crypto_key *blk_key;
|
||||
struct block_device **devs;
|
||||
unsigned int num_devs;
|
||||
unsigned int i;
|
||||
int err;
|
||||
int i;
|
||||
|
||||
blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_KERNEL);
|
||||
blk_key = kmalloc(sizeof(*blk_key), GFP_KERNEL);
|
||||
if (!blk_key)
|
||||
return -ENOMEM;
|
||||
|
||||
blk_key->num_devs = num_devs;
|
||||
fscrypt_get_devices(sb, num_devs, blk_key->devs);
|
||||
|
||||
err = blk_crypto_init_key(&blk_key->base, raw_key, crypto_mode,
|
||||
err = blk_crypto_init_key(blk_key, raw_key, crypto_mode,
|
||||
fscrypt_get_dun_bytes(ci), sb->s_blocksize);
|
||||
if (err) {
|
||||
fscrypt_err(inode, "error %d initializing blk-crypto key", err);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have to start using blk-crypto on all the filesystem's devices.
|
||||
* We also have to save all the request_queue's for later so that the
|
||||
* key can be evicted from them. This is needed because some keys
|
||||
* aren't destroyed until after the filesystem was already unmounted
|
||||
* (namely, the per-mode keys in struct fscrypt_master_key).
|
||||
*/
|
||||
for (i = 0; i < num_devs; i++) {
|
||||
if (!blk_get_queue(blk_key->devs[i])) {
|
||||
fscrypt_err(inode, "couldn't get request_queue");
|
||||
err = -EAGAIN;
|
||||
goto fail;
|
||||
}
|
||||
queue_refs++;
|
||||
|
||||
err = blk_crypto_start_using_key(&blk_key->base,
|
||||
blk_key->devs[i]);
|
||||
if (err) {
|
||||
fscrypt_err(inode,
|
||||
"error %d starting to use blk-crypto", err);
|
||||
goto fail;
|
||||
}
|
||||
/* Start using blk-crypto on all the filesystem's block devices. */
|
||||
devs = fscrypt_get_devices(sb, &num_devs);
|
||||
if (IS_ERR(devs)) {
|
||||
err = PTR_ERR(devs);
|
||||
goto fail;
|
||||
}
|
||||
for (i = 0; i < num_devs; i++) {
|
||||
err = blk_crypto_start_using_key(blk_key,
|
||||
bdev_get_queue(devs[i]));
|
||||
if (err)
|
||||
break;
|
||||
}
|
||||
kfree(devs);
|
||||
if (err) {
|
||||
fscrypt_err(inode, "error %d starting to use blk-crypto", err);
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/*
|
||||
* Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
|
||||
* I.e., here we publish ->blk_key with a RELEASE barrier so that
|
||||
@ -215,24 +205,29 @@ int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
for (i = 0; i < queue_refs; i++)
|
||||
blk_put_queue(blk_key->devs[i]);
|
||||
kfree_sensitive(blk_key);
|
||||
return err;
|
||||
}
|
||||
|
||||
void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
|
||||
void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
|
||||
struct fscrypt_prepared_key *prep_key)
|
||||
{
|
||||
struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
|
||||
int i;
|
||||
struct blk_crypto_key *blk_key = prep_key->blk_key;
|
||||
struct block_device **devs;
|
||||
unsigned int num_devs;
|
||||
unsigned int i;
|
||||
|
||||
if (blk_key) {
|
||||
for (i = 0; i < blk_key->num_devs; i++) {
|
||||
blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
|
||||
blk_put_queue(blk_key->devs[i]);
|
||||
}
|
||||
kfree_sensitive(blk_key);
|
||||
if (!blk_key)
|
||||
return;
|
||||
|
||||
/* Evict the key from all the filesystem's block devices. */
|
||||
devs = fscrypt_get_devices(sb, &num_devs);
|
||||
if (!IS_ERR(devs)) {
|
||||
for (i = 0; i < num_devs; i++)
|
||||
blk_crypto_evict_key(bdev_get_queue(devs[i]), blk_key);
|
||||
kfree(devs);
|
||||
}
|
||||
kfree_sensitive(blk_key);
|
||||
}
|
||||
|
||||
bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
|
||||
@ -282,7 +277,7 @@ void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
|
||||
ci = inode->i_crypt_info;
|
||||
|
||||
fscrypt_generate_dun(ci, first_lblk, dun);
|
||||
bio_crypt_set_ctx(bio, &ci->ci_enc_key.blk_key->base, dun, gfp_mask);
|
||||
bio_crypt_set_ctx(bio, ci->ci_enc_key.blk_key, dun, gfp_mask);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
|
||||
|
||||
@ -369,7 +364,7 @@ bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
|
||||
* uses the same pointer. I.e., there's currently no need to support
|
||||
* merging requests where the keys are the same but the pointers differ.
|
||||
*/
|
||||
if (bc->bc_key != &inode->i_crypt_info->ci_enc_key.blk_key->base)
|
||||
if (bc->bc_key != inode->i_crypt_info->ci_enc_key.blk_key)
|
||||
return false;
|
||||
|
||||
fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
|
||||
|
@ -18,6 +18,7 @@
|
||||
* information about these ioctls.
|
||||
*/
|
||||
|
||||
#include <asm/unaligned.h>
|
||||
#include <crypto/skcipher.h>
|
||||
#include <linux/key-type.h>
|
||||
#include <linux/random.h>
|
||||
@ -25,6 +26,18 @@
|
||||
|
||||
#include "fscrypt_private.h"
|
||||
|
||||
/* The master encryption keys for a filesystem (->s_master_keys) */
|
||||
struct fscrypt_keyring {
|
||||
/*
|
||||
* Lock that protects ->key_hashtable. It does *not* protect the
|
||||
* fscrypt_master_key structs themselves.
|
||||
*/
|
||||
spinlock_t lock;
|
||||
|
||||
/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
|
||||
struct hlist_head key_hashtable[128];
|
||||
};
|
||||
|
||||
static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
|
||||
{
|
||||
fscrypt_destroy_hkdf(&secret->hkdf);
|
||||
@ -38,20 +51,73 @@ static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
|
||||
memzero_explicit(src, sizeof(*src));
|
||||
}
|
||||
|
||||
static void free_master_key(struct fscrypt_master_key *mk)
|
||||
static void fscrypt_free_master_key(struct rcu_head *head)
|
||||
{
|
||||
struct fscrypt_master_key *mk =
|
||||
container_of(head, struct fscrypt_master_key, mk_rcu_head);
|
||||
/*
|
||||
* The master key secret and any embedded subkeys should have already
|
||||
* been wiped when the last active reference to the fscrypt_master_key
|
||||
* struct was dropped; doing it here would be unnecessarily late.
|
||||
* Nevertheless, use kfree_sensitive() in case anything was missed.
|
||||
*/
|
||||
kfree_sensitive(mk);
|
||||
}
|
||||
|
||||
void fscrypt_put_master_key(struct fscrypt_master_key *mk)
|
||||
{
|
||||
if (!refcount_dec_and_test(&mk->mk_struct_refs))
|
||||
return;
|
||||
/*
|
||||
* No structural references left, so free ->mk_users, and also free the
|
||||
* fscrypt_master_key struct itself after an RCU grace period ensures
|
||||
* that concurrent keyring lookups can no longer find it.
|
||||
*/
|
||||
WARN_ON(refcount_read(&mk->mk_active_refs) != 0);
|
||||
key_put(mk->mk_users);
|
||||
mk->mk_users = NULL;
|
||||
call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
|
||||
}
|
||||
|
||||
void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk)
|
||||
{
|
||||
struct super_block *sb = mk->mk_sb;
|
||||
struct fscrypt_keyring *keyring = sb->s_master_keys;
|
||||
size_t i;
|
||||
|
||||
wipe_master_key_secret(&mk->mk_secret);
|
||||
if (!refcount_dec_and_test(&mk->mk_active_refs))
|
||||
return;
|
||||
/*
|
||||
* No active references left, so complete the full removal of this
|
||||
* fscrypt_master_key struct by removing it from the keyring and
|
||||
* destroying any subkeys embedded in it.
|
||||
*/
|
||||
|
||||
spin_lock(&keyring->lock);
|
||||
hlist_del_rcu(&mk->mk_node);
|
||||
spin_unlock(&keyring->lock);
|
||||
|
||||
/*
|
||||
* ->mk_active_refs == 0 implies that ->mk_secret is not present and
|
||||
* that ->mk_decrypted_inodes is empty.
|
||||
*/
|
||||
WARN_ON(is_master_key_secret_present(&mk->mk_secret));
|
||||
WARN_ON(!list_empty(&mk->mk_decrypted_inodes));
|
||||
|
||||
for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
|
||||
fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
|
||||
fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
|
||||
fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]);
|
||||
fscrypt_destroy_prepared_key(
|
||||
sb, &mk->mk_direct_keys[i]);
|
||||
fscrypt_destroy_prepared_key(
|
||||
sb, &mk->mk_iv_ino_lblk_64_keys[i]);
|
||||
fscrypt_destroy_prepared_key(
|
||||
sb, &mk->mk_iv_ino_lblk_32_keys[i]);
|
||||
}
|
||||
memzero_explicit(&mk->mk_ino_hash_key,
|
||||
sizeof(mk->mk_ino_hash_key));
|
||||
mk->mk_ino_hash_key_initialized = false;
|
||||
|
||||
key_put(mk->mk_users);
|
||||
kfree_sensitive(mk);
|
||||
/* Drop the structural ref associated with the active refs. */
|
||||
fscrypt_put_master_key(mk);
|
||||
}
|
||||
|
||||
static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
|
||||
@ -61,44 +127,6 @@ static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
|
||||
return master_key_spec_len(spec) != 0;
|
||||
}
|
||||
|
||||
static int fscrypt_key_instantiate(struct key *key,
|
||||
struct key_preparsed_payload *prep)
|
||||
{
|
||||
key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void fscrypt_key_destroy(struct key *key)
|
||||
{
|
||||
free_master_key(key->payload.data[0]);
|
||||
}
|
||||
|
||||
static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
|
||||
{
|
||||
seq_puts(m, key->description);
|
||||
|
||||
if (key_is_positive(key)) {
|
||||
const struct fscrypt_master_key *mk = key->payload.data[0];
|
||||
|
||||
if (!is_master_key_secret_present(&mk->mk_secret))
|
||||
seq_puts(m, ": secret removed");
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Type of key in ->s_master_keys. Each key of this type represents a master
|
||||
* key which has been added to the filesystem. Its payload is a
|
||||
* 'struct fscrypt_master_key'. The "." prefix in the key type name prevents
|
||||
* users from adding keys of this type via the keyrings syscalls rather than via
|
||||
* the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
|
||||
*/
|
||||
static struct key_type key_type_fscrypt = {
|
||||
.name = "._fscrypt",
|
||||
.instantiate = fscrypt_key_instantiate,
|
||||
.destroy = fscrypt_key_destroy,
|
||||
.describe = fscrypt_key_describe,
|
||||
};
|
||||
|
||||
static int fscrypt_user_key_instantiate(struct key *key,
|
||||
struct key_preparsed_payload *prep)
|
||||
{
|
||||
@ -131,32 +159,6 @@ static struct key_type key_type_fscrypt_user = {
|
||||
.describe = fscrypt_user_key_describe,
|
||||
};
|
||||
|
||||
/* Search ->s_master_keys or ->mk_users */
|
||||
static struct key *search_fscrypt_keyring(struct key *keyring,
|
||||
struct key_type *type,
|
||||
const char *description)
|
||||
{
|
||||
/*
|
||||
* We need to mark the keyring reference as "possessed" so that we
|
||||
* acquire permission to search it, via the KEY_POS_SEARCH permission.
|
||||
*/
|
||||
key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
|
||||
|
||||
keyref = keyring_search(keyref, type, description, false);
|
||||
if (IS_ERR(keyref)) {
|
||||
if (PTR_ERR(keyref) == -EAGAIN || /* not found */
|
||||
PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
|
||||
keyref = ERR_PTR(-ENOKEY);
|
||||
return ERR_CAST(keyref);
|
||||
}
|
||||
return key_ref_to_ptr(keyref);
|
||||
}
|
||||
|
||||
#define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \
|
||||
(CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id))
|
||||
|
||||
#define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
|
||||
|
||||
#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
|
||||
(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
|
||||
CONST_STRLEN("-users") + 1)
|
||||
@ -164,21 +166,6 @@ static struct key *search_fscrypt_keyring(struct key *keyring,
|
||||
#define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
|
||||
(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
|
||||
|
||||
static void format_fs_keyring_description(
|
||||
char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
|
||||
const struct super_block *sb)
|
||||
{
|
||||
sprintf(description, "fscrypt-%s", sb->s_id);
|
||||
}
|
||||
|
||||
static void format_mk_description(
|
||||
char description[FSCRYPT_MK_DESCRIPTION_SIZE],
|
||||
const struct fscrypt_key_specifier *mk_spec)
|
||||
{
|
||||
sprintf(description, "%*phN",
|
||||
master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
|
||||
}
|
||||
|
||||
static void format_mk_users_keyring_description(
|
||||
char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
|
||||
const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
|
||||
@ -199,20 +186,15 @@ static void format_mk_user_description(
|
||||
/* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
|
||||
static int allocate_filesystem_keyring(struct super_block *sb)
|
||||
{
|
||||
char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
|
||||
struct key *keyring;
|
||||
struct fscrypt_keyring *keyring;
|
||||
|
||||
if (sb->s_master_keys)
|
||||
return 0;
|
||||
|
||||
format_fs_keyring_description(description, sb);
|
||||
keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
|
||||
current_cred(), KEY_POS_SEARCH |
|
||||
KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
|
||||
KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
|
||||
if (IS_ERR(keyring))
|
||||
return PTR_ERR(keyring);
|
||||
|
||||
keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
|
||||
if (!keyring)
|
||||
return -ENOMEM;
|
||||
spin_lock_init(&keyring->lock);
|
||||
/*
|
||||
* Pairs with the smp_load_acquire() in fscrypt_find_master_key().
|
||||
* I.e., here we publish ->s_master_keys with a RELEASE barrier so that
|
||||
@ -222,21 +204,75 @@ static int allocate_filesystem_keyring(struct super_block *sb)
|
||||
return 0;
|
||||
}
|
||||
|
||||
void fscrypt_sb_free(struct super_block *sb)
|
||||
/*
|
||||
* This is called at unmount time to release all encryption keys that have been
|
||||
* added to the filesystem, along with the keyring that contains them.
|
||||
*
|
||||
* Note that besides clearing and freeing memory, this might need to evict keys
|
||||
* from the keyslots of an inline crypto engine. Therefore, this must be called
|
||||
* while the filesystem's underlying block device(s) are still available.
|
||||
*/
|
||||
void fscrypt_sb_delete(struct super_block *sb)
|
||||
{
|
||||
key_put(sb->s_master_keys);
|
||||
struct fscrypt_keyring *keyring = sb->s_master_keys;
|
||||
size_t i;
|
||||
|
||||
if (!keyring)
|
||||
return;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
|
||||
struct hlist_head *bucket = &keyring->key_hashtable[i];
|
||||
struct fscrypt_master_key *mk;
|
||||
struct hlist_node *tmp;
|
||||
|
||||
hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
|
||||
/*
|
||||
* Since all inodes were already evicted, every key
|
||||
* remaining in the keyring should have an empty inode
|
||||
* list, and should only still be in the keyring due to
|
||||
* the single active ref associated with ->mk_secret.
|
||||
* There should be no structural refs beyond the one
|
||||
* associated with the active ref.
|
||||
*/
|
||||
WARN_ON(refcount_read(&mk->mk_active_refs) != 1);
|
||||
WARN_ON(refcount_read(&mk->mk_struct_refs) != 1);
|
||||
WARN_ON(!is_master_key_secret_present(&mk->mk_secret));
|
||||
wipe_master_key_secret(&mk->mk_secret);
|
||||
fscrypt_put_master_key_activeref(mk);
|
||||
}
|
||||
}
|
||||
kfree_sensitive(keyring);
|
||||
sb->s_master_keys = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the specified master key in ->s_master_keys.
|
||||
* Returns ERR_PTR(-ENOKEY) if not found.
|
||||
*/
|
||||
struct key *fscrypt_find_master_key(struct super_block *sb,
|
||||
const struct fscrypt_key_specifier *mk_spec)
|
||||
static struct hlist_head *
|
||||
fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
|
||||
const struct fscrypt_key_specifier *mk_spec)
|
||||
{
|
||||
struct key *keyring;
|
||||
char description[FSCRYPT_MK_DESCRIPTION_SIZE];
|
||||
/*
|
||||
* Since key specifiers should be "random" values, it is sufficient to
|
||||
* use a trivial hash function that just takes the first several bits of
|
||||
* the key specifier.
|
||||
*/
|
||||
unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
|
||||
|
||||
return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the specified master key struct in ->s_master_keys and take a structural
|
||||
* ref to it. The structural ref guarantees that the key struct continues to
|
||||
* exist, but it does *not* guarantee that ->s_master_keys continues to contain
|
||||
* the key struct. The structural ref needs to be dropped by
|
||||
* fscrypt_put_master_key(). Returns NULL if the key struct is not found.
|
||||
*/
|
||||
struct fscrypt_master_key *
|
||||
fscrypt_find_master_key(struct super_block *sb,
|
||||
const struct fscrypt_key_specifier *mk_spec)
|
||||
{
|
||||
struct fscrypt_keyring *keyring;
|
||||
struct hlist_head *bucket;
|
||||
struct fscrypt_master_key *mk;
|
||||
|
||||
/*
|
||||
* Pairs with the smp_store_release() in allocate_filesystem_keyring().
|
||||
@ -246,10 +282,38 @@ struct key *fscrypt_find_master_key(struct super_block *sb,
|
||||
*/
|
||||
keyring = smp_load_acquire(&sb->s_master_keys);
|
||||
if (keyring == NULL)
|
||||
return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
|
||||
return NULL; /* No keyring yet, so no keys yet. */
|
||||
|
||||
format_mk_description(description, mk_spec);
|
||||
return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
|
||||
bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
|
||||
rcu_read_lock();
|
||||
switch (mk_spec->type) {
|
||||
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
|
||||
hlist_for_each_entry_rcu(mk, bucket, mk_node) {
|
||||
if (mk->mk_spec.type ==
|
||||
FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
|
||||
memcmp(mk->mk_spec.u.descriptor,
|
||||
mk_spec->u.descriptor,
|
||||
FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
|
||||
refcount_inc_not_zero(&mk->mk_struct_refs))
|
||||
goto out;
|
||||
}
|
||||
break;
|
||||
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
|
||||
hlist_for_each_entry_rcu(mk, bucket, mk_node) {
|
||||
if (mk->mk_spec.type ==
|
||||
FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
|
||||
memcmp(mk->mk_spec.u.identifier,
|
||||
mk_spec->u.identifier,
|
||||
FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
|
||||
refcount_inc_not_zero(&mk->mk_struct_refs))
|
||||
goto out;
|
||||
}
|
||||
break;
|
||||
}
|
||||
mk = NULL;
|
||||
out:
|
||||
rcu_read_unlock();
|
||||
return mk;
|
||||
}
|
||||
|
||||
static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
|
||||
@ -277,17 +341,30 @@ static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
|
||||
static struct key *find_master_key_user(struct fscrypt_master_key *mk)
|
||||
{
|
||||
char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
|
||||
key_ref_t keyref;
|
||||
|
||||
format_mk_user_description(description, mk->mk_spec.u.identifier);
|
||||
return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
|
||||
description);
|
||||
|
||||
/*
|
||||
* We need to mark the keyring reference as "possessed" so that we
|
||||
* acquire permission to search it, via the KEY_POS_SEARCH permission.
|
||||
*/
|
||||
keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
|
||||
&key_type_fscrypt_user, description, false);
|
||||
if (IS_ERR(keyref)) {
|
||||
if (PTR_ERR(keyref) == -EAGAIN || /* not found */
|
||||
PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
|
||||
keyref = ERR_PTR(-ENOKEY);
|
||||
return ERR_CAST(keyref);
|
||||
}
|
||||
return key_ref_to_ptr(keyref);
|
||||
}
|
||||
|
||||
/*
|
||||
* Give the current user a "key" in ->mk_users. This charges the user's quota
|
||||
* and marks the master key as added by the current user, so that it cannot be
|
||||
* removed by another user with the key. Either the master key's key->sem must
|
||||
* be held for write, or the master key must be still undergoing initialization.
|
||||
* removed by another user with the key. Either ->mk_sem must be held for
|
||||
* write, or the master key must be still undergoing initialization.
|
||||
*/
|
||||
static int add_master_key_user(struct fscrypt_master_key *mk)
|
||||
{
|
||||
@ -309,7 +386,7 @@ static int add_master_key_user(struct fscrypt_master_key *mk)
|
||||
|
||||
/*
|
||||
* Remove the current user's "key" from ->mk_users.
|
||||
* The master key's key->sem must be held for write.
|
||||
* ->mk_sem must be held for write.
|
||||
*
|
||||
* Returns 0 if removed, -ENOKEY if not found, or another -errno code.
|
||||
*/
|
||||
@ -327,63 +404,49 @@ static int remove_master_key_user(struct fscrypt_master_key *mk)
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a new fscrypt_master_key which contains the given secret, set it as
|
||||
* the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
|
||||
* into the given keyring. Synchronized by fscrypt_add_key_mutex.
|
||||
* Allocate a new fscrypt_master_key, transfer the given secret over to it, and
|
||||
* insert it into sb->s_master_keys.
|
||||
*/
|
||||
static int add_new_master_key(struct fscrypt_master_key_secret *secret,
|
||||
const struct fscrypt_key_specifier *mk_spec,
|
||||
struct key *keyring)
|
||||
static int add_new_master_key(struct super_block *sb,
|
||||
struct fscrypt_master_key_secret *secret,
|
||||
const struct fscrypt_key_specifier *mk_spec)
|
||||
{
|
||||
struct fscrypt_keyring *keyring = sb->s_master_keys;
|
||||
struct fscrypt_master_key *mk;
|
||||
char description[FSCRYPT_MK_DESCRIPTION_SIZE];
|
||||
struct key *key;
|
||||
int err;
|
||||
|
||||
mk = kzalloc(sizeof(*mk), GFP_KERNEL);
|
||||
if (!mk)
|
||||
return -ENOMEM;
|
||||
|
||||
mk->mk_sb = sb;
|
||||
init_rwsem(&mk->mk_sem);
|
||||
refcount_set(&mk->mk_struct_refs, 1);
|
||||
mk->mk_spec = *mk_spec;
|
||||
|
||||
move_master_key_secret(&mk->mk_secret, secret);
|
||||
|
||||
refcount_set(&mk->mk_refcount, 1); /* secret is present */
|
||||
INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
|
||||
spin_lock_init(&mk->mk_decrypted_inodes_lock);
|
||||
|
||||
if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
|
||||
err = allocate_master_key_users_keyring(mk);
|
||||
if (err)
|
||||
goto out_free_mk;
|
||||
goto out_put;
|
||||
err = add_master_key_user(mk);
|
||||
if (err)
|
||||
goto out_free_mk;
|
||||
goto out_put;
|
||||
}
|
||||
|
||||
/*
|
||||
* Note that we don't charge this key to anyone's quota, since when
|
||||
* ->mk_users is in use those keys are charged instead, and otherwise
|
||||
* (when ->mk_users isn't in use) only root can add these keys.
|
||||
*/
|
||||
format_mk_description(description, mk_spec);
|
||||
key = key_alloc(&key_type_fscrypt, description,
|
||||
GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
|
||||
KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
|
||||
KEY_ALLOC_NOT_IN_QUOTA, NULL);
|
||||
if (IS_ERR(key)) {
|
||||
err = PTR_ERR(key);
|
||||
goto out_free_mk;
|
||||
}
|
||||
err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
|
||||
key_put(key);
|
||||
if (err)
|
||||
goto out_free_mk;
|
||||
move_master_key_secret(&mk->mk_secret, secret);
|
||||
refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
|
||||
|
||||
spin_lock(&keyring->lock);
|
||||
hlist_add_head_rcu(&mk->mk_node,
|
||||
fscrypt_mk_hash_bucket(keyring, mk_spec));
|
||||
spin_unlock(&keyring->lock);
|
||||
return 0;
|
||||
|
||||
out_free_mk:
|
||||
free_master_key(mk);
|
||||
out_put:
|
||||
fscrypt_put_master_key(mk);
|
||||
return err;
|
||||
}
|
||||
|
||||
@ -392,42 +455,34 @@ out_free_mk:
|
||||
static int add_existing_master_key(struct fscrypt_master_key *mk,
|
||||
struct fscrypt_master_key_secret *secret)
|
||||
{
|
||||
struct key *mk_user;
|
||||
bool rekey;
|
||||
int err;
|
||||
|
||||
/*
|
||||
* If the current user is already in ->mk_users, then there's nothing to
|
||||
* do. (Not applicable for v1 policy keys, which have NULL ->mk_users.)
|
||||
* do. Otherwise, we need to add the user to ->mk_users. (Neither is
|
||||
* applicable for v1 policy keys, which have NULL ->mk_users.)
|
||||
*/
|
||||
if (mk->mk_users) {
|
||||
mk_user = find_master_key_user(mk);
|
||||
struct key *mk_user = find_master_key_user(mk);
|
||||
|
||||
if (mk_user != ERR_PTR(-ENOKEY)) {
|
||||
if (IS_ERR(mk_user))
|
||||
return PTR_ERR(mk_user);
|
||||
key_put(mk_user);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* If we'll be re-adding ->mk_secret, try to take the reference. */
|
||||
rekey = !is_master_key_secret_present(&mk->mk_secret);
|
||||
if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
|
||||
return KEY_DEAD;
|
||||
|
||||
/* Add the current user to ->mk_users, if applicable. */
|
||||
if (mk->mk_users) {
|
||||
err = add_master_key_user(mk);
|
||||
if (err) {
|
||||
if (rekey && refcount_dec_and_test(&mk->mk_refcount))
|
||||
return KEY_DEAD;
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* Re-add the secret if needed. */
|
||||
if (rekey)
|
||||
if (!is_master_key_secret_present(&mk->mk_secret)) {
|
||||
if (!refcount_inc_not_zero(&mk->mk_active_refs))
|
||||
return KEY_DEAD;
|
||||
move_master_key_secret(&mk->mk_secret, secret);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -436,38 +491,36 @@ static int do_add_master_key(struct super_block *sb,
|
||||
const struct fscrypt_key_specifier *mk_spec)
|
||||
{
|
||||
static DEFINE_MUTEX(fscrypt_add_key_mutex);
|
||||
struct key *key;
|
||||
struct fscrypt_master_key *mk;
|
||||
int err;
|
||||
|
||||
mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
|
||||
retry:
|
||||
key = fscrypt_find_master_key(sb, mk_spec);
|
||||
if (IS_ERR(key)) {
|
||||
err = PTR_ERR(key);
|
||||
if (err != -ENOKEY)
|
||||
goto out_unlock;
|
||||
|
||||
mk = fscrypt_find_master_key(sb, mk_spec);
|
||||
if (!mk) {
|
||||
/* Didn't find the key in ->s_master_keys. Add it. */
|
||||
err = allocate_filesystem_keyring(sb);
|
||||
if (err)
|
||||
goto out_unlock;
|
||||
err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
|
||||
if (!err)
|
||||
err = add_new_master_key(sb, secret, mk_spec);
|
||||
} else {
|
||||
/*
|
||||
* Found the key in ->s_master_keys. Re-add the secret if
|
||||
* needed, and add the user to ->mk_users if needed.
|
||||
*/
|
||||
down_write(&key->sem);
|
||||
err = add_existing_master_key(key->payload.data[0], secret);
|
||||
up_write(&key->sem);
|
||||
down_write(&mk->mk_sem);
|
||||
err = add_existing_master_key(mk, secret);
|
||||
up_write(&mk->mk_sem);
|
||||
if (err == KEY_DEAD) {
|
||||
/* Key being removed or needs to be removed */
|
||||
key_invalidate(key);
|
||||
key_put(key);
|
||||
goto retry;
|
||||
/*
|
||||
* We found a key struct, but it's already been fully
|
||||
* removed. Ignore the old struct and add a new one.
|
||||
* fscrypt_add_key_mutex means we don't need to worry
|
||||
* about concurrent adds.
|
||||
*/
|
||||
err = add_new_master_key(sb, secret, mk_spec);
|
||||
}
|
||||
key_put(key);
|
||||
fscrypt_put_master_key(mk);
|
||||
}
|
||||
out_unlock:
|
||||
mutex_unlock(&fscrypt_add_key_mutex);
|
||||
return err;
|
||||
}
|
||||
@ -771,19 +824,19 @@ int fscrypt_verify_key_added(struct super_block *sb,
|
||||
const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
|
||||
{
|
||||
struct fscrypt_key_specifier mk_spec;
|
||||
struct key *key, *mk_user;
|
||||
struct fscrypt_master_key *mk;
|
||||
struct key *mk_user;
|
||||
int err;
|
||||
|
||||
mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
|
||||
memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
|
||||
|
||||
key = fscrypt_find_master_key(sb, &mk_spec);
|
||||
if (IS_ERR(key)) {
|
||||
err = PTR_ERR(key);
|
||||
mk = fscrypt_find_master_key(sb, &mk_spec);
|
||||
if (!mk) {
|
||||
err = -ENOKEY;
|
||||
goto out;
|
||||
}
|
||||
mk = key->payload.data[0];
|
||||
down_read(&mk->mk_sem);
|
||||
mk_user = find_master_key_user(mk);
|
||||
if (IS_ERR(mk_user)) {
|
||||
err = PTR_ERR(mk_user);
|
||||
@ -791,7 +844,8 @@ int fscrypt_verify_key_added(struct super_block *sb,
|
||||
key_put(mk_user);
|
||||
err = 0;
|
||||
}
|
||||
key_put(key);
|
||||
up_read(&mk->mk_sem);
|
||||
fscrypt_put_master_key(mk);
|
||||
out:
|
||||
if (err == -ENOKEY && capable(CAP_FOWNER))
|
||||
err = 0;
|
||||
@ -953,11 +1007,10 @@ static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
|
||||
struct super_block *sb = file_inode(filp)->i_sb;
|
||||
struct fscrypt_remove_key_arg __user *uarg = _uarg;
|
||||
struct fscrypt_remove_key_arg arg;
|
||||
struct key *key;
|
||||
struct fscrypt_master_key *mk;
|
||||
u32 status_flags = 0;
|
||||
int err;
|
||||
bool dead;
|
||||
bool inodes_remain;
|
||||
|
||||
if (copy_from_user(&arg, uarg, sizeof(arg)))
|
||||
return -EFAULT;
|
||||
@ -977,12 +1030,10 @@ static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
|
||||
return -EACCES;
|
||||
|
||||
/* Find the key being removed. */
|
||||
key = fscrypt_find_master_key(sb, &arg.key_spec);
|
||||
if (IS_ERR(key))
|
||||
return PTR_ERR(key);
|
||||
mk = key->payload.data[0];
|
||||
|
||||
down_write(&key->sem);
|
||||
mk = fscrypt_find_master_key(sb, &arg.key_spec);
|
||||
if (!mk)
|
||||
return -ENOKEY;
|
||||
down_write(&mk->mk_sem);
|
||||
|
||||
/* If relevant, remove current user's (or all users) claim to the key */
|
||||
if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
|
||||
@ -991,7 +1042,7 @@ static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
|
||||
else
|
||||
err = remove_master_key_user(mk);
|
||||
if (err) {
|
||||
up_write(&key->sem);
|
||||
up_write(&mk->mk_sem);
|
||||
goto out_put_key;
|
||||
}
|
||||
if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
|
||||
@ -1003,26 +1054,22 @@ static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
|
||||
status_flags |=
|
||||
FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
|
||||
err = 0;
|
||||
up_write(&key->sem);
|
||||
up_write(&mk->mk_sem);
|
||||
goto out_put_key;
|
||||
}
|
||||
}
|
||||
|
||||
/* No user claims remaining. Go ahead and wipe the secret. */
|
||||
dead = false;
|
||||
err = -ENOKEY;
|
||||
if (is_master_key_secret_present(&mk->mk_secret)) {
|
||||
wipe_master_key_secret(&mk->mk_secret);
|
||||
dead = refcount_dec_and_test(&mk->mk_refcount);
|
||||
}
|
||||
up_write(&key->sem);
|
||||
if (dead) {
|
||||
/*
|
||||
* No inodes reference the key, and we wiped the secret, so the
|
||||
* key object is free to be removed from the keyring.
|
||||
*/
|
||||
key_invalidate(key);
|
||||
fscrypt_put_master_key_activeref(mk);
|
||||
err = 0;
|
||||
} else {
|
||||
}
|
||||
inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
|
||||
up_write(&mk->mk_sem);
|
||||
|
||||
if (inodes_remain) {
|
||||
/* Some inodes still reference this key; try to evict them. */
|
||||
err = try_to_lock_encrypted_files(sb, mk);
|
||||
if (err == -EBUSY) {
|
||||
@ -1038,7 +1085,7 @@ static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
|
||||
* has been fully removed including all files locked.
|
||||
*/
|
||||
out_put_key:
|
||||
key_put(key);
|
||||
fscrypt_put_master_key(mk);
|
||||
if (err == 0)
|
||||
err = put_user(status_flags, &uarg->removal_status_flags);
|
||||
return err;
|
||||
@ -1085,7 +1132,6 @@ int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
|
||||
{
|
||||
struct super_block *sb = file_inode(filp)->i_sb;
|
||||
struct fscrypt_get_key_status_arg arg;
|
||||
struct key *key;
|
||||
struct fscrypt_master_key *mk;
|
||||
int err;
|
||||
|
||||
@ -1102,19 +1148,18 @@ int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
|
||||
arg.user_count = 0;
|
||||
memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
|
||||
|
||||
key = fscrypt_find_master_key(sb, &arg.key_spec);
|
||||
if (IS_ERR(key)) {
|
||||
if (key != ERR_PTR(-ENOKEY))
|
||||
return PTR_ERR(key);
|
||||
mk = fscrypt_find_master_key(sb, &arg.key_spec);
|
||||
if (!mk) {
|
||||
arg.status = FSCRYPT_KEY_STATUS_ABSENT;
|
||||
err = 0;
|
||||
goto out;
|
||||
}
|
||||
mk = key->payload.data[0];
|
||||
down_read(&key->sem);
|
||||
down_read(&mk->mk_sem);
|
||||
|
||||
if (!is_master_key_secret_present(&mk->mk_secret)) {
|
||||
arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
|
||||
arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
|
||||
FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
|
||||
FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
|
||||
err = 0;
|
||||
goto out_release_key;
|
||||
}
|
||||
@ -1136,8 +1181,8 @@ int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
|
||||
}
|
||||
err = 0;
|
||||
out_release_key:
|
||||
up_read(&key->sem);
|
||||
key_put(key);
|
||||
up_read(&mk->mk_sem);
|
||||
fscrypt_put_master_key(mk);
|
||||
out:
|
||||
if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
|
||||
err = -EFAULT;
|
||||
@ -1149,13 +1194,9 @@ int __init fscrypt_init_keyring(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = register_key_type(&key_type_fscrypt);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = register_key_type(&key_type_fscrypt_user);
|
||||
if (err)
|
||||
goto err_unregister_fscrypt;
|
||||
return err;
|
||||
|
||||
err = register_key_type(&key_type_fscrypt_provisioning);
|
||||
if (err)
|
||||
@ -1165,7 +1206,5 @@ int __init fscrypt_init_keyring(void)
|
||||
|
||||
err_unregister_fscrypt_user:
|
||||
unregister_key_type(&key_type_fscrypt_user);
|
||||
err_unregister_fscrypt:
|
||||
unregister_key_type(&key_type_fscrypt);
|
||||
return err;
|
||||
}
|
||||
|
@ -9,7 +9,6 @@
|
||||
*/
|
||||
|
||||
#include <crypto/skcipher.h>
|
||||
#include <linux/key.h>
|
||||
#include <linux/random.h>
|
||||
|
||||
#include "fscrypt_private.h"
|
||||
@ -155,10 +154,12 @@ int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
|
||||
}
|
||||
|
||||
/* Destroy a crypto transform object and/or blk-crypto key. */
|
||||
void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
|
||||
void fscrypt_destroy_prepared_key(struct super_block *sb,
|
||||
struct fscrypt_prepared_key *prep_key)
|
||||
{
|
||||
crypto_free_skcipher(prep_key->tfm);
|
||||
fscrypt_destroy_inline_crypt_key(prep_key);
|
||||
fscrypt_destroy_inline_crypt_key(sb, prep_key);
|
||||
memzero_explicit(prep_key, sizeof(*prep_key));
|
||||
}
|
||||
|
||||
/* Given a per-file encryption key, set up the file's crypto transform object */
|
||||
@ -412,20 +413,18 @@ static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
|
||||
/*
|
||||
* Find the master key, then set up the inode's actual encryption key.
|
||||
*
|
||||
* If the master key is found in the filesystem-level keyring, then the
|
||||
* corresponding 'struct key' is returned in *master_key_ret with its semaphore
|
||||
* read-locked. This is needed to ensure that only one task links the
|
||||
* fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create
|
||||
* an fscrypt_info for the same inode), and to synchronize the master key being
|
||||
* removed with a new inode starting to use it.
|
||||
* If the master key is found in the filesystem-level keyring, then it is
|
||||
* returned in *mk_ret with its semaphore read-locked. This is needed to ensure
|
||||
* that only one task links the fscrypt_info into ->mk_decrypted_inodes (as
|
||||
* multiple tasks may race to create an fscrypt_info for the same inode), and to
|
||||
* synchronize the master key being removed with a new inode starting to use it.
|
||||
*/
|
||||
static int setup_file_encryption_key(struct fscrypt_info *ci,
|
||||
bool need_dirhash_key,
|
||||
struct key **master_key_ret)
|
||||
struct fscrypt_master_key **mk_ret)
|
||||
{
|
||||
struct key *key;
|
||||
struct fscrypt_master_key *mk = NULL;
|
||||
struct fscrypt_key_specifier mk_spec;
|
||||
struct fscrypt_master_key *mk;
|
||||
int err;
|
||||
|
||||
err = fscrypt_select_encryption_impl(ci);
|
||||
@ -436,11 +435,10 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
|
||||
if (IS_ERR(key)) {
|
||||
if (key != ERR_PTR(-ENOKEY) ||
|
||||
ci->ci_policy.version != FSCRYPT_POLICY_V1)
|
||||
return PTR_ERR(key);
|
||||
mk = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
|
||||
if (!mk) {
|
||||
if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
|
||||
return -ENOKEY;
|
||||
|
||||
/*
|
||||
* As a legacy fallback for v1 policies, search for the key in
|
||||
@ -450,9 +448,7 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
|
||||
*/
|
||||
return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
|
||||
}
|
||||
|
||||
mk = key->payload.data[0];
|
||||
down_read(&key->sem);
|
||||
down_read(&mk->mk_sem);
|
||||
|
||||
/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
|
||||
if (!is_master_key_secret_present(&mk->mk_secret)) {
|
||||
@ -480,18 +476,18 @@ static int setup_file_encryption_key(struct fscrypt_info *ci,
|
||||
if (err)
|
||||
goto out_release_key;
|
||||
|
||||
*master_key_ret = key;
|
||||
*mk_ret = mk;
|
||||
return 0;
|
||||
|
||||
out_release_key:
|
||||
up_read(&key->sem);
|
||||
key_put(key);
|
||||
up_read(&mk->mk_sem);
|
||||
fscrypt_put_master_key(mk);
|
||||
return err;
|
||||
}
|
||||
|
||||
static void put_crypt_info(struct fscrypt_info *ci)
|
||||
{
|
||||
struct key *key;
|
||||
struct fscrypt_master_key *mk;
|
||||
|
||||
if (!ci)
|
||||
return;
|
||||
@ -499,26 +495,21 @@ static void put_crypt_info(struct fscrypt_info *ci)
|
||||
if (ci->ci_direct_key)
|
||||
fscrypt_put_direct_key(ci->ci_direct_key);
|
||||
else if (ci->ci_owns_key)
|
||||
fscrypt_destroy_prepared_key(&ci->ci_enc_key);
|
||||
|
||||
key = ci->ci_master_key;
|
||||
if (key) {
|
||||
struct fscrypt_master_key *mk = key->payload.data[0];
|
||||
fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
|
||||
&ci->ci_enc_key);
|
||||
|
||||
mk = ci->ci_master_key;
|
||||
if (mk) {
|
||||
/*
|
||||
* Remove this inode from the list of inodes that were unlocked
|
||||
* with the master key.
|
||||
*
|
||||
* In addition, if we're removing the last inode from a key that
|
||||
* already had its secret removed, invalidate the key so that it
|
||||
* gets removed from ->s_master_keys.
|
||||
* with the master key. In addition, if we're removing the last
|
||||
* inode from a master key struct that already had its secret
|
||||
* removed, then complete the full removal of the struct.
|
||||
*/
|
||||
spin_lock(&mk->mk_decrypted_inodes_lock);
|
||||
list_del(&ci->ci_master_key_link);
|
||||
spin_unlock(&mk->mk_decrypted_inodes_lock);
|
||||
if (refcount_dec_and_test(&mk->mk_refcount))
|
||||
key_invalidate(key);
|
||||
key_put(key);
|
||||
fscrypt_put_master_key_activeref(mk);
|
||||
}
|
||||
memzero_explicit(ci, sizeof(*ci));
|
||||
kmem_cache_free(fscrypt_info_cachep, ci);
|
||||
@ -532,7 +523,7 @@ fscrypt_setup_encryption_info(struct inode *inode,
|
||||
{
|
||||
struct fscrypt_info *crypt_info;
|
||||
struct fscrypt_mode *mode;
|
||||
struct key *master_key = NULL;
|
||||
struct fscrypt_master_key *mk = NULL;
|
||||
int res;
|
||||
|
||||
res = fscrypt_initialize(inode->i_sb->s_cop->flags);
|
||||
@ -555,8 +546,7 @@ fscrypt_setup_encryption_info(struct inode *inode,
|
||||
WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
|
||||
crypt_info->ci_mode = mode;
|
||||
|
||||
res = setup_file_encryption_key(crypt_info, need_dirhash_key,
|
||||
&master_key);
|
||||
res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
|
||||
if (res)
|
||||
goto out;
|
||||
|
||||
@ -571,12 +561,9 @@ fscrypt_setup_encryption_info(struct inode *inode,
|
||||
* We won the race and set ->i_crypt_info to our crypt_info.
|
||||
* Now link it into the master key's inode list.
|
||||
*/
|
||||
if (master_key) {
|
||||
struct fscrypt_master_key *mk =
|
||||
master_key->payload.data[0];
|
||||
|
||||
refcount_inc(&mk->mk_refcount);
|
||||
crypt_info->ci_master_key = key_get(master_key);
|
||||
if (mk) {
|
||||
crypt_info->ci_master_key = mk;
|
||||
refcount_inc(&mk->mk_active_refs);
|
||||
spin_lock(&mk->mk_decrypted_inodes_lock);
|
||||
list_add(&crypt_info->ci_master_key_link,
|
||||
&mk->mk_decrypted_inodes);
|
||||
@ -586,9 +573,9 @@ fscrypt_setup_encryption_info(struct inode *inode,
|
||||
}
|
||||
res = 0;
|
||||
out:
|
||||
if (master_key) {
|
||||
up_read(&master_key->sem);
|
||||
key_put(master_key);
|
||||
if (mk) {
|
||||
up_read(&mk->mk_sem);
|
||||
fscrypt_put_master_key(mk);
|
||||
}
|
||||
put_crypt_info(crypt_info);
|
||||
return res;
|
||||
@ -753,7 +740,6 @@ EXPORT_SYMBOL(fscrypt_free_inode);
|
||||
int fscrypt_drop_inode(struct inode *inode)
|
||||
{
|
||||
const struct fscrypt_info *ci = fscrypt_get_info(inode);
|
||||
const struct fscrypt_master_key *mk;
|
||||
|
||||
/*
|
||||
* If ci is NULL, then the inode doesn't have an encryption key set up
|
||||
@ -763,7 +749,6 @@ int fscrypt_drop_inode(struct inode *inode)
|
||||
*/
|
||||
if (!ci || !ci->ci_master_key)
|
||||
return 0;
|
||||
mk = ci->ci_master_key->payload.data[0];
|
||||
|
||||
/*
|
||||
* With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
|
||||
@ -782,6 +767,6 @@ int fscrypt_drop_inode(struct inode *inode)
|
||||
* then the thread removing the key will either evict the inode itself
|
||||
* or will correctly detect that it wasn't evicted due to the race.
|
||||
*/
|
||||
return !is_master_key_secret_present(&mk->mk_secret);
|
||||
return !is_master_key_secret_present(&ci->ci_master_key->mk_secret);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
|
||||
|
@ -143,6 +143,7 @@ invalid:
|
||||
|
||||
/* Master key referenced by DIRECT_KEY policy */
|
||||
struct fscrypt_direct_key {
|
||||
struct super_block *dk_sb;
|
||||
struct hlist_node dk_node;
|
||||
refcount_t dk_refcount;
|
||||
const struct fscrypt_mode *dk_mode;
|
||||
@ -154,7 +155,7 @@ struct fscrypt_direct_key {
|
||||
static void free_direct_key(struct fscrypt_direct_key *dk)
|
||||
{
|
||||
if (dk) {
|
||||
fscrypt_destroy_prepared_key(&dk->dk_key);
|
||||
fscrypt_destroy_prepared_key(dk->dk_sb, &dk->dk_key);
|
||||
kfree_sensitive(dk);
|
||||
}
|
||||
}
|
||||
@ -231,6 +232,7 @@ fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
|
||||
dk = kzalloc(sizeof(*dk), GFP_KERNEL);
|
||||
if (!dk)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
dk->dk_sb = ci->ci_inode->i_sb;
|
||||
refcount_set(&dk->dk_refcount, 1);
|
||||
dk->dk_mode = ci->ci_mode;
|
||||
err = fscrypt_prepare_key(&dk->dk_key, raw_key, ci);
|
||||
|
@ -744,12 +744,8 @@ int fscrypt_set_context(struct inode *inode, void *fs_data)
|
||||
* delayed key setup that requires the inode number.
|
||||
*/
|
||||
if (ci->ci_policy.version == FSCRYPT_POLICY_V2 &&
|
||||
(ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32)) {
|
||||
const struct fscrypt_master_key *mk =
|
||||
ci->ci_master_key->payload.data[0];
|
||||
|
||||
fscrypt_hash_inode_number(ci, mk);
|
||||
}
|
||||
(ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))
|
||||
fscrypt_hash_inode_number(ci, ci->ci_master_key);
|
||||
|
||||
return inode->i_sb->s_cop->set_context(inode, &ctx, ctxsize, fs_data);
|
||||
}
|
||||
@ -833,19 +829,6 @@ bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fscrypt_dummy_policies_equal);
|
||||
|
||||
/* Deprecated, do not use */
|
||||
int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
|
||||
struct fscrypt_dummy_policy *dummy_policy)
|
||||
{
|
||||
struct fs_parameter param = {
|
||||
.type = fs_value_is_string,
|
||||
.string = arg ? (char *)arg : "",
|
||||
};
|
||||
return fscrypt_parse_test_dummy_encryption(¶m, dummy_policy) ?:
|
||||
fscrypt_add_test_dummy_key(sb, dummy_policy);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fscrypt_set_test_dummy_encryption);
|
||||
|
||||
/**
|
||||
* fscrypt_show_test_dummy_encryption() - show '-o test_dummy_encryption'
|
||||
* @seq: the seq_file to print the option to
|
||||
|
@ -75,7 +75,7 @@ static void __read_end_io(struct bio *bio)
|
||||
bio_for_each_segment_all(bv, bio, iter_all) {
|
||||
page = bv->bv_page;
|
||||
|
||||
/* PG_error was set if any post_read step failed */
|
||||
/* PG_error was set if verity failed. */
|
||||
if (bio->bi_status || PageError(page)) {
|
||||
ClearPageUptodate(page);
|
||||
/* will re-read again later */
|
||||
@ -96,10 +96,12 @@ static void decrypt_work(struct work_struct *work)
|
||||
{
|
||||
struct bio_post_read_ctx *ctx =
|
||||
container_of(work, struct bio_post_read_ctx, work);
|
||||
struct bio *bio = ctx->bio;
|
||||
|
||||
fscrypt_decrypt_bio(ctx->bio);
|
||||
|
||||
bio_post_read_processing(ctx);
|
||||
if (fscrypt_decrypt_bio(bio))
|
||||
bio_post_read_processing(ctx);
|
||||
else
|
||||
__read_end_io(bio);
|
||||
}
|
||||
|
||||
static void verity_work(struct work_struct *work)
|
||||
|
@ -139,7 +139,7 @@ static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
|
||||
continue;
|
||||
}
|
||||
|
||||
/* PG_error was set if decryption or verity failed. */
|
||||
/* PG_error was set if verity failed. */
|
||||
if (bio->bi_status || PageError(page)) {
|
||||
ClearPageUptodate(page);
|
||||
/* will re-read again later */
|
||||
@ -185,7 +185,7 @@ static void f2fs_verify_bio(struct work_struct *work)
|
||||
struct page *page = bv->bv_page;
|
||||
|
||||
if (!f2fs_is_compressed_page(page) &&
|
||||
!PageError(page) && !fsverity_verify_page(page))
|
||||
!fsverity_verify_page(page))
|
||||
SetPageError(page);
|
||||
}
|
||||
} else {
|
||||
@ -236,10 +236,9 @@ static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
|
||||
bio_for_each_segment_all(bv, ctx->bio, iter_all) {
|
||||
struct page *page = bv->bv_page;
|
||||
|
||||
/* PG_error was set if decryption failed. */
|
||||
if (f2fs_is_compressed_page(page))
|
||||
f2fs_end_read_compressed_page(page, PageError(page),
|
||||
blkaddr, in_task);
|
||||
f2fs_end_read_compressed_page(page, false, blkaddr,
|
||||
in_task);
|
||||
else
|
||||
all_compressed = false;
|
||||
|
||||
@ -259,14 +258,17 @@ static void f2fs_post_read_work(struct work_struct *work)
|
||||
{
|
||||
struct bio_post_read_ctx *ctx =
|
||||
container_of(work, struct bio_post_read_ctx, work);
|
||||
struct bio *bio = ctx->bio;
|
||||
|
||||
if (ctx->enabled_steps & STEP_DECRYPT)
|
||||
fscrypt_decrypt_bio(ctx->bio);
|
||||
if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
|
||||
f2fs_finish_read_bio(bio, true);
|
||||
return;
|
||||
}
|
||||
|
||||
if (ctx->enabled_steps & STEP_DECOMPRESS)
|
||||
f2fs_handle_step_decompress(ctx, true);
|
||||
|
||||
f2fs_verify_and_finish_bio(ctx->bio, true);
|
||||
f2fs_verify_and_finish_bio(bio, true);
|
||||
}
|
||||
|
||||
static void f2fs_read_end_io(struct bio *bio)
|
||||
|
@ -3039,23 +3039,24 @@ static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
|
||||
*lblk_bits_ret = 8 * sizeof(block_t);
|
||||
}
|
||||
|
||||
static int f2fs_get_num_devices(struct super_block *sb)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
|
||||
if (f2fs_is_multi_device(sbi))
|
||||
return sbi->s_ndevs;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void f2fs_get_devices(struct super_block *sb,
|
||||
struct request_queue **devs)
|
||||
static struct block_device **f2fs_get_devices(struct super_block *sb,
|
||||
unsigned int *num_devs)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
||||
struct block_device **devs;
|
||||
int i;
|
||||
|
||||
if (!f2fs_is_multi_device(sbi))
|
||||
return NULL;
|
||||
|
||||
devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
|
||||
if (!devs)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
for (i = 0; i < sbi->s_ndevs; i++)
|
||||
devs[i] = bdev_get_queue(FDEV(i).bdev);
|
||||
devs[i] = FDEV(i).bdev;
|
||||
*num_devs = sbi->s_ndevs;
|
||||
return devs;
|
||||
}
|
||||
|
||||
static const struct fscrypt_operations f2fs_cryptops = {
|
||||
@ -3066,7 +3067,6 @@ static const struct fscrypt_operations f2fs_cryptops = {
|
||||
.empty_dir = f2fs_empty_dir,
|
||||
.has_stable_inodes = f2fs_has_stable_inodes,
|
||||
.get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits,
|
||||
.get_num_devices = f2fs_get_num_devices,
|
||||
.get_devices = f2fs_get_devices,
|
||||
};
|
||||
#endif
|
||||
|
@ -291,7 +291,6 @@ static void __put_super(struct super_block *s)
|
||||
WARN_ON(s->s_inode_lru.node);
|
||||
WARN_ON(!list_empty(&s->s_mounts));
|
||||
security_sb_free(s);
|
||||
fscrypt_sb_free(s);
|
||||
put_user_ns(s->s_user_ns);
|
||||
kfree(s->s_subtype);
|
||||
call_rcu(&s->rcu, destroy_super_rcu);
|
||||
@ -480,6 +479,7 @@ void generic_shutdown_super(struct super_block *sb)
|
||||
evict_inodes(sb);
|
||||
/* only nonzero refcount inodes can have marks */
|
||||
fsnotify_sb_delete(sb);
|
||||
fscrypt_sb_delete(sb);
|
||||
security_sb_delete(sb);
|
||||
|
||||
if (sb->s_dio_done_wq) {
|
||||
|
@ -1472,7 +1472,7 @@ struct super_block {
|
||||
const struct xattr_handler **s_xattr;
|
||||
#ifdef CONFIG_FS_ENCRYPTION
|
||||
const struct fscrypt_operations *s_cop;
|
||||
struct key *s_master_keys; /* master crypto keys in use */
|
||||
struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
|
||||
#endif
|
||||
#ifdef CONFIG_FS_VERITY
|
||||
const struct fsverity_operations *s_vop;
|
||||
|
@ -161,24 +161,21 @@ struct fscrypt_operations {
|
||||
int *ino_bits_ret, int *lblk_bits_ret);
|
||||
|
||||
/*
|
||||
* Return the number of block devices to which the filesystem may write
|
||||
* encrypted file contents.
|
||||
* Return an array of pointers to the block devices to which the
|
||||
* filesystem may write encrypted file contents, NULL if the filesystem
|
||||
* only has a single such block device, or an ERR_PTR() on error.
|
||||
*
|
||||
* On successful non-NULL return, *num_devs is set to the number of
|
||||
* devices in the returned array. The caller must free the returned
|
||||
* array using kfree().
|
||||
*
|
||||
* If the filesystem can use multiple block devices (other than block
|
||||
* devices that aren't used for encrypted file contents, such as
|
||||
* external journal devices), and wants to support inline encryption,
|
||||
* then it must implement this function. Otherwise it's not needed.
|
||||
*/
|
||||
int (*get_num_devices)(struct super_block *sb);
|
||||
|
||||
/*
|
||||
* If ->get_num_devices() returns a value greater than 1, then this
|
||||
* function is called to get the array of request_queues that the
|
||||
* filesystem is using -- one per block device. (There may be duplicate
|
||||
* entries in this array, as block devices can share a request_queue.)
|
||||
*/
|
||||
void (*get_devices)(struct super_block *sb,
|
||||
struct request_queue **devs);
|
||||
struct block_device **(*get_devices)(struct super_block *sb,
|
||||
unsigned int *num_devs);
|
||||
};
|
||||
|
||||
static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
|
||||
@ -295,8 +292,6 @@ int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
|
||||
struct fscrypt_dummy_policy *dummy_policy);
|
||||
bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
|
||||
const struct fscrypt_dummy_policy *p2);
|
||||
int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
|
||||
struct fscrypt_dummy_policy *dummy_policy);
|
||||
void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
|
||||
struct super_block *sb);
|
||||
static inline bool
|
||||
@ -312,7 +307,7 @@ fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
|
||||
}
|
||||
|
||||
/* keyring.c */
|
||||
void fscrypt_sb_free(struct super_block *sb);
|
||||
void fscrypt_sb_delete(struct super_block *sb);
|
||||
int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
|
||||
int fscrypt_add_test_dummy_key(struct super_block *sb,
|
||||
const struct fscrypt_dummy_policy *dummy_policy);
|
||||
@ -353,7 +348,7 @@ u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
|
||||
int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
|
||||
|
||||
/* bio.c */
|
||||
void fscrypt_decrypt_bio(struct bio *bio);
|
||||
bool fscrypt_decrypt_bio(struct bio *bio);
|
||||
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
|
||||
sector_t pblk, unsigned int len);
|
||||
|
||||
@ -526,7 +521,7 @@ fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
|
||||
}
|
||||
|
||||
/* keyring.c */
|
||||
static inline void fscrypt_sb_free(struct super_block *sb)
|
||||
static inline void fscrypt_sb_delete(struct super_block *sb)
|
||||
{
|
||||
}
|
||||
|
||||
@ -646,8 +641,9 @@ static inline int fscrypt_d_revalidate(struct dentry *dentry,
|
||||
}
|
||||
|
||||
/* bio.c */
|
||||
static inline void fscrypt_decrypt_bio(struct bio *bio)
|
||||
static inline bool fscrypt_decrypt_bio(struct bio *bio)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
|
||||
|
Loading…
Reference in New Issue
Block a user