2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 19:14:01 +08:00

[PATCH] genirq: msi: refactor the msi_ops

The current msi_ops are short sighted in a number of ways, this patch attempts
to fix the glaring deficiences.

- Report in msi_ops if a 64bit address is needed in the msi message, so we
  can fail 32bit only msi structures.

- Send and receive a full struct msi_msg in both setup and target.  This is
  a little cleaner and allows for architectures that need to modify the data
  to retarget the msi interrupt to a different cpu.

- In target pass in the full cpu mask instead of just the first cpu in case
  we can make use of the full cpu mask.

- Operate in terms of irqs and not vectors, currently there is still a 1-1
  relationship but on architectures other than ia64 I expect this will change.

Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rajesh Shah <rajesh.shah@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
Eric W. Biederman 2006-10-04 02:16:34 -07:00 committed by Linus Torvalds
parent 0366f8f713
commit 38bc036130
5 changed files with 116 additions and 115 deletions

View File

@ -26,7 +26,7 @@ struct sn_msi_info {
static struct sn_msi_info *sn_msi_info;
static void
sn_msi_teardown(unsigned int vector)
sn_msi_teardown(unsigned int irq)
{
nasid_t nasid;
int widget;
@ -36,7 +36,7 @@ sn_msi_teardown(unsigned int vector)
struct pcibus_bussoft *bussoft;
struct sn_pcibus_provider *provider;
sn_irq_info = sn_msi_info[vector].sn_irq_info;
sn_irq_info = sn_msi_info[irq].sn_irq_info;
if (sn_irq_info == NULL || sn_irq_info->irq_int_bit >= 0)
return;
@ -45,9 +45,9 @@ sn_msi_teardown(unsigned int vector)
provider = SN_PCIDEV_BUSPROVIDER(pdev);
(*provider->dma_unmap)(pdev,
sn_msi_info[vector].pci_addr,
sn_msi_info[irq].pci_addr,
PCI_DMA_FROMDEVICE);
sn_msi_info[vector].pci_addr = 0;
sn_msi_info[irq].pci_addr = 0;
bussoft = SN_PCIDEV_BUSSOFT(pdev);
nasid = NASID_GET(bussoft->bs_base);
@ -56,14 +56,13 @@ sn_msi_teardown(unsigned int vector)
SWIN_WIDGETNUM(bussoft->bs_base);
sn_intr_free(nasid, widget, sn_irq_info);
sn_msi_info[vector].sn_irq_info = NULL;
sn_msi_info[irq].sn_irq_info = NULL;
return;
}
int
sn_msi_setup(struct pci_dev *pdev, unsigned int vector,
u32 *addr_hi, u32 *addr_lo, u32 *data)
sn_msi_setup(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
{
int widget;
int status;
@ -93,7 +92,7 @@ sn_msi_setup(struct pci_dev *pdev, unsigned int vector,
if (! sn_irq_info)
return -ENOMEM;
status = sn_intr_alloc(nasid, widget, sn_irq_info, vector, -1, -1);
status = sn_intr_alloc(nasid, widget, sn_irq_info, irq, -1, -1);
if (status) {
kfree(sn_irq_info);
return -ENOMEM;
@ -119,28 +118,27 @@ sn_msi_setup(struct pci_dev *pdev, unsigned int vector,
return -ENOMEM;
}
sn_msi_info[vector].sn_irq_info = sn_irq_info;
sn_msi_info[vector].pci_addr = bus_addr;
sn_msi_info[irq].sn_irq_info = sn_irq_info;
sn_msi_info[irq].pci_addr = bus_addr;
*addr_hi = (u32)(bus_addr >> 32);
*addr_lo = (u32)(bus_addr & 0x00000000ffffffff);
msg->address_hi = (u32)(bus_addr >> 32);
msg->address_lo = (u32)(bus_addr & 0x00000000ffffffff);
/*
* In the SN platform, bit 16 is a "send vector" bit which
* must be present in order to move the vector through the system.
*/
*data = 0x100 + (unsigned int)vector;
msg->data = 0x100 + irq;
#ifdef CONFIG_SMP
set_irq_affinity_info((vector & 0xff), sn_irq_info->irq_cpuid, 0);
set_irq_affinity_info(irq, sn_irq_info->irq_cpuid, 0);
#endif
return 0;
}
static void
sn_msi_target(unsigned int vector, unsigned int cpu,
u32 *addr_hi, u32 *addr_lo)
sn_msi_target(unsigned int irq, cpumask_t cpu_mask, struct msi_msg *msg)
{
int slice;
nasid_t nasid;
@ -150,8 +148,10 @@ sn_msi_target(unsigned int vector, unsigned int cpu,
struct sn_irq_info *sn_irq_info;
struct sn_irq_info *new_irq_info;
struct sn_pcibus_provider *provider;
unsigned int cpu;
sn_irq_info = sn_msi_info[vector].sn_irq_info;
cpu = first_cpu(cpu_mask);
sn_irq_info = sn_msi_info[irq].sn_irq_info;
if (sn_irq_info == NULL || sn_irq_info->irq_int_bit >= 0)
return;
@ -163,15 +163,15 @@ sn_msi_target(unsigned int vector, unsigned int cpu,
pdev = sn_pdev->pdi_linux_pcidev;
provider = SN_PCIDEV_BUSPROVIDER(pdev);
bus_addr = (u64)(*addr_hi) << 32 | (u64)(*addr_lo);
bus_addr = (u64)(msg->address_hi) << 32 | (u64)(msg->address_lo);
(*provider->dma_unmap)(pdev, bus_addr, PCI_DMA_FROMDEVICE);
sn_msi_info[vector].pci_addr = 0;
sn_msi_info[irq].pci_addr = 0;
nasid = cpuid_to_nasid(cpu);
slice = cpuid_to_slice(cpu);
new_irq_info = sn_retarget_vector(sn_irq_info, nasid, slice);
sn_msi_info[vector].sn_irq_info = new_irq_info;
sn_msi_info[irq].sn_irq_info = new_irq_info;
if (new_irq_info == NULL)
return;
@ -184,12 +184,13 @@ sn_msi_target(unsigned int vector, unsigned int cpu,
sizeof(new_irq_info->irq_xtalkaddr),
SN_DMA_MSI|SN_DMA_ADDR_XIO);
sn_msi_info[vector].pci_addr = bus_addr;
*addr_hi = (u32)(bus_addr >> 32);
*addr_lo = (u32)(bus_addr & 0x00000000ffffffff);
sn_msi_info[irq].pci_addr = bus_addr;
msg->address_hi = (u32)(bus_addr >> 32);
msg->address_lo = (u32)(bus_addr & 0x00000000ffffffff);
}
struct msi_ops sn_msi_ops = {
.needs_64bit_address = 1,
.setup = sn_msi_setup,
.teardown = sn_msi_teardown,
#ifdef CONFIG_SMP
@ -201,7 +202,7 @@ int
sn_msi_init(void)
{
sn_msi_info =
kzalloc(sizeof(struct sn_msi_info) * NR_VECTORS, GFP_KERNEL);
kzalloc(sizeof(struct sn_msi_info) * NR_IRQS, GFP_KERNEL);
if (! sn_msi_info)
return -ENOMEM;

View File

@ -46,37 +46,36 @@
static void
msi_target_apic(unsigned int vector,
unsigned int dest_cpu,
u32 *address_hi, /* in/out */
u32 *address_lo) /* in/out */
msi_target_apic(unsigned int irq, cpumask_t cpu_mask, struct msi_msg *msg)
{
u32 addr = *address_lo;
u32 addr = msg->address_lo;
addr &= MSI_ADDR_DESTID_MASK;
addr |= MSI_ADDR_DESTID_CPU(cpu_physical_id(dest_cpu));
addr |= MSI_ADDR_DESTID_CPU(cpu_physical_id(first_cpu(cpu_mask)));
*address_lo = addr;
msg->address_lo = addr;
}
static int
msi_setup_apic(struct pci_dev *pdev, /* unused in generic */
unsigned int vector,
u32 *address_hi,
u32 *address_lo,
u32 *data)
unsigned int irq,
struct msi_msg *msg)
{
unsigned long dest_phys_id;
unsigned int vector;
dest_phys_id = cpu_physical_id(first_cpu(cpu_online_map));
vector = irq;
*address_hi = 0;
*address_lo = MSI_ADDR_HEADER |
MSI_ADDR_DESTMODE_PHYS |
MSI_ADDR_REDIRECTION_CPU |
MSI_ADDR_DESTID_CPU(dest_phys_id);
msg->address_hi = 0;
msg->address_lo =
MSI_ADDR_HEADER |
MSI_ADDR_DESTMODE_PHYS |
MSI_ADDR_REDIRECTION_CPU |
MSI_ADDR_DESTID_CPU(dest_phys_id);
*data = MSI_DATA_TRIGGER_EDGE |
msg->data =
MSI_DATA_TRIGGER_EDGE |
MSI_DATA_LEVEL_ASSERT |
MSI_DATA_DELIVERY_FIXED |
MSI_DATA_VECTOR(vector);
@ -85,7 +84,7 @@ msi_setup_apic(struct pci_dev *pdev, /* unused in generic */
}
static void
msi_teardown_apic(unsigned int vector)
msi_teardown_apic(unsigned int irq)
{
return; /* no-op */
}
@ -95,6 +94,7 @@ msi_teardown_apic(unsigned int vector)
*/
struct msi_ops msi_apic_ops = {
.needs_64bit_address = 0,
.setup = msi_setup_apic,
.teardown = msi_teardown_apic,
.target = msi_target_apic,

View File

@ -165,19 +165,17 @@ static void write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
}
#ifdef CONFIG_SMP
static void set_msi_affinity(unsigned int vector, cpumask_t cpu_mask)
static void set_msi_affinity(unsigned int irq, cpumask_t cpu_mask)
{
struct msi_desc *entry;
struct msi_msg msg;
unsigned int irq = vector;
unsigned int dest_cpu = first_cpu(cpu_mask);
entry = (struct msi_desc *)msi_desc[vector];
entry = msi_desc[irq];
if (!entry || !entry->dev)
return;
read_msi_msg(entry, &msg);
msi_ops->target(vector, dest_cpu, &msg.address_hi, &msg.address_lo);
msi_ops->target(irq, cpu_mask, &msg);
write_msi_msg(entry, &msg);
set_native_irq_info(irq, cpu_mask);
}
@ -701,14 +699,14 @@ static int msi_register_init(struct pci_dev *dev, struct msi_desc *entry)
{
int status;
struct msi_msg msg;
int pos, vector = dev->irq;
int pos;
u16 control;
pos = entry->msi_attrib.pos;
pci_read_config_word(dev, msi_control_reg(pos), &control);
/* Configure MSI capability structure */
status = msi_ops->setup(dev, vector, &msg.address_hi, &msg.address_lo, &msg.data);
status = msi_ops->setup(dev, dev->irq, &msg);
if (status < 0)
return status;
@ -863,10 +861,7 @@ static int msix_capability_init(struct pci_dev *dev,
/* Replace with MSI-X handler */
irq_handler_init(PCI_CAP_ID_MSIX, vector, 1);
/* Configure MSI-X capability structure */
status = msi_ops->setup(dev, vector,
&msg.address_hi,
&msg.address_lo,
&msg.data);
status = msi_ops->setup(dev, vector, &msg);
if (status < 0)
break;
@ -928,6 +923,7 @@ int pci_msi_supported(struct pci_dev * dev)
int pci_enable_msi(struct pci_dev* dev)
{
int pos, temp, status;
u16 control;
if (pci_msi_supported(dev) < 0)
return -EINVAL;
@ -942,6 +938,10 @@ int pci_enable_msi(struct pci_dev* dev)
if (!pos)
return -EINVAL;
pci_read_config_word(dev, msi_control_reg(pos), &control);
if (!is_64bit_address(control) && msi_ops->needs_64bit_address)
return -EINVAL;
WARN_ON(!msi_lookup_vector(dev, PCI_CAP_ID_MSI));
/* Check whether driver already requested for MSI-X vectors */

View File

@ -6,68 +6,6 @@
#ifndef MSI_H
#define MSI_H
/*
* MSI operation vector. Used by the msi core code (drivers/pci/msi.c)
* to abstract platform-specific tasks relating to MSI address generation
* and resource management.
*/
struct msi_ops {
/**
* setup - generate an MSI bus address and data for a given vector
* @pdev: PCI device context (in)
* @vector: vector allocated by the msi core (in)
* @addr_hi: upper 32 bits of PCI bus MSI address (out)
* @addr_lo: lower 32 bits of PCI bus MSI address (out)
* @data: MSI data payload (out)
*
* Description: The setup op is used to generate a PCI bus addres and
* data which the msi core will program into the card MSI capability
* registers. The setup routine is responsible for picking an initial
* cpu to target the MSI at. The setup routine is responsible for
* examining pdev to determine the MSI capabilities of the card and
* generating a suitable address/data. The setup routine is
* responsible for allocating and tracking any system resources it
* needs to route the MSI to the cpu it picks, and for associating
* those resources with the passed in vector.
*
* Returns 0 if the MSI address/data was successfully setup.
**/
int (*setup) (struct pci_dev *pdev, unsigned int vector,
u32 *addr_hi, u32 *addr_lo, u32 *data);
/**
* teardown - release resources allocated by setup
* @vector: vector context for resources (in)
*
* Description: The teardown op is used to release any resources
* that were allocated in the setup routine associated with the passed
* in vector.
**/
void (*teardown) (unsigned int vector);
/**
* target - retarget an MSI at a different cpu
* @vector: vector context for resources (in)
* @cpu: new cpu to direct vector at (in)
* @addr_hi: new value of PCI bus upper 32 bits (in/out)
* @addr_lo: new value of PCI bus lower 32 bits (in/out)
*
* Description: The target op is used to redirect an MSI vector
* at a different cpu. addr_hi/addr_lo coming in are the existing
* values that the MSI core has programmed into the card. The
* target code is responsible for freeing any resources (if any)
* associated with the old address, and generating a new PCI bus
* addr_hi/addr_lo that will redirect the vector at the indicated cpu.
**/
void (*target) (unsigned int vector, unsigned int cpu,
u32 *addr_hi, u32 *addr_lo);
};
extern int msi_register(struct msi_ops *ops);
#include <asm/msi.h>
/*

View File

@ -617,6 +617,68 @@ extern int pci_enable_msix(struct pci_dev* dev,
struct msix_entry *entries, int nvec);
extern void pci_disable_msix(struct pci_dev *dev);
extern void msi_remove_pci_irq_vectors(struct pci_dev *dev);
/*
* MSI operation vector. Used by the msi core code (drivers/pci/msi.c)
* to abstract platform-specific tasks relating to MSI address generation
* and resource management.
*/
struct msi_ops {
int needs_64bit_address;
/**
* setup - generate an MSI bus address and data for a given vector
* @pdev: PCI device context (in)
* @irq: irq allocated by the msi core (in)
* @msg: PCI bus address and data for msi message (out)
*
* Description: The setup op is used to generate a PCI bus addres and
* data which the msi core will program into the card MSI capability
* registers. The setup routine is responsible for picking an initial
* cpu to target the MSI at. The setup routine is responsible for
* examining pdev to determine the MSI capabilities of the card and
* generating a suitable address/data. The setup routine is
* responsible for allocating and tracking any system resources it
* needs to route the MSI to the cpu it picks, and for associating
* those resources with the passed in vector.
*
* Returns 0 if the MSI address/data was successfully setup.
**/
int (*setup) (struct pci_dev *pdev, unsigned int irq,
struct msi_msg *msg);
/**
* teardown - release resources allocated by setup
* @vector: vector context for resources (in)
*
* Description: The teardown op is used to release any resources
* that were allocated in the setup routine associated with the passed
* in vector.
**/
void (*teardown) (unsigned int irq);
/**
* target - retarget an MSI at a different cpu
* @vector: vector context for resources (in)
* @cpu: new cpu to direct vector at (in)
* @addr_hi: new value of PCI bus upper 32 bits (in/out)
* @addr_lo: new value of PCI bus lower 32 bits (in/out)
*
* Description: The target op is used to redirect an MSI vector
* at a different cpu. addr_hi/addr_lo coming in are the existing
* values that the MSI core has programmed into the card. The
* target code is responsible for freeing any resources (if any)
* associated with the old address, and generating a new PCI bus
* addr_hi/addr_lo that will redirect the vector at the indicated cpu.
**/
void (*target) (unsigned int irq, cpumask_t cpumask,
struct msi_msg *msg);
};
extern int msi_register(struct msi_ops *ops);
#endif
extern void pci_block_user_cfg_access(struct pci_dev *dev);