2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 12:44:14 +08:00

powerpc/powernv/sriov: Move SR-IOV into a separate file

pci-ioda.c is getting a bit unwieldly due to the amount of stuff jammed in
there. The SR-IOV support can be extracted easily enough and is mostly
standalone, so move it into a separate file.

This patch also moves the PowerNV SR-IOV specific fields from pci_dn and
moves them into a platform specific structure. I'm not sure how they ended
up in there in the first place, but leaking platform specifics into common
code has proven to be a terrible idea so far so lets stop doing that.

Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200722065715.1432738-5-oohall@gmail.com
This commit is contained in:
Oliver O'Halloran 2020-07-22 16:57:04 +10:00 committed by Michael Ellerman
parent 369633654f
commit 37b59ef08c
5 changed files with 736 additions and 655 deletions

View File

@ -49,6 +49,9 @@ struct dev_archdata {
#ifdef CONFIG_CXL_BASE
struct cxl_context *cxl_ctx;
#endif
#ifdef CONFIG_PCI_IOV
void *iov_data;
#endif
};
struct pdev_archdata {

View File

@ -11,6 +11,7 @@ obj-$(CONFIG_FA_DUMP) += opal-fadump.o
obj-$(CONFIG_PRESERVE_FA_DUMP) += opal-fadump.o
obj-$(CONFIG_OPAL_CORE) += opal-core.o
obj-$(CONFIG_PCI) += pci.o pci-ioda.o npu-dma.o pci-ioda-tce.o
obj-$(CONFIG_PCI_IOV) += pci-sriov.o
obj-$(CONFIG_CXL_BASE) += pci-cxl.o
obj-$(CONFIG_EEH) += eeh-powernv.o
obj-$(CONFIG_MEMORY_FAILURE) += opal-memory-errors.o

View File

@ -115,26 +115,6 @@ static int __init pci_reset_phbs_setup(char *str)
early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
{
/*
* WARNING: We cannot rely on the resource flags. The Linux PCI
* allocation code sometimes decides to put a 64-bit prefetchable
* BAR in the 32-bit window, so we have to compare the addresses.
*
* For simplicity we only test resource start.
*/
return (r->start >= phb->ioda.m64_base &&
r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
}
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
{
unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
return (resource_flags & flags) == flags;
}
static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
{
s64 rc;
@ -172,7 +152,7 @@ static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
pnv_ioda_init_pe(phb, pe_no);
}
static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
{
long pe;
@ -184,7 +164,7 @@ static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
return NULL;
}
static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
{
struct pnv_phb *phb = pe->phb;
unsigned int pe_num = pe->pe_number;
@ -816,7 +796,7 @@ static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
}
static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
@ -887,7 +867,7 @@ static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
return 0;
}
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
{
struct pci_dev *parent;
uint8_t bcomp, dcomp, fcomp;
@ -982,91 +962,6 @@ out:
return 0;
}
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
struct pci_dn *pdn = pci_get_pdn(dev);
int i;
struct resource *res, res2;
resource_size_t size;
u16 num_vfs;
if (!dev->is_physfn)
return -EINVAL;
/*
* "offset" is in VFs. The M64 windows are sized so that when they
* are segmented, each segment is the same size as the IOV BAR.
* Each segment is in a separate PE, and the high order bits of the
* address are the PE number. Therefore, each VF's BAR is in a
* separate PE, and changing the IOV BAR start address changes the
* range of PEs the VFs are in.
*/
num_vfs = pdn->num_vfs;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
/*
* The actual IOV BAR range is determined by the start address
* and the actual size for num_vfs VFs BAR. This check is to
* make sure that after shifting, the range will not overlap
* with another device.
*/
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2.flags = res->flags;
res2.start = res->start + (size * offset);
res2.end = res2.start + (size * num_vfs) - 1;
if (res2.end > res->end) {
dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
i, &res2, res, num_vfs, offset);
return -EBUSY;
}
}
/*
* Since M64 BAR shares segments among all possible 256 PEs,
* we have to shift the beginning of PF IOV BAR to make it start from
* the segment which belongs to the PE number assigned to the first VF.
* This creates a "hole" in the /proc/iomem which could be used for
* allocating other resources so we reserve this area below and
* release when IOV is released.
*/
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2 = *res;
res->start += size * offset;
dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
i, &res2, res, (offset > 0) ? "En" : "Dis",
num_vfs, offset);
if (offset < 0) {
devm_release_resource(&dev->dev, &pdn->holes[i]);
memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
}
pci_update_resource(dev, i + PCI_IOV_RESOURCES);
if (offset > 0) {
pdn->holes[i].start = res2.start;
pdn->holes[i].end = res2.start + size * offset - 1;
pdn->holes[i].flags = IORESOURCE_BUS;
pdn->holes[i].name = "pnv_iov_reserved";
devm_request_resource(&dev->dev, res->parent,
&pdn->holes[i]);
}
}
return 0;
}
#endif /* CONFIG_PCI_IOV */
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
@ -1294,406 +1189,9 @@ static void pnv_pci_ioda_setup_nvlink(void)
#endif
}
#ifdef CONFIG_PCI_IOV
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_phb *phb;
struct pci_dn *pdn;
int i, j;
int m64_bars;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
if (pdn->m64_single_mode)
m64_bars = num_vfs;
else
m64_bars = 1;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
for (j = 0; j < m64_bars; j++) {
if (pdn->m64_map[j][i] == IODA_INVALID_M64)
continue;
opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
pdn->m64_map[j][i] = IODA_INVALID_M64;
}
kfree(pdn->m64_map);
return 0;
}
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_phb *phb;
struct pci_dn *pdn;
unsigned int win;
struct resource *res;
int i, j;
int64_t rc;
int total_vfs;
resource_size_t size, start;
int pe_num;
int m64_bars;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
total_vfs = pci_sriov_get_totalvfs(pdev);
if (pdn->m64_single_mode)
m64_bars = num_vfs;
else
m64_bars = 1;
pdn->m64_map = kmalloc_array(m64_bars,
sizeof(*pdn->m64_map),
GFP_KERNEL);
if (!pdn->m64_map)
return -ENOMEM;
/* Initialize the m64_map to IODA_INVALID_M64 */
for (i = 0; i < m64_bars ; i++)
for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
pdn->m64_map[i][j] = IODA_INVALID_M64;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
for (j = 0; j < m64_bars; j++) {
do {
win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
phb->ioda.m64_bar_idx + 1, 0);
if (win >= phb->ioda.m64_bar_idx + 1)
goto m64_failed;
} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
pdn->m64_map[j][i] = win;
if (pdn->m64_single_mode) {
size = pci_iov_resource_size(pdev,
PCI_IOV_RESOURCES + i);
start = res->start + size * j;
} else {
size = resource_size(res);
start = res->start;
}
/* Map the M64 here */
if (pdn->m64_single_mode) {
pe_num = pdn->pe_num_map[j];
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe_num, OPAL_M64_WINDOW_TYPE,
pdn->m64_map[j][i], 0);
}
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
pdn->m64_map[j][i],
start,
0, /* unused */
size);
if (rc != OPAL_SUCCESS) {
dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
win, rc);
goto m64_failed;
}
if (pdn->m64_single_mode)
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
else
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
if (rc != OPAL_SUCCESS) {
dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
win, rc);
goto m64_failed;
}
}
}
return 0;
m64_failed:
pnv_pci_vf_release_m64(pdev, num_vfs);
return -EBUSY;
}
static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe, *pe_n;
struct pci_dn *pdn;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
if (!pdev->is_physfn)
return;
/* FIXME: Use pnv_ioda_release_pe()? */
list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
if (pe->parent_dev != pdev)
continue;
pnv_pci_ioda2_release_pe_dma(pe);
/* Remove from list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_del(&pe->list);
mutex_unlock(&phb->ioda.pe_list_mutex);
pnv_ioda_deconfigure_pe(phb, pe);
pnv_ioda_free_pe(pe);
}
}
static void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
struct pci_dn *pdn;
u16 num_vfs, i;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
num_vfs = pdn->num_vfs;
/* Release VF PEs */
pnv_ioda_release_vf_PE(pdev);
if (phb->type == PNV_PHB_IODA2) {
if (!pdn->m64_single_mode)
pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
/* Release M64 windows */
pnv_pci_vf_release_m64(pdev, num_vfs);
/* Release PE numbers */
if (pdn->m64_single_mode) {
for (i = 0; i < num_vfs; i++) {
if (pdn->pe_num_map[i] == IODA_INVALID_PE)
continue;
pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
pnv_ioda_free_pe(pe);
}
} else
bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
/* Releasing pe_num_map */
kfree(pdn->pe_num_map);
}
}
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe);
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
int pe_num;
u16 vf_index;
struct pci_dn *pdn;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
if (!pdev->is_physfn)
return;
/* Reserve PE for each VF */
for (vf_index = 0; vf_index < num_vfs; vf_index++) {
int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
struct pci_dn *vf_pdn;
if (pdn->m64_single_mode)
pe_num = pdn->pe_num_map[vf_index];
else
pe_num = *pdn->pe_num_map + vf_index;
pe = &phb->ioda.pe_array[pe_num];
pe->pe_number = pe_num;
pe->phb = phb;
pe->flags = PNV_IODA_PE_VF;
pe->pbus = NULL;
pe->parent_dev = pdev;
pe->mve_number = -1;
pe->rid = (vf_bus << 8) | vf_devfn;
pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
pci_domain_nr(pdev->bus), pdev->bus->number,
PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
pnv_ioda_free_pe(pe);
pe->pdev = NULL;
continue;
}
/* Put PE to the list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_add_tail(&pe->list, &phb->ioda.pe_list);
mutex_unlock(&phb->ioda.pe_list_mutex);
/* associate this pe to it's pdn */
list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
if (vf_pdn->busno == vf_bus &&
vf_pdn->devfn == vf_devfn) {
vf_pdn->pe_number = pe_num;
break;
}
}
pnv_pci_ioda2_setup_dma_pe(phb, pe);
}
}
static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
struct pci_dn *pdn;
int ret;
u16 i;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
if (phb->type == PNV_PHB_IODA2) {
if (!pdn->vfs_expanded) {
dev_info(&pdev->dev, "don't support this SRIOV device"
" with non 64bit-prefetchable IOV BAR\n");
return -ENOSPC;
}
/*
* When M64 BARs functions in Single PE mode, the number of VFs
* could be enabled must be less than the number of M64 BARs.
*/
if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
return -EBUSY;
}
/* Allocating pe_num_map */
if (pdn->m64_single_mode)
pdn->pe_num_map = kmalloc_array(num_vfs,
sizeof(*pdn->pe_num_map),
GFP_KERNEL);
else
pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
if (!pdn->pe_num_map)
return -ENOMEM;
if (pdn->m64_single_mode)
for (i = 0; i < num_vfs; i++)
pdn->pe_num_map[i] = IODA_INVALID_PE;
/* Calculate available PE for required VFs */
if (pdn->m64_single_mode) {
for (i = 0; i < num_vfs; i++) {
pe = pnv_ioda_alloc_pe(phb);
if (!pe) {
ret = -EBUSY;
goto m64_failed;
}
pdn->pe_num_map[i] = pe->pe_number;
}
} else {
mutex_lock(&phb->ioda.pe_alloc_mutex);
*pdn->pe_num_map = bitmap_find_next_zero_area(
phb->ioda.pe_alloc, phb->ioda.total_pe_num,
0, num_vfs, 0);
if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
mutex_unlock(&phb->ioda.pe_alloc_mutex);
dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
kfree(pdn->pe_num_map);
return -EBUSY;
}
bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
mutex_unlock(&phb->ioda.pe_alloc_mutex);
}
pdn->num_vfs = num_vfs;
/* Assign M64 window accordingly */
ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
if (ret) {
dev_info(&pdev->dev, "Not enough M64 window resources\n");
goto m64_failed;
}
/*
* When using one M64 BAR to map one IOV BAR, we need to shift
* the IOV BAR according to the PE# allocated to the VFs.
* Otherwise, the PE# for the VF will conflict with others.
*/
if (!pdn->m64_single_mode) {
ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
if (ret)
goto m64_failed;
}
}
/* Setup VF PEs */
pnv_ioda_setup_vf_PE(pdev, num_vfs);
return 0;
m64_failed:
if (pdn->m64_single_mode) {
for (i = 0; i < num_vfs; i++) {
if (pdn->pe_num_map[i] == IODA_INVALID_PE)
continue;
pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
pnv_ioda_free_pe(pe);
}
} else
bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
/* Releasing pe_num_map */
kfree(pdn->pe_num_map);
return ret;
}
static int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
{
pnv_pci_sriov_disable(pdev);
/* Release PCI data */
remove_sriov_vf_pdns(pdev);
return 0;
}
static int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
/* Allocate PCI data */
add_sriov_vf_pdns(pdev);
return pnv_pci_sriov_enable(pdev, num_vfs);
}
#endif /* CONFIG_PCI_IOV */
static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe);
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe);
static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
@ -2559,8 +2057,8 @@ static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
};
#endif
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
struct pnv_ioda_pe *pe)
{
int64_t rc;
@ -2737,117 +2235,6 @@ static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
count, phb->msi_base);
}
#ifdef CONFIG_PCI_IOV
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
const resource_size_t gate = phb->ioda.m64_segsize >> 2;
struct resource *res;
int i;
resource_size_t size, total_vf_bar_sz;
struct pci_dn *pdn;
int mul, total_vfs;
pdn = pci_get_pdn(pdev);
pdn->vfs_expanded = 0;
pdn->m64_single_mode = false;
total_vfs = pci_sriov_get_totalvfs(pdev);
mul = phb->ioda.total_pe_num;
total_vf_bar_sz = 0;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || res->parent)
continue;
if (!pnv_pci_is_m64_flags(res->flags)) {
dev_warn(&pdev->dev, "Don't support SR-IOV with"
" non M64 VF BAR%d: %pR. \n",
i, res);
goto truncate_iov;
}
total_vf_bar_sz += pci_iov_resource_size(pdev,
i + PCI_IOV_RESOURCES);
/*
* If bigger than quarter of M64 segment size, just round up
* power of two.
*
* Generally, one M64 BAR maps one IOV BAR. To avoid conflict
* with other devices, IOV BAR size is expanded to be
* (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
* segment size , the expanded size would equal to half of the
* whole M64 space size, which will exhaust the M64 Space and
* limit the system flexibility. This is a design decision to
* set the boundary to quarter of the M64 segment size.
*/
if (total_vf_bar_sz > gate) {
mul = roundup_pow_of_two(total_vfs);
dev_info(&pdev->dev,
"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
total_vf_bar_sz, gate, mul);
pdn->m64_single_mode = true;
break;
}
}
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || res->parent)
continue;
size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
/*
* On PHB3, the minimum size alignment of M64 BAR in single
* mode is 32MB.
*/
if (pdn->m64_single_mode && (size < SZ_32M))
goto truncate_iov;
dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
res->end = res->start + size * mul - 1;
dev_dbg(&pdev->dev, " %pR\n", res);
dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
i, res, mul);
}
pdn->vfs_expanded = mul;
return;
truncate_iov:
/* To save MMIO space, IOV BAR is truncated. */
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
res->flags = 0;
res->end = res->start - 1;
}
}
static void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
{
if (WARN_ON(pci_dev_is_added(pdev)))
return;
if (pdev->is_virtfn) {
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
/*
* VF PEs are single-device PEs so their pdev pointer needs to
* be set. The pdev doesn't exist when the PE is allocated (in
* (pcibios_sriov_enable()) so we fix it up here.
*/
pe->pdev = pdev;
WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
} else if (pdev->is_physfn) {
/*
* For PFs adjust their allocated IOV resources to match what
* the PHB can support using it's M64 BAR table.
*/
pnv_pci_ioda_fixup_iov_resources(pdev);
}
}
#endif /* CONFIG_PCI_IOV */
static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
struct resource *res)
{
@ -3192,41 +2579,6 @@ static resource_size_t pnv_pci_default_alignment(void)
return PAGE_SIZE;
}
#ifdef CONFIG_PCI_IOV
static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
int resno)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct pci_dn *pdn = pci_get_pdn(pdev);
resource_size_t align;
/*
* On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
* SR-IOV. While from hardware perspective, the range mapped by M64
* BAR should be size aligned.
*
* When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
* powernv-specific hardware restriction is gone. But if just use the
* VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
* in one segment of M64 #15, which introduces the PE conflict between
* PF and VF. Based on this, the minimum alignment of an IOV BAR is
* m64_segsize.
*
* This function returns the total IOV BAR size if M64 BAR is in
* Shared PE mode or just VF BAR size if not.
* If the M64 BAR is in Single PE mode, return the VF BAR size or
* M64 segment size if IOV BAR size is less.
*/
align = pci_iov_resource_size(pdev, resno);
if (!pdn->vfs_expanded)
return align;
if (pdn->m64_single_mode)
return max(align, (resource_size_t)phb->ioda.m64_segsize);
return pdn->vfs_expanded * align;
}
#endif /* CONFIG_PCI_IOV */
/* Prevent enabling devices for which we couldn't properly
* assign a PE
*/
@ -3323,7 +2675,7 @@ static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
iommu_tce_table_put(tbl);
}
static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
{
struct iommu_table *tbl = pe->table_group.tables[0];
int64_t rc;
@ -3436,12 +2788,23 @@ static void pnv_pci_release_device(struct pci_dev *pdev)
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pnv_ioda_pe *pe;
/* The VF PE state is torn down when sriov_disable() is called */
if (pdev->is_virtfn)
return;
if (!pdn || pdn->pe_number == IODA_INVALID_PE)
return;
#ifdef CONFIG_PCI_IOV
/*
* FIXME: Try move this to sriov_disable(). It's here since we allocate
* the iov state at probe time since we need to fiddle with the IOV
* resources.
*/
if (pdev->is_physfn)
kfree(pdev->dev.archdata.iov_data);
#endif
/*
* PCI hotplug can happen as part of EEH error recovery. The @pdn
* isn't removed and added afterwards in this scenario. We should

View File

@ -0,0 +1,640 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/bitmap.h>
#include <linux/pci.h>
#include <asm/opal.h>
#include "pci.h"
/* for pci_dev_is_added() */
#include "../../../../drivers/pci/pci.h"
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
const resource_size_t gate = phb->ioda.m64_segsize >> 2;
struct resource *res;
int i;
resource_size_t size, total_vf_bar_sz;
struct pnv_iov_data *iov;
int mul, total_vfs;
iov = kzalloc(sizeof(*iov), GFP_KERNEL);
if (!iov)
goto truncate_iov;
pdev->dev.archdata.iov_data = iov;
total_vfs = pci_sriov_get_totalvfs(pdev);
mul = phb->ioda.total_pe_num;
total_vf_bar_sz = 0;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || res->parent)
continue;
if (!pnv_pci_is_m64_flags(res->flags)) {
dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
i, res);
goto truncate_iov;
}
total_vf_bar_sz += pci_iov_resource_size(pdev,
i + PCI_IOV_RESOURCES);
/*
* If bigger than quarter of M64 segment size, just round up
* power of two.
*
* Generally, one M64 BAR maps one IOV BAR. To avoid conflict
* with other devices, IOV BAR size is expanded to be
* (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
* segment size , the expanded size would equal to half of the
* whole M64 space size, which will exhaust the M64 Space and
* limit the system flexibility. This is a design decision to
* set the boundary to quarter of the M64 segment size.
*/
if (total_vf_bar_sz > gate) {
mul = roundup_pow_of_two(total_vfs);
dev_info(&pdev->dev,
"VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
total_vf_bar_sz, gate, mul);
iov->m64_single_mode = true;
break;
}
}
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || res->parent)
continue;
size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
/*
* On PHB3, the minimum size alignment of M64 BAR in single
* mode is 32MB.
*/
if (iov->m64_single_mode && (size < SZ_32M))
goto truncate_iov;
dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
res->end = res->start + size * mul - 1;
dev_dbg(&pdev->dev, " %pR\n", res);
dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
i, res, mul);
}
iov->vfs_expanded = mul;
return;
truncate_iov:
/* To save MMIO space, IOV BAR is truncated. */
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
res->flags = 0;
res->end = res->start - 1;
}
pdev->dev.archdata.iov_data = NULL;
kfree(iov);
}
void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
{
if (WARN_ON(pci_dev_is_added(pdev)))
return;
if (pdev->is_virtfn) {
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
/*
* VF PEs are single-device PEs so their pdev pointer needs to
* be set. The pdev doesn't exist when the PE is allocated (in
* (pcibios_sriov_enable()) so we fix it up here.
*/
pe->pdev = pdev;
WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
} else if (pdev->is_physfn) {
/*
* For PFs adjust their allocated IOV resources to match what
* the PHB can support using it's M64 BAR table.
*/
pnv_pci_ioda_fixup_iov_resources(pdev);
}
}
resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
int resno)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct pnv_iov_data *iov = pnv_iov_get(pdev);
resource_size_t align;
/*
* On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
* SR-IOV. While from hardware perspective, the range mapped by M64
* BAR should be size aligned.
*
* When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
* powernv-specific hardware restriction is gone. But if just use the
* VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
* in one segment of M64 #15, which introduces the PE conflict between
* PF and VF. Based on this, the minimum alignment of an IOV BAR is
* m64_segsize.
*
* This function returns the total IOV BAR size if M64 BAR is in
* Shared PE mode or just VF BAR size if not.
* If the M64 BAR is in Single PE mode, return the VF BAR size or
* M64 segment size if IOV BAR size is less.
*/
align = pci_iov_resource_size(pdev, resno);
/*
* iov can be null if we have an SR-IOV device with IOV BAR that can't
* be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
* In that case we don't allow VFs to be enabled so just return the
* default alignment.
*/
if (!iov)
return align;
if (!iov->vfs_expanded)
return align;
if (iov->m64_single_mode)
return max(align, (resource_size_t)phb->ioda.m64_segsize);
return iov->vfs_expanded * align;
}
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_iov_data *iov;
struct pnv_phb *phb;
int i, j;
int m64_bars;
phb = pci_bus_to_pnvhb(pdev->bus);
iov = pnv_iov_get(pdev);
if (iov->m64_single_mode)
m64_bars = num_vfs;
else
m64_bars = 1;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
for (j = 0; j < m64_bars; j++) {
if (iov->m64_map[j][i] == IODA_INVALID_M64)
continue;
opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, iov->m64_map[j][i], 0);
clear_bit(iov->m64_map[j][i], &phb->ioda.m64_bar_alloc);
iov->m64_map[j][i] = IODA_INVALID_M64;
}
kfree(iov->m64_map);
return 0;
}
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_iov_data *iov;
struct pnv_phb *phb;
unsigned int win;
struct resource *res;
int i, j;
int64_t rc;
int total_vfs;
resource_size_t size, start;
int pe_num;
int m64_bars;
phb = pci_bus_to_pnvhb(pdev->bus);
iov = pnv_iov_get(pdev);
total_vfs = pci_sriov_get_totalvfs(pdev);
if (iov->m64_single_mode)
m64_bars = num_vfs;
else
m64_bars = 1;
iov->m64_map = kmalloc_array(m64_bars,
sizeof(*iov->m64_map),
GFP_KERNEL);
if (!iov->m64_map)
return -ENOMEM;
/* Initialize the m64_map to IODA_INVALID_M64 */
for (i = 0; i < m64_bars ; i++)
for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
iov->m64_map[i][j] = IODA_INVALID_M64;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
for (j = 0; j < m64_bars; j++) {
do {
win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
phb->ioda.m64_bar_idx + 1, 0);
if (win >= phb->ioda.m64_bar_idx + 1)
goto m64_failed;
} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
iov->m64_map[j][i] = win;
if (iov->m64_single_mode) {
size = pci_iov_resource_size(pdev,
PCI_IOV_RESOURCES + i);
start = res->start + size * j;
} else {
size = resource_size(res);
start = res->start;
}
/* Map the M64 here */
if (iov->m64_single_mode) {
pe_num = iov->pe_num_map[j];
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe_num, OPAL_M64_WINDOW_TYPE,
iov->m64_map[j][i], 0);
}
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
iov->m64_map[j][i],
start,
0, /* unused */
size);
if (rc != OPAL_SUCCESS) {
dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
win, rc);
goto m64_failed;
}
if (iov->m64_single_mode)
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, iov->m64_map[j][i], 2);
else
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE, iov->m64_map[j][i], 1);
if (rc != OPAL_SUCCESS) {
dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
win, rc);
goto m64_failed;
}
}
}
return 0;
m64_failed:
pnv_pci_vf_release_m64(pdev, num_vfs);
return -EBUSY;
}
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe, *pe_n;
phb = pci_bus_to_pnvhb(pdev->bus);
if (!pdev->is_physfn)
return;
/* FIXME: Use pnv_ioda_release_pe()? */
list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
if (pe->parent_dev != pdev)
continue;
pnv_pci_ioda2_release_pe_dma(pe);
/* Remove from list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_del(&pe->list);
mutex_unlock(&phb->ioda.pe_list_mutex);
pnv_ioda_deconfigure_pe(phb, pe);
pnv_ioda_free_pe(pe);
}
}
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
struct resource *res, res2;
struct pnv_iov_data *iov;
resource_size_t size;
u16 num_vfs;
int i;
if (!dev->is_physfn)
return -EINVAL;
iov = pnv_iov_get(dev);
/*
* "offset" is in VFs. The M64 windows are sized so that when they
* are segmented, each segment is the same size as the IOV BAR.
* Each segment is in a separate PE, and the high order bits of the
* address are the PE number. Therefore, each VF's BAR is in a
* separate PE, and changing the IOV BAR start address changes the
* range of PEs the VFs are in.
*/
num_vfs = iov->num_vfs;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
/*
* The actual IOV BAR range is determined by the start address
* and the actual size for num_vfs VFs BAR. This check is to
* make sure that after shifting, the range will not overlap
* with another device.
*/
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2.flags = res->flags;
res2.start = res->start + (size * offset);
res2.end = res2.start + (size * num_vfs) - 1;
if (res2.end > res->end) {
dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
i, &res2, res, num_vfs, offset);
return -EBUSY;
}
}
/*
* Since M64 BAR shares segments among all possible 256 PEs,
* we have to shift the beginning of PF IOV BAR to make it start from
* the segment which belongs to the PE number assigned to the first VF.
* This creates a "hole" in the /proc/iomem which could be used for
* allocating other resources so we reserve this area below and
* release when IOV is released.
*/
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2 = *res;
res->start += size * offset;
dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
i, &res2, res, (offset > 0) ? "En" : "Dis",
num_vfs, offset);
if (offset < 0) {
devm_release_resource(&dev->dev, &iov->holes[i]);
memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
}
pci_update_resource(dev, i + PCI_IOV_RESOURCES);
if (offset > 0) {
iov->holes[i].start = res2.start;
iov->holes[i].end = res2.start + size * offset - 1;
iov->holes[i].flags = IORESOURCE_BUS;
iov->holes[i].name = "pnv_iov_reserved";
devm_request_resource(&dev->dev, res->parent,
&iov->holes[i]);
}
}
return 0;
}
static void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
struct pnv_iov_data *iov;
u16 num_vfs, i;
phb = pci_bus_to_pnvhb(pdev->bus);
iov = pnv_iov_get(pdev);
num_vfs = iov->num_vfs;
/* Release VF PEs */
pnv_ioda_release_vf_PE(pdev);
if (phb->type == PNV_PHB_IODA2) {
if (!iov->m64_single_mode)
pnv_pci_vf_resource_shift(pdev, -*iov->pe_num_map);
/* Release M64 windows */
pnv_pci_vf_release_m64(pdev, num_vfs);
/* Release PE numbers */
if (iov->m64_single_mode) {
for (i = 0; i < num_vfs; i++) {
if (iov->pe_num_map[i] == IODA_INVALID_PE)
continue;
pe = &phb->ioda.pe_array[iov->pe_num_map[i]];
pnv_ioda_free_pe(pe);
}
} else
bitmap_clear(phb->ioda.pe_alloc, *iov->pe_num_map, num_vfs);
/* Releasing pe_num_map */
kfree(iov->pe_num_map);
}
}
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
int pe_num;
u16 vf_index;
struct pnv_iov_data *iov;
struct pci_dn *pdn;
if (!pdev->is_physfn)
return;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
iov = pnv_iov_get(pdev);
/* Reserve PE for each VF */
for (vf_index = 0; vf_index < num_vfs; vf_index++) {
int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
struct pci_dn *vf_pdn;
if (iov->m64_single_mode)
pe_num = iov->pe_num_map[vf_index];
else
pe_num = *iov->pe_num_map + vf_index;
pe = &phb->ioda.pe_array[pe_num];
pe->pe_number = pe_num;
pe->phb = phb;
pe->flags = PNV_IODA_PE_VF;
pe->pbus = NULL;
pe->parent_dev = pdev;
pe->mve_number = -1;
pe->rid = (vf_bus << 8) | vf_devfn;
pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
pci_domain_nr(pdev->bus), pdev->bus->number,
PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
pnv_ioda_free_pe(pe);
pe->pdev = NULL;
continue;
}
/* Put PE to the list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_add_tail(&pe->list, &phb->ioda.pe_list);
mutex_unlock(&phb->ioda.pe_list_mutex);
/* associate this pe to it's pdn */
list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
if (vf_pdn->busno == vf_bus &&
vf_pdn->devfn == vf_devfn) {
vf_pdn->pe_number = pe_num;
break;
}
}
pnv_pci_ioda2_setup_dma_pe(phb, pe);
}
}
static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_iov_data *iov;
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
int ret;
u16 i;
phb = pci_bus_to_pnvhb(pdev->bus);
iov = pnv_iov_get(pdev);
if (phb->type == PNV_PHB_IODA2) {
if (!iov->vfs_expanded) {
dev_info(&pdev->dev,
"don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
return -ENOSPC;
}
/*
* When M64 BARs functions in Single PE mode, the number of VFs
* could be enabled must be less than the number of M64 BARs.
*/
if (iov->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
return -EBUSY;
}
/* Allocating pe_num_map */
if (iov->m64_single_mode)
iov->pe_num_map = kmalloc_array(num_vfs,
sizeof(*iov->pe_num_map),
GFP_KERNEL);
else
iov->pe_num_map = kmalloc(sizeof(*iov->pe_num_map), GFP_KERNEL);
if (!iov->pe_num_map)
return -ENOMEM;
if (iov->m64_single_mode)
for (i = 0; i < num_vfs; i++)
iov->pe_num_map[i] = IODA_INVALID_PE;
/* Calculate available PE for required VFs */
if (iov->m64_single_mode) {
for (i = 0; i < num_vfs; i++) {
pe = pnv_ioda_alloc_pe(phb);
if (!pe) {
ret = -EBUSY;
goto m64_failed;
}
iov->pe_num_map[i] = pe->pe_number;
}
} else {
mutex_lock(&phb->ioda.pe_alloc_mutex);
*iov->pe_num_map = bitmap_find_next_zero_area(
phb->ioda.pe_alloc, phb->ioda.total_pe_num,
0, num_vfs, 0);
if (*iov->pe_num_map >= phb->ioda.total_pe_num) {
mutex_unlock(&phb->ioda.pe_alloc_mutex);
dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
kfree(iov->pe_num_map);
return -EBUSY;
}
bitmap_set(phb->ioda.pe_alloc, *iov->pe_num_map, num_vfs);
mutex_unlock(&phb->ioda.pe_alloc_mutex);
}
iov->num_vfs = num_vfs;
/* Assign M64 window accordingly */
ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
if (ret) {
dev_info(&pdev->dev, "Not enough M64 window resources\n");
goto m64_failed;
}
/*
* When using one M64 BAR to map one IOV BAR, we need to shift
* the IOV BAR according to the PE# allocated to the VFs.
* Otherwise, the PE# for the VF will conflict with others.
*/
if (!iov->m64_single_mode) {
ret = pnv_pci_vf_resource_shift(pdev, *iov->pe_num_map);
if (ret)
goto m64_failed;
}
}
/* Setup VF PEs */
pnv_ioda_setup_vf_PE(pdev, num_vfs);
return 0;
m64_failed:
if (iov->m64_single_mode) {
for (i = 0; i < num_vfs; i++) {
if (iov->pe_num_map[i] == IODA_INVALID_PE)
continue;
pe = &phb->ioda.pe_array[iov->pe_num_map[i]];
pnv_ioda_free_pe(pe);
}
} else
bitmap_clear(phb->ioda.pe_alloc, *iov->pe_num_map, num_vfs);
/* Releasing pe_num_map */
kfree(iov->pe_num_map);
return ret;
}
int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
{
pnv_pci_sriov_disable(pdev);
/* Release PCI data */
remove_sriov_vf_pdns(pdev);
return 0;
}
int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
/* Allocate PCI data */
add_sriov_vf_pdns(pdev);
return pnv_pci_sriov_enable(pdev, num_vfs);
}

View File

@ -194,6 +194,80 @@ struct pnv_phb {
u8 *diag_data;
};
/* IODA PE management */
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
{
/*
* WARNING: We cannot rely on the resource flags. The Linux PCI
* allocation code sometimes decides to put a 64-bit prefetchable
* BAR in the 32-bit window, so we have to compare the addresses.
*
* For simplicity we only test resource start.
*/
return (r->start >= phb->ioda.m64_base &&
r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
}
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
{
unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
return (resource_flags & flags) == flags;
}
int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb);
void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
#ifdef CONFIG_PCI_IOV
/*
* For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
* This requires a bit of acrobatics with the MMIO -> PE configuration
* and this structure is used to keep track of it all.
*/
struct pnv_iov_data {
/* number of VFs IOV BAR expanded. FIXME: rename this to something less bad */
u16 vfs_expanded;
/* number of VFs enabled */
u16 num_vfs;
unsigned int *pe_num_map; /* PE# for the first VF PE or array */
/* Did we map the VF BARs with single-PE IODA BARs? */
bool m64_single_mode;
int (*m64_map)[PCI_SRIOV_NUM_BARS];
#define IODA_INVALID_M64 (-1)
/*
* If we map the SR-IOV BARs with a segmented window then
* parts of that window will be "claimed" by other PEs.
*
* "holes" here is used to reserve the leading portion
* of the window that is used by other (non VF) PEs.
*/
struct resource holes[PCI_SRIOV_NUM_BARS];
};
static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
{
return pdev->dev.archdata.iov_data;
}
void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
#endif /* CONFIG_PCI_IOV */
extern struct pci_ops pnv_pci_ops;
void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,