mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-03 19:24:02 +08:00
spi: Add Spreadtrum ADI controller documentation
This patch adds the binding documentation for Spreadtrum ADI controller device. Signed-off-by: Baolin Wang <baolin.wang@spreadtrum.com> Signed-off-by: Mark Brown <broonie@kernel.org>
This commit is contained in:
parent
2bd6bf03f4
commit
2f329595b8
58
Documentation/devicetree/bindings/spi/spi-sprd-adi.txt
Normal file
58
Documentation/devicetree/bindings/spi/spi-sprd-adi.txt
Normal file
@ -0,0 +1,58 @@
|
||||
Spreadtrum ADI controller
|
||||
|
||||
ADI is the abbreviation of Anolog-Digital interface, which is used to access
|
||||
analog chip (such as PMIC) from digital chip. ADI controller follows the SPI
|
||||
framework for its hardware implementation is alike to SPI bus and its timing
|
||||
is compatile to SPI timing.
|
||||
|
||||
ADI controller has 50 channels including 2 software read/write channels and
|
||||
48 hardware channels to access analog chip. For 2 software read/write channels,
|
||||
users should set ADI registers to access analog chip. For hardware channels,
|
||||
we can configure them to allow other hardware components to use it independently,
|
||||
which means we can just link one analog chip address to one hardware channel,
|
||||
then users can access the mapped analog chip address by this hardware channel
|
||||
triggered by hardware components instead of ADI software channels.
|
||||
|
||||
Thus we introduce one property named "sprd,hw-channels" to configure hardware
|
||||
channels, the first value specifies the hardware channel id which is used to
|
||||
transfer data triggered by hardware automatically, and the second value specifies
|
||||
the analog chip address where user want to access by hardware components.
|
||||
|
||||
Since we have multi-subsystems will use unique ADI to access analog chip, when
|
||||
one system is reading/writing data by ADI software channels, that should be under
|
||||
one hardware spinlock protection to prevent other systems from reading/writing
|
||||
data by ADI software channels at the same time, or two parallel routine of setting
|
||||
ADI registers will make ADI controller registers chaos to lead incorrect results.
|
||||
Then we need one hardware spinlock to synchronize between the multiple subsystems.
|
||||
|
||||
Required properties:
|
||||
- compatible: Should be "sprd,sc9860-adi".
|
||||
- reg: Offset and length of ADI-SPI controller register space.
|
||||
- hwlocks: Reference to a phandle of a hwlock provider node.
|
||||
- hwlock-names: Reference to hwlock name strings defined in the same order
|
||||
as the hwlocks, should be "adi".
|
||||
- #address-cells: Number of cells required to define a chip select address
|
||||
on the ADI-SPI bus. Should be set to 1.
|
||||
- #size-cells: Size of cells required to define a chip select address size
|
||||
on the ADI-SPI bus. Should be set to 0.
|
||||
|
||||
Optional properties:
|
||||
- sprd,hw-channels: This is an array of channel values up to 49 channels.
|
||||
The first value specifies the hardware channel id which is used to
|
||||
transfer data triggered by hardware automatically, and the second
|
||||
value specifies the analog chip address where user want to access
|
||||
by hardware components.
|
||||
|
||||
SPI slave nodes must be children of the SPI controller node and can contain
|
||||
properties described in Documentation/devicetree/bindings/spi/spi-bus.txt.
|
||||
|
||||
Example:
|
||||
adi_bus: spi@40030000 {
|
||||
compatible = "sprd,sc9860-adi";
|
||||
reg = <0 0x40030000 0 0x10000>;
|
||||
hwlocks = <&hwlock1 0>;
|
||||
hwlock-names = "adi";
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
sprd,hw-channels = <30 0x8c20>;
|
||||
};
|
Loading…
Reference in New Issue
Block a user