2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-16 01:04:08 +08:00

Merge branch 'pci/ntb'

- Account for 64-bit BARs in pci_epc_get_first_free_bar() (Kishon Vijay
  Abraham I)

- Add pci_epc_get_next_free_bar() helper (Kishon Vijay Abraham I)

- Return error codes on failure of endpoint BAR interfaces (Kishon Vijay
  Abraham I)

- Remove unused pci_epf_match_device() (Kishon Vijay Abraham I)

- Add support for secondary endpoint controller to prepare for NTB endpoint
  functionality (Kishon Vijay Abraham I)

- Add configfs support for secondary endpoint controller (Kishon Vijay
  Abraham I)

- Add MSI address mapping ops for NTB doorbell support (Kishon Vijay
  Abraham I)

- Add ops for endpoint function-specific attributes (Kishon Vijay Abraham
  I)

- Allow configfs subdirectory for endpoint function configuration (Kishon
  Vijay Abraham I)

- Implement cadence MSI address mapping ops (Kishon Vijay Abraham I)

- Configure cadence LM_EP_FUNC_CFG based on epc->function_num_map (Kishon
  Vijay Abraham I)

- Add endpoint-side driver to provide NTB functionality (Kishon Vijay
  Abraham I)

- Add host-side driver for generic EPF NTB functionality (Kishon Vijay
  Abraham I)

- Document NTB endpoint functionality (Kishon Vijay Abraham I)

* pci/ntb:
  Documentation: PCI: Add PCI endpoint NTB function user guide
  Documentation: PCI: Add configfs binding documentation for pci-ntb endpoint function
  NTB: Add support for EPF PCI Non-Transparent Bridge
  PCI: Add TI J721E device to PCI IDs
  PCI: endpoint: Add EP function driver to provide NTB functionality
  PCI: cadence: Configure LM_EP_FUNC_CFG based on epc->function_num_map
  PCI: cadence: Implement ->msi_map_irq() ops
  PCI: endpoint: Allow user to create sub-directory of 'EPF Device' directory
  PCI: endpoint: Add pci_epf_ops to expose function-specific attrs
  PCI: endpoint: Add pci_epc_ops to map MSI IRQ
  PCI: endpoint: Add support in configfs to associate two EPCs with EPF
  PCI: endpoint: Add support to associate secondary EPC with EPF
  PCI: endpoint: Remove unused pci_epf_match_device()
  PCI: endpoint: Make *_free_bar() to return error codes on failure
  PCI: endpoint: Add helper API to get the 'next' unreserved BAR
  PCI: endpoint: Make *_get_first_free_bar() take into account 64 bit BAR
  Documentation: PCI: Add specification for the PCI NTB function device
This commit is contained in:
Bjorn Helgaas 2021-02-24 14:59:23 -06:00
commit 2ef38d7e2b
22 changed files with 3944 additions and 73 deletions

View File

@ -0,0 +1,38 @@
.. SPDX-License-Identifier: GPL-2.0
==========================
PCI NTB Endpoint Function
==========================
1) Create a subdirectory to pci_epf_ntb directory in configfs.
Standard EPF Configurable Fields:
================ ===========================================================
vendorid should be 0x104c
deviceid should be 0xb00d for TI's J721E SoC
revid don't care
progif_code don't care
subclass_code should be 0x00
baseclass_code should be 0x5
cache_line_size don't care
subsys_vendor_id don't care
subsys_id don't care
interrupt_pin don't care
msi_interrupts don't care
msix_interrupts don't care
================ ===========================================================
2) Create a subdirectory to directory created in 1
NTB EPF specific configurable fields:
================ ===========================================================
db_count Number of doorbells; default = 4
mw1 size of memory window1
mw2 size of memory window2
mw3 size of memory window3
mw4 size of memory window4
num_mws Number of memory windows; max = 4
spad_count Number of scratchpad registers; default = 64
================ ===========================================================

View File

@ -11,5 +11,8 @@ PCI Endpoint Framework
pci-endpoint-cfs
pci-test-function
pci-test-howto
pci-ntb-function
pci-ntb-howto
function/binding/pci-test
function/binding/pci-ntb

View File

@ -68,6 +68,16 @@ created)
... subsys_vendor_id
... subsys_id
... interrupt_pin
... primary/
... <Symlink EPC Device1>/
... secondary/
... <Symlink EPC Device2>/
If an EPF device has to be associated with 2 EPCs (like in the case of
Non-transparent bridge), symlink of endpoint controller connected to primary
interface should be added in 'primary' directory and symlink of endpoint
controller connected to secondary interface should be added in 'secondary'
directory.
EPC Device
==========

View File

@ -0,0 +1,348 @@
.. SPDX-License-Identifier: GPL-2.0
=================
PCI NTB Function
=================
:Author: Kishon Vijay Abraham I <kishon@ti.com>
PCI Non-Transparent Bridges (NTB) allow two host systems to communicate
with each other by exposing each host as a device to the other host.
NTBs typically support the ability to generate interrupts on the remote
machine, expose memory ranges as BARs, and perform DMA. They also support
scratchpads, which are areas of memory within the NTB that are accessible
from both machines.
PCI NTB Function allows two different systems (or hosts) to communicate
with each other by configuring the endpoint instances in such a way that
transactions from one system are routed to the other system.
In the below diagram, PCI NTB function configures the SoC with multiple
PCI Endpoint (EP) instances in such a way that transactions from one EP
controller are routed to the other EP controller. Once PCI NTB function
configures the SoC with multiple EP instances, HOST1 and HOST2 can
communicate with each other using SoC as a bridge.
.. code-block:: text
+-------------+ +-------------+
| | | |
| HOST1 | | HOST2 |
| | | |
+------^------+ +------^------+
| |
| |
+---------|-------------------------------------------------|---------+
| +------v------+ +------v------+ |
| | | | | |
| | EP | | EP | |
| | CONTROLLER1 | | CONTROLLER2 | |
| | <-----------------------------------> | |
| | | | | |
| | | | | |
| | | SoC With Multiple EP Instances | | |
| | | (Configured using NTB Function) | | |
| +-------------+ +-------------+ |
+---------------------------------------------------------------------+
Constructs used for Implementing NTB
====================================
1) Config Region
2) Self Scratchpad Registers
3) Peer Scratchpad Registers
4) Doorbell (DB) Registers
5) Memory Window (MW)
Config Region:
--------------
Config Region is a construct that is specific to NTB implemented using NTB
Endpoint Function Driver. The host and endpoint side NTB function driver will
exchange information with each other using this region. Config Region has
Control/Status Registers for configuring the Endpoint Controller. Host can
write into this region for configuring the outbound Address Translation Unit
(ATU) and to indicate the link status. Endpoint can indicate the status of
commands issued by host in this region. Endpoint can also indicate the
scratchpad offset and number of memory windows to the host using this region.
The format of Config Region is given below. All the fields here are 32 bits.
.. code-block:: text
+------------------------+
| COMMAND |
+------------------------+
| ARGUMENT |
+------------------------+
| STATUS |
+------------------------+
| TOPOLOGY |
+------------------------+
| ADDRESS (LOWER 32) |
+------------------------+
| ADDRESS (UPPER 32) |
+------------------------+
| SIZE |
+------------------------+
| NO OF MEMORY WINDOW |
+------------------------+
| MEMORY WINDOW1 OFFSET |
+------------------------+
| SPAD OFFSET |
+------------------------+
| SPAD COUNT |
+------------------------+
| DB ENTRY SIZE |
+------------------------+
| DB DATA |
+------------------------+
| : |
+------------------------+
| : |
+------------------------+
| DB DATA |
+------------------------+
COMMAND:
NTB function supports three commands:
CMD_CONFIGURE_DOORBELL (0x1): Command to configure doorbell. Before
invoking this command, the host should allocate and initialize
MSI/MSI-X vectors (i.e., initialize the MSI/MSI-X Capability in the
Endpoint). The endpoint on receiving this command will configure
the outbound ATU such that transactions to Doorbell BAR will be routed
to the MSI/MSI-X address programmed by the host. The ARGUMENT
register should be populated with number of DBs to configure (in the
lower 16 bits) and if MSI or MSI-X should be configured (BIT 16).
CMD_CONFIGURE_MW (0x2): Command to configure memory window (MW). The
host invokes this command after allocating a buffer that can be
accessed by remote host. The allocated address should be programmed
in the ADDRESS register (64 bit), the size should be programmed in
the SIZE register and the memory window index should be programmed
in the ARGUMENT register. The endpoint on receiving this command
will configure the outbound ATU such that transactions to MW BAR
are routed to the address provided by the host.
CMD_LINK_UP (0x3): Command to indicate an NTB application is
bound to the EP device on the host side. Once the endpoint
receives this command from both the hosts, the endpoint will
raise a LINK_UP event to both the hosts to indicate the host
NTB applications can start communicating with each other.
ARGUMENT:
The value of this register is based on the commands issued in
command register. See COMMAND section for more information.
TOPOLOGY:
Set to NTB_TOPO_B2B_USD for Primary interface
Set to NTB_TOPO_B2B_DSD for Secondary interface
ADDRESS/SIZE:
Address and Size to be used while configuring the memory window.
See "CMD_CONFIGURE_MW" for more info.
MEMORY WINDOW1 OFFSET:
Memory Window 1 and Doorbell registers are packed together in the
same BAR. The initial portion of the region will have doorbell
registers and the latter portion of the region is for memory window 1.
This register will specify the offset of the memory window 1.
NO OF MEMORY WINDOW:
Specifies the number of memory windows supported by the NTB device.
SPAD OFFSET:
Self scratchpad region and config region are packed together in the
same BAR. The initial portion of the region will have config region
and the latter portion of the region is for self scratchpad. This
register will specify the offset of the self scratchpad registers.
SPAD COUNT:
Specifies the number of scratchpad registers supported by the NTB
device.
DB ENTRY SIZE:
Used to determine the offset within the DB BAR that should be written
in order to raise doorbell. EPF NTB can use either MSI or MSI-X to
ring doorbell (MSI-X support will be added later). MSI uses same
address for all the interrupts and MSI-X can provide different
addresses for different interrupts. The MSI/MSI-X address is provided
by the host and the address it gives is based on the MSI/MSI-X
implementation supported by the host. For instance, ARM platform
using GIC ITS will have the same MSI-X address for all the interrupts.
In order to support all the combinations and use the same mechanism
for both MSI and MSI-X, EPF NTB allocates a separate region in the
Outbound Address Space for each of the interrupts. This region will
be mapped to the MSI/MSI-X address provided by the host. If a host
provides the same address for all the interrupts, all the regions
will be translated to the same address. If a host provides different
addresses, the regions will be translated to different addresses. This
will ensure there is no difference while raising the doorbell.
DB DATA:
EPF NTB supports 32 interrupts, so there are 32 DB DATA registers.
This holds the MSI/MSI-X data that has to be written to MSI address
for raising doorbell interrupt. This will be populated by EPF NTB
while invoking CMD_CONFIGURE_DOORBELL.
Scratchpad Registers:
---------------------
Each host has its own register space allocated in the memory of NTB endpoint
controller. They are both readable and writable from both sides of the bridge.
They are used by applications built over NTB and can be used to pass control
and status information between both sides of a device.
Scratchpad registers has 2 parts
1) Self Scratchpad: Host's own register space
2) Peer Scratchpad: Remote host's register space.
Doorbell Registers:
-------------------
Doorbell Registers are used by the hosts to interrupt each other.
Memory Window:
--------------
Actual transfer of data between the two hosts will happen using the
memory window.
Modeling Constructs:
====================
There are 5 or more distinct regions (config, self scratchpad, peer
scratchpad, doorbell, one or more memory windows) to be modeled to achieve
NTB functionality. At least one memory window is required while more than
one is permitted. All these regions should be mapped to BARs for hosts to
access these regions.
If one 32-bit BAR is allocated for each of these regions, the scheme would
look like this:
====== ===============
BAR NO CONSTRUCTS USED
====== ===============
BAR0 Config Region
BAR1 Self Scratchpad
BAR2 Peer Scratchpad
BAR3 Doorbell
BAR4 Memory Window 1
BAR5 Memory Window 2
====== ===============
However if we allocate a separate BAR for each of the regions, there would not
be enough BARs for all the regions in a platform that supports only 64-bit
BARs.
In order to be supported by most of the platforms, the regions should be
packed and mapped to BARs in a way that provides NTB functionality and
also makes sure the host doesn't access any region that it is not supposed
to.
The following scheme is used in EPF NTB Function:
====== ===============================
BAR NO CONSTRUCTS USED
====== ===============================
BAR0 Config Region + Self Scratchpad
BAR1 Peer Scratchpad
BAR2 Doorbell + Memory Window 1
BAR3 Memory Window 2
BAR4 Memory Window 3
BAR5 Memory Window 4
====== ===============================
With this scheme, for the basic NTB functionality 3 BARs should be sufficient.
Modeling Config/Scratchpad Region:
----------------------------------
.. code-block:: text
+-----------------+------->+------------------+ +-----------------+
| BAR0 | | CONFIG REGION | | BAR0 |
+-----------------+----+ +------------------+<-------+-----------------+
| BAR1 | | |SCRATCHPAD REGION | | BAR1 |
+-----------------+ +-->+------------------+<-------+-----------------+
| BAR2 | Local Memory | BAR2 |
+-----------------+ +-----------------+
| BAR3 | | BAR3 |
+-----------------+ +-----------------+
| BAR4 | | BAR4 |
+-----------------+ +-----------------+
| BAR5 | | BAR5 |
+-----------------+ +-----------------+
EP CONTROLLER 1 EP CONTROLLER 2
Above diagram shows Config region + Scratchpad region for HOST1 (connected to
EP controller 1) allocated in local memory. The HOST1 can access the config
region and scratchpad region (self scratchpad) using BAR0 of EP controller 1.
The peer host (HOST2 connected to EP controller 2) can also access this
scratchpad region (peer scratchpad) using BAR1 of EP controller 2. This
diagram shows the case where Config region and Scratchpad regions are allocated
for HOST1, however the same is applicable for HOST2.
Modeling Doorbell/Memory Window 1:
----------------------------------
.. code-block:: text
+-----------------+ +----->+----------------+-----------+-----------------+
| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 |
+-----------------+ | +----------------+ +-----------------+
| BAR1 | | | Doorbell 2 +---------+ | |
+-----------------+----+ +----------------+ | | |
| BAR2 | | Doorbell 3 +-------+ | +-----------------+
+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 |
| BAR3 | | | Doorbell 4 +-----+ | +-----------------+
+-----------------+ | |----------------+ | | | |
| BAR4 | | | | | | +-----------------+
+-----------------+ | | MW1 +---+ | +-->+ MSI-X ADDRESS 3||
| BAR5 | | | | | | +-----------------+
+-----------------+ +----->-----------------+ | | | |
EP CONTROLLER 1 | | | | +-----------------+
| | | +---->+ MSI-X ADDRESS 4 |
+----------------+ | +-----------------+
EP CONTROLLER 2 | | |
(OB SPACE) | | |
+-------> MW1 |
| |
| |
+-----------------+
| |
| |
| |
| |
| |
+-----------------+
PCI Address Space
(Managed by HOST2)
Above diagram shows how the doorbell and memory window 1 is mapped so that
HOST1 can raise doorbell interrupt on HOST2 and also how HOST1 can access
buffers exposed by HOST2 using memory window1 (MW1). Here doorbell and
memory window 1 regions are allocated in EP controller 2 outbound (OB) address
space. Allocating and configuring BARs for doorbell and memory window1
is done during the initialization phase of NTB endpoint function driver.
Mapping from EP controller 2 OB space to PCI address space is done when HOST2
sends CMD_CONFIGURE_MW/CMD_CONFIGURE_DOORBELL.
Modeling Optional Memory Windows:
---------------------------------
This is modeled the same was as MW1 but each of the additional memory windows
is mapped to separate BARs.

View File

@ -0,0 +1,161 @@
.. SPDX-License-Identifier: GPL-2.0
===================================================================
PCI Non-Transparent Bridge (NTB) Endpoint Function (EPF) User Guide
===================================================================
:Author: Kishon Vijay Abraham I <kishon@ti.com>
This document is a guide to help users use pci-epf-ntb function driver
and ntb_hw_epf host driver for NTB functionality. The list of steps to
be followed in the host side and EP side is given below. For the hardware
configuration and internals of NTB using configurable endpoints see
Documentation/PCI/endpoint/pci-ntb-function.rst
Endpoint Device
===============
Endpoint Controller Devices
---------------------------
For implementing NTB functionality at least two endpoint controller devices
are required.
To find the list of endpoint controller devices in the system::
# ls /sys/class/pci_epc/
2900000.pcie-ep 2910000.pcie-ep
If PCI_ENDPOINT_CONFIGFS is enabled::
# ls /sys/kernel/config/pci_ep/controllers
2900000.pcie-ep 2910000.pcie-ep
Endpoint Function Drivers
-------------------------
To find the list of endpoint function drivers in the system::
# ls /sys/bus/pci-epf/drivers
pci_epf_ntb pci_epf_ntb
If PCI_ENDPOINT_CONFIGFS is enabled::
# ls /sys/kernel/config/pci_ep/functions
pci_epf_ntb pci_epf_ntb
Creating pci-epf-ntb Device
----------------------------
PCI endpoint function device can be created using the configfs. To create
pci-epf-ntb device, the following commands can be used::
# mount -t configfs none /sys/kernel/config
# cd /sys/kernel/config/pci_ep/
# mkdir functions/pci_epf_ntb/func1
The "mkdir func1" above creates the pci-epf-ntb function device that will
be probed by pci_epf_ntb driver.
The PCI endpoint framework populates the directory with the following
configurable fields::
# ls functions/pci_epf_ntb/func1
baseclass_code deviceid msi_interrupts pci-epf-ntb.0
progif_code secondary subsys_id vendorid
cache_line_size interrupt_pin msix_interrupts primary
revid subclass_code subsys_vendor_id
The PCI endpoint function driver populates these entries with default values
when the device is bound to the driver. The pci-epf-ntb driver populates
vendorid with 0xffff and interrupt_pin with 0x0001::
# cat functions/pci_epf_ntb/func1/vendorid
0xffff
# cat functions/pci_epf_ntb/func1/interrupt_pin
0x0001
Configuring pci-epf-ntb Device
-------------------------------
The user can configure the pci-epf-ntb device using its configfs entry. In order
to change the vendorid and the deviceid, the following
commands can be used::
# echo 0x104c > functions/pci_epf_ntb/func1/vendorid
# echo 0xb00d > functions/pci_epf_ntb/func1/deviceid
In order to configure NTB specific attributes, a new sub-directory to func1
should be created::
# mkdir functions/pci_epf_ntb/func1/pci_epf_ntb.0/
The NTB function driver will populate this directory with various attributes
that can be configured by the user::
# ls functions/pci_epf_ntb/func1/pci_epf_ntb.0/
db_count mw1 mw2 mw3 mw4 num_mws
spad_count
A sample configuration for NTB function is given below::
# echo 4 > functions/pci_epf_ntb/func1/pci_epf_ntb.0/db_count
# echo 128 > functions/pci_epf_ntb/func1/pci_epf_ntb.0/spad_count
# echo 2 > functions/pci_epf_ntb/func1/pci_epf_ntb.0/num_mws
# echo 0x100000 > functions/pci_epf_ntb/func1/pci_epf_ntb.0/mw1
# echo 0x100000 > functions/pci_epf_ntb/func1/pci_epf_ntb.0/mw2
Binding pci-epf-ntb Device to EP Controller
--------------------------------------------
NTB function device should be attached to two PCI endpoint controllers
connected to the two hosts. Use the 'primary' and 'secondary' entries
inside NTB function device to attach one PCI endpoint controller to
primary interface and the other PCI endpoint controller to the secondary
interface::
# ln -s controllers/2900000.pcie-ep/ functions/pci-epf-ntb/func1/primary
# ln -s controllers/2910000.pcie-ep/ functions/pci-epf-ntb/func1/secondary
Once the above step is completed, both the PCI endpoint controllers are ready to
establish a link with the host.
Start the Link
--------------
In order for the endpoint device to establish a link with the host, the _start_
field should be populated with '1'. For NTB, both the PCI endpoint controllers
should establish link with the host::
# echo 1 > controllers/2900000.pcie-ep/start
# echo 1 > controllers/2910000.pcie-ep/start
RootComplex Device
==================
lspci Output
------------
Note that the devices listed here correspond to the values populated in
"Creating pci-epf-ntb Device" section above::
# lspci
0000:00:00.0 PCI bridge: Texas Instruments Device b00d
0000:01:00.0 RAM memory: Texas Instruments Device b00d
Using ntb_hw_epf Device
-----------------------
The host side software follows the standard NTB software architecture in Linux.
All the existing client side NTB utilities like NTB Transport Client and NTB
Netdev, NTB Ping Pong Test Client and NTB Tool Test Client can be used with NTB
function device.
For more information on NTB see
:doc:`Non-Transparent Bridge <../../driver-api/ntb>`

View File

@ -68,7 +68,6 @@
#define PCI_ENDPOINT_TEST_FLAGS 0x2c
#define FLAG_USE_DMA BIT(0)
#define PCI_DEVICE_ID_TI_J721E 0xb00d
#define PCI_DEVICE_ID_TI_AM654 0xb00c
#define PCI_DEVICE_ID_LS1088A 0x80c0

View File

@ -2,4 +2,5 @@
source "drivers/ntb/hw/amd/Kconfig"
source "drivers/ntb/hw/idt/Kconfig"
source "drivers/ntb/hw/intel/Kconfig"
source "drivers/ntb/hw/epf/Kconfig"
source "drivers/ntb/hw/mscc/Kconfig"

View File

@ -2,4 +2,5 @@
obj-$(CONFIG_NTB_AMD) += amd/
obj-$(CONFIG_NTB_IDT) += idt/
obj-$(CONFIG_NTB_INTEL) += intel/
obj-$(CONFIG_NTB_EPF) += epf/
obj-$(CONFIG_NTB_SWITCHTEC) += mscc/

View File

@ -0,0 +1,6 @@
config NTB_EPF
tristate "Generic EPF Non-Transparent Bridge support"
depends on m
help
This driver supports EPF NTB on configurable endpoint.
If unsure, say N.

View File

@ -0,0 +1 @@
obj-$(CONFIG_NTB_EPF) += ntb_hw_epf.o

View File

@ -0,0 +1,753 @@
// SPDX-License-Identifier: GPL-2.0
/**
* Host side endpoint driver to implement Non-Transparent Bridge functionality
*
* Copyright (C) 2020 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/ntb.h>
#define NTB_EPF_COMMAND 0x0
#define CMD_CONFIGURE_DOORBELL 1
#define CMD_TEARDOWN_DOORBELL 2
#define CMD_CONFIGURE_MW 3
#define CMD_TEARDOWN_MW 4
#define CMD_LINK_UP 5
#define CMD_LINK_DOWN 6
#define NTB_EPF_ARGUMENT 0x4
#define MSIX_ENABLE BIT(16)
#define NTB_EPF_CMD_STATUS 0x8
#define COMMAND_STATUS_OK 1
#define COMMAND_STATUS_ERROR 2
#define NTB_EPF_LINK_STATUS 0x0A
#define LINK_STATUS_UP BIT(0)
#define NTB_EPF_TOPOLOGY 0x0C
#define NTB_EPF_LOWER_ADDR 0x10
#define NTB_EPF_UPPER_ADDR 0x14
#define NTB_EPF_LOWER_SIZE 0x18
#define NTB_EPF_UPPER_SIZE 0x1C
#define NTB_EPF_MW_COUNT 0x20
#define NTB_EPF_MW1_OFFSET 0x24
#define NTB_EPF_SPAD_OFFSET 0x28
#define NTB_EPF_SPAD_COUNT 0x2C
#define NTB_EPF_DB_ENTRY_SIZE 0x30
#define NTB_EPF_DB_DATA(n) (0x34 + (n) * 4)
#define NTB_EPF_DB_OFFSET(n) (0xB4 + (n) * 4)
#define NTB_EPF_MIN_DB_COUNT 3
#define NTB_EPF_MAX_DB_COUNT 31
#define NTB_EPF_MW_OFFSET 2
#define NTB_EPF_COMMAND_TIMEOUT 1000 /* 1 Sec */
enum pci_barno {
BAR_0,
BAR_1,
BAR_2,
BAR_3,
BAR_4,
BAR_5,
};
struct ntb_epf_dev {
struct ntb_dev ntb;
struct device *dev;
/* Mutex to protect providing commands to NTB EPF */
struct mutex cmd_lock;
enum pci_barno ctrl_reg_bar;
enum pci_barno peer_spad_reg_bar;
enum pci_barno db_reg_bar;
unsigned int mw_count;
unsigned int spad_count;
unsigned int db_count;
void __iomem *ctrl_reg;
void __iomem *db_reg;
void __iomem *peer_spad_reg;
unsigned int self_spad;
unsigned int peer_spad;
int db_val;
u64 db_valid_mask;
};
#define ntb_ndev(__ntb) container_of(__ntb, struct ntb_epf_dev, ntb)
struct ntb_epf_data {
/* BAR that contains both control region and self spad region */
enum pci_barno ctrl_reg_bar;
/* BAR that contains peer spad region */
enum pci_barno peer_spad_reg_bar;
/* BAR that contains Doorbell region and Memory window '1' */
enum pci_barno db_reg_bar;
};
static int ntb_epf_send_command(struct ntb_epf_dev *ndev, u32 command,
u32 argument)
{
ktime_t timeout;
bool timedout;
int ret = 0;
u32 status;
mutex_lock(&ndev->cmd_lock);
writel(argument, ndev->ctrl_reg + NTB_EPF_ARGUMENT);
writel(command, ndev->ctrl_reg + NTB_EPF_COMMAND);
timeout = ktime_add_ms(ktime_get(), NTB_EPF_COMMAND_TIMEOUT);
while (1) {
timedout = ktime_after(ktime_get(), timeout);
status = readw(ndev->ctrl_reg + NTB_EPF_CMD_STATUS);
if (status == COMMAND_STATUS_ERROR) {
ret = -EINVAL;
break;
}
if (status == COMMAND_STATUS_OK)
break;
if (WARN_ON(timedout)) {
ret = -ETIMEDOUT;
break;
}
usleep_range(5, 10);
}
writew(0, ndev->ctrl_reg + NTB_EPF_CMD_STATUS);
mutex_unlock(&ndev->cmd_lock);
return ret;
}
static int ntb_epf_mw_to_bar(struct ntb_epf_dev *ndev, int idx)
{
struct device *dev = ndev->dev;
if (idx < 0 || idx > ndev->mw_count) {
dev_err(dev, "Unsupported Memory Window index %d\n", idx);
return -EINVAL;
}
return idx + 2;
}
static int ntb_epf_mw_count(struct ntb_dev *ntb, int pidx)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
if (pidx != NTB_DEF_PEER_IDX) {
dev_err(dev, "Unsupported Peer ID %d\n", pidx);
return -EINVAL;
}
return ndev->mw_count;
}
static int ntb_epf_mw_get_align(struct ntb_dev *ntb, int pidx, int idx,
resource_size_t *addr_align,
resource_size_t *size_align,
resource_size_t *size_max)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
int bar;
if (pidx != NTB_DEF_PEER_IDX) {
dev_err(dev, "Unsupported Peer ID %d\n", pidx);
return -EINVAL;
}
bar = ntb_epf_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
if (addr_align)
*addr_align = SZ_4K;
if (size_align)
*size_align = 1;
if (size_max)
*size_max = pci_resource_len(ndev->ntb.pdev, bar);
return 0;
}
static u64 ntb_epf_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed,
enum ntb_width *width)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
u32 status;
status = readw(ndev->ctrl_reg + NTB_EPF_LINK_STATUS);
return status & LINK_STATUS_UP;
}
static u32 ntb_epf_spad_read(struct ntb_dev *ntb, int idx)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count) {
dev_err(dev, "READ: Invalid ScratchPad Index %d\n", idx);
return 0;
}
offset = readl(ndev->ctrl_reg + NTB_EPF_SPAD_OFFSET);
offset += (idx << 2);
return readl(ndev->ctrl_reg + offset);
}
static int ntb_epf_spad_write(struct ntb_dev *ntb,
int idx, u32 val)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
u32 offset;
if (idx < 0 || idx >= ndev->spad_count) {
dev_err(dev, "WRITE: Invalid ScratchPad Index %d\n", idx);
return -EINVAL;
}
offset = readl(ndev->ctrl_reg + NTB_EPF_SPAD_OFFSET);
offset += (idx << 2);
writel(val, ndev->ctrl_reg + offset);
return 0;
}
static u32 ntb_epf_peer_spad_read(struct ntb_dev *ntb, int pidx, int idx)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
u32 offset;
if (pidx != NTB_DEF_PEER_IDX) {
dev_err(dev, "Unsupported Peer ID %d\n", pidx);
return -EINVAL;
}
if (idx < 0 || idx >= ndev->spad_count) {
dev_err(dev, "WRITE: Invalid Peer ScratchPad Index %d\n", idx);
return -EINVAL;
}
offset = (idx << 2);
return readl(ndev->peer_spad_reg + offset);
}
static int ntb_epf_peer_spad_write(struct ntb_dev *ntb, int pidx,
int idx, u32 val)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
u32 offset;
if (pidx != NTB_DEF_PEER_IDX) {
dev_err(dev, "Unsupported Peer ID %d\n", pidx);
return -EINVAL;
}
if (idx < 0 || idx >= ndev->spad_count) {
dev_err(dev, "WRITE: Invalid Peer ScratchPad Index %d\n", idx);
return -EINVAL;
}
offset = (idx << 2);
writel(val, ndev->peer_spad_reg + offset);
return 0;
}
static int ntb_epf_link_enable(struct ntb_dev *ntb,
enum ntb_speed max_speed,
enum ntb_width max_width)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
int ret;
ret = ntb_epf_send_command(ndev, CMD_LINK_UP, 0);
if (ret) {
dev_err(dev, "Fail to enable link\n");
return ret;
}
return 0;
}
static int ntb_epf_link_disable(struct ntb_dev *ntb)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
int ret;
ret = ntb_epf_send_command(ndev, CMD_LINK_DOWN, 0);
if (ret) {
dev_err(dev, "Fail to disable link\n");
return ret;
}
return 0;
}
static irqreturn_t ntb_epf_vec_isr(int irq, void *dev)
{
struct ntb_epf_dev *ndev = dev;
int irq_no;
irq_no = irq - pci_irq_vector(ndev->ntb.pdev, 0);
ndev->db_val = irq_no + 1;
if (irq_no == 0)
ntb_link_event(&ndev->ntb);
else
ntb_db_event(&ndev->ntb, irq_no);
return IRQ_HANDLED;
}
static int ntb_epf_init_isr(struct ntb_epf_dev *ndev, int msi_min, int msi_max)
{
struct pci_dev *pdev = ndev->ntb.pdev;
struct device *dev = ndev->dev;
u32 argument = MSIX_ENABLE;
int irq;
int ret;
int i;
irq = pci_alloc_irq_vectors(pdev, msi_min, msi_max, PCI_IRQ_MSIX);
if (irq < 0) {
dev_dbg(dev, "Failed to get MSIX interrupts\n");
irq = pci_alloc_irq_vectors(pdev, msi_min, msi_max,
PCI_IRQ_MSI);
if (irq < 0) {
dev_err(dev, "Failed to get MSI interrupts\n");
return irq;
}
argument &= ~MSIX_ENABLE;
}
for (i = 0; i < irq; i++) {
ret = request_irq(pci_irq_vector(pdev, i), ntb_epf_vec_isr,
0, "ntb_epf", ndev);
if (ret) {
dev_err(dev, "Failed to request irq\n");
goto err_request_irq;
}
}
ndev->db_count = irq - 1;
ret = ntb_epf_send_command(ndev, CMD_CONFIGURE_DOORBELL,
argument | irq);
if (ret) {
dev_err(dev, "Failed to configure doorbell\n");
goto err_configure_db;
}
return 0;
err_configure_db:
for (i = 0; i < ndev->db_count + 1; i++)
free_irq(pci_irq_vector(pdev, i), ndev);
err_request_irq:
pci_free_irq_vectors(pdev);
return ret;
}
static int ntb_epf_peer_mw_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->mw_count;
}
static int ntb_epf_spad_count(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->spad_count;
}
static u64 ntb_epf_db_valid_mask(struct ntb_dev *ntb)
{
return ntb_ndev(ntb)->db_valid_mask;
}
static int ntb_epf_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
{
return 0;
}
static int ntb_epf_mw_set_trans(struct ntb_dev *ntb, int pidx, int idx,
dma_addr_t addr, resource_size_t size)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
resource_size_t mw_size;
int bar;
if (pidx != NTB_DEF_PEER_IDX) {
dev_err(dev, "Unsupported Peer ID %d\n", pidx);
return -EINVAL;
}
bar = idx + NTB_EPF_MW_OFFSET;
mw_size = pci_resource_len(ntb->pdev, bar);
if (size > mw_size) {
dev_err(dev, "Size:%pa is greater than the MW size %pa\n",
&size, &mw_size);
return -EINVAL;
}
writel(lower_32_bits(addr), ndev->ctrl_reg + NTB_EPF_LOWER_ADDR);
writel(upper_32_bits(addr), ndev->ctrl_reg + NTB_EPF_UPPER_ADDR);
writel(lower_32_bits(size), ndev->ctrl_reg + NTB_EPF_LOWER_SIZE);
writel(upper_32_bits(size), ndev->ctrl_reg + NTB_EPF_UPPER_SIZE);
ntb_epf_send_command(ndev, CMD_CONFIGURE_MW, idx);
return 0;
}
static int ntb_epf_mw_clear_trans(struct ntb_dev *ntb, int pidx, int idx)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
struct device *dev = ndev->dev;
int ret = 0;
ntb_epf_send_command(ndev, CMD_TEARDOWN_MW, idx);
if (ret)
dev_err(dev, "Failed to teardown memory window\n");
return ret;
}
static int ntb_epf_peer_mw_get_addr(struct ntb_dev *ntb, int idx,
phys_addr_t *base, resource_size_t *size)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
u32 offset = 0;
int bar;
if (idx == 0)
offset = readl(ndev->ctrl_reg + NTB_EPF_MW1_OFFSET);
bar = idx + NTB_EPF_MW_OFFSET;
if (base)
*base = pci_resource_start(ndev->ntb.pdev, bar) + offset;
if (size)
*size = pci_resource_len(ndev->ntb.pdev, bar) - offset;
return 0;
}
static int ntb_epf_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
u32 interrupt_num = ffs(db_bits) + 1;
struct device *dev = ndev->dev;
u32 db_entry_size;
u32 db_offset;
u32 db_data;
if (interrupt_num > ndev->db_count) {
dev_err(dev, "DB interrupt %d greater than Max Supported %d\n",
interrupt_num, ndev->db_count);
return -EINVAL;
}
db_entry_size = readl(ndev->ctrl_reg + NTB_EPF_DB_ENTRY_SIZE);
db_data = readl(ndev->ctrl_reg + NTB_EPF_DB_DATA(interrupt_num));
db_offset = readl(ndev->ctrl_reg + NTB_EPF_DB_OFFSET(interrupt_num));
writel(db_data, ndev->db_reg + (db_entry_size * interrupt_num) +
db_offset);
return 0;
}
static u64 ntb_epf_db_read(struct ntb_dev *ntb)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
return ndev->db_val;
}
static int ntb_epf_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
{
return 0;
}
static int ntb_epf_db_clear(struct ntb_dev *ntb, u64 db_bits)
{
struct ntb_epf_dev *ndev = ntb_ndev(ntb);
ndev->db_val = 0;
return 0;
}
static const struct ntb_dev_ops ntb_epf_ops = {
.mw_count = ntb_epf_mw_count,
.spad_count = ntb_epf_spad_count,
.peer_mw_count = ntb_epf_peer_mw_count,
.db_valid_mask = ntb_epf_db_valid_mask,
.db_set_mask = ntb_epf_db_set_mask,
.mw_set_trans = ntb_epf_mw_set_trans,
.mw_clear_trans = ntb_epf_mw_clear_trans,
.peer_mw_get_addr = ntb_epf_peer_mw_get_addr,
.link_enable = ntb_epf_link_enable,
.spad_read = ntb_epf_spad_read,
.spad_write = ntb_epf_spad_write,
.peer_spad_read = ntb_epf_peer_spad_read,
.peer_spad_write = ntb_epf_peer_spad_write,
.peer_db_set = ntb_epf_peer_db_set,
.db_read = ntb_epf_db_read,
.mw_get_align = ntb_epf_mw_get_align,
.link_is_up = ntb_epf_link_is_up,
.db_clear_mask = ntb_epf_db_clear_mask,
.db_clear = ntb_epf_db_clear,
.link_disable = ntb_epf_link_disable,
};
static inline void ntb_epf_init_struct(struct ntb_epf_dev *ndev,
struct pci_dev *pdev)
{
ndev->ntb.pdev = pdev;
ndev->ntb.topo = NTB_TOPO_NONE;
ndev->ntb.ops = &ntb_epf_ops;
}
static int ntb_epf_init_dev(struct ntb_epf_dev *ndev)
{
struct device *dev = ndev->dev;
int ret;
/* One Link interrupt and rest doorbell interrupt */
ret = ntb_epf_init_isr(ndev, NTB_EPF_MIN_DB_COUNT + 1,
NTB_EPF_MAX_DB_COUNT + 1);
if (ret) {
dev_err(dev, "Failed to init ISR\n");
return ret;
}
ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
ndev->mw_count = readl(ndev->ctrl_reg + NTB_EPF_MW_COUNT);
ndev->spad_count = readl(ndev->ctrl_reg + NTB_EPF_SPAD_COUNT);
return 0;
}
static int ntb_epf_init_pci(struct ntb_epf_dev *ndev,
struct pci_dev *pdev)
{
struct device *dev = ndev->dev;
int ret;
pci_set_drvdata(pdev, ndev);
ret = pci_enable_device(pdev);
if (ret) {
dev_err(dev, "Cannot enable PCI device\n");
goto err_pci_enable;
}
ret = pci_request_regions(pdev, "ntb");
if (ret) {
dev_err(dev, "Cannot obtain PCI resources\n");
goto err_pci_regions;
}
pci_set_master(pdev);
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "Cannot set DMA mask\n");
goto err_dma_mask;
}
dev_warn(&pdev->dev, "Cannot DMA highmem\n");
}
ndev->ctrl_reg = pci_iomap(pdev, ndev->ctrl_reg_bar, 0);
if (!ndev->ctrl_reg) {
ret = -EIO;
goto err_dma_mask;
}
ndev->peer_spad_reg = pci_iomap(pdev, ndev->peer_spad_reg_bar, 0);
if (!ndev->peer_spad_reg) {
ret = -EIO;
goto err_dma_mask;
}
ndev->db_reg = pci_iomap(pdev, ndev->db_reg_bar, 0);
if (!ndev->db_reg) {
ret = -EIO;
goto err_dma_mask;
}
return 0;
err_dma_mask:
pci_clear_master(pdev);
err_pci_regions:
pci_disable_device(pdev);
err_pci_enable:
pci_set_drvdata(pdev, NULL);
return ret;
}
static void ntb_epf_deinit_pci(struct ntb_epf_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
pci_iounmap(pdev, ndev->ctrl_reg);
pci_iounmap(pdev, ndev->peer_spad_reg);
pci_iounmap(pdev, ndev->db_reg);
pci_clear_master(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static void ntb_epf_cleanup_isr(struct ntb_epf_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
int i;
ntb_epf_send_command(ndev, CMD_TEARDOWN_DOORBELL, ndev->db_count + 1);
for (i = 0; i < ndev->db_count + 1; i++)
free_irq(pci_irq_vector(pdev, i), ndev);
pci_free_irq_vectors(pdev);
}
static int ntb_epf_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
enum pci_barno peer_spad_reg_bar = BAR_1;
enum pci_barno ctrl_reg_bar = BAR_0;
enum pci_barno db_reg_bar = BAR_2;
struct device *dev = &pdev->dev;
struct ntb_epf_data *data;
struct ntb_epf_dev *ndev;
int ret;
if (pci_is_bridge(pdev))
return -ENODEV;
ndev = devm_kzalloc(dev, sizeof(*ndev), GFP_KERNEL);
if (!ndev)
return -ENOMEM;
data = (struct ntb_epf_data *)id->driver_data;
if (data) {
if (data->peer_spad_reg_bar)
peer_spad_reg_bar = data->peer_spad_reg_bar;
if (data->ctrl_reg_bar)
ctrl_reg_bar = data->ctrl_reg_bar;
if (data->db_reg_bar)
db_reg_bar = data->db_reg_bar;
}
ndev->peer_spad_reg_bar = peer_spad_reg_bar;
ndev->ctrl_reg_bar = ctrl_reg_bar;
ndev->db_reg_bar = db_reg_bar;
ndev->dev = dev;
ntb_epf_init_struct(ndev, pdev);
mutex_init(&ndev->cmd_lock);
ret = ntb_epf_init_pci(ndev, pdev);
if (ret) {
dev_err(dev, "Failed to init PCI\n");
return ret;
}
ret = ntb_epf_init_dev(ndev);
if (ret) {
dev_err(dev, "Failed to init device\n");
goto err_init_dev;
}
ret = ntb_register_device(&ndev->ntb);
if (ret) {
dev_err(dev, "Failed to register NTB device\n");
goto err_register_dev;
}
return 0;
err_register_dev:
ntb_epf_cleanup_isr(ndev);
err_init_dev:
ntb_epf_deinit_pci(ndev);
return ret;
}
static void ntb_epf_pci_remove(struct pci_dev *pdev)
{
struct ntb_epf_dev *ndev = pci_get_drvdata(pdev);
ntb_unregister_device(&ndev->ntb);
ntb_epf_cleanup_isr(ndev);
ntb_epf_deinit_pci(ndev);
}
static const struct ntb_epf_data j721e_data = {
.ctrl_reg_bar = BAR_0,
.peer_spad_reg_bar = BAR_1,
.db_reg_bar = BAR_2,
};
static const struct pci_device_id ntb_epf_pci_tbl[] = {
{
PCI_DEVICE(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_J721E),
.class = PCI_CLASS_MEMORY_RAM << 8, .class_mask = 0xffff00,
.driver_data = (kernel_ulong_t)&j721e_data,
},
{ },
};
static struct pci_driver ntb_epf_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = ntb_epf_pci_tbl,
.probe = ntb_epf_pci_probe,
.remove = ntb_epf_pci_remove,
};
module_pci_driver(ntb_epf_pci_driver);
MODULE_DESCRIPTION("PCI ENDPOINT NTB HOST DRIVER");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
MODULE_LICENSE("GPL v2");

View File

@ -382,6 +382,57 @@ static int cdns_pcie_ep_send_msi_irq(struct cdns_pcie_ep *ep, u8 fn,
return 0;
}
static int cdns_pcie_ep_map_msi_irq(struct pci_epc *epc, u8 fn,
phys_addr_t addr, u8 interrupt_num,
u32 entry_size, u32 *msi_data,
u32 *msi_addr_offset)
{
struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
struct cdns_pcie *pcie = &ep->pcie;
u64 pci_addr, pci_addr_mask = 0xff;
u16 flags, mme, data, data_mask;
u8 msi_count;
int ret;
int i;
/* Check whether the MSI feature has been enabled by the PCI host. */
flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
if (!(flags & PCI_MSI_FLAGS_ENABLE))
return -EINVAL;
/* Get the number of enabled MSIs */
mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4;
msi_count = 1 << mme;
if (!interrupt_num || interrupt_num > msi_count)
return -EINVAL;
/* Compute the data value to be written. */
data_mask = msi_count - 1;
data = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_DATA_64);
data = data & ~data_mask;
/* Get the PCI address where to write the data into. */
pci_addr = cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_HI);
pci_addr <<= 32;
pci_addr |= cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_LO);
pci_addr &= GENMASK_ULL(63, 2);
for (i = 0; i < interrupt_num; i++) {
ret = cdns_pcie_ep_map_addr(epc, fn, addr,
pci_addr & ~pci_addr_mask,
entry_size);
if (ret)
return ret;
addr = addr + entry_size;
}
*msi_data = data;
*msi_addr_offset = pci_addr & pci_addr_mask;
return 0;
}
static int cdns_pcie_ep_send_msix_irq(struct cdns_pcie_ep *ep, u8 fn,
u16 interrupt_num)
{
@ -455,18 +506,13 @@ static int cdns_pcie_ep_start(struct pci_epc *epc)
struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
struct cdns_pcie *pcie = &ep->pcie;
struct device *dev = pcie->dev;
struct pci_epf *epf;
u32 cfg;
int ret;
/*
* BIT(0) is hardwired to 1, hence function 0 is always enabled
* and can't be disabled anyway.
*/
cfg = BIT(0);
list_for_each_entry(epf, &epc->pci_epf, list)
cfg |= BIT(epf->func_no);
cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, cfg);
cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, epc->function_num_map);
ret = cdns_pcie_start_link(pcie);
if (ret) {
@ -481,6 +527,7 @@ static const struct pci_epc_features cdns_pcie_epc_features = {
.linkup_notifier = false,
.msi_capable = true,
.msix_capable = true,
.align = 256,
};
static const struct pci_epc_features*
@ -500,6 +547,7 @@ static const struct pci_epc_ops cdns_pcie_epc_ops = {
.set_msix = cdns_pcie_ep_set_msix,
.get_msix = cdns_pcie_ep_get_msix,
.raise_irq = cdns_pcie_ep_raise_irq,
.map_msi_irq = cdns_pcie_ep_map_msi_irq,
.start = cdns_pcie_ep_start,
.get_features = cdns_pcie_ep_get_features,
};

View File

@ -12,3 +12,16 @@ config PCI_EPF_TEST
for PCI Endpoint.
If in doubt, say "N" to disable Endpoint test driver.
config PCI_EPF_NTB
tristate "PCI Endpoint NTB driver"
depends on PCI_ENDPOINT
select CONFIGFS_FS
help
Select this configuration option to enable the Non-Transparent
Bridge (NTB) driver for PCI Endpoint. NTB driver implements NTB
controller functionality using multiple PCIe endpoint instances.
It can support NTB endpoint function devices created using
device tree.
If in doubt, say "N" to disable Endpoint NTB driver.

View File

@ -4,3 +4,4 @@
#
obj-$(CONFIG_PCI_EPF_TEST) += pci-epf-test.o
obj-$(CONFIG_PCI_EPF_NTB) += pci-epf-ntb.o

File diff suppressed because it is too large Load Diff

View File

@ -619,7 +619,8 @@ static void pci_epf_test_unbind(struct pci_epf *epf)
if (epf_test->reg[bar]) {
pci_epc_clear_bar(epc, epf->func_no, epf_bar);
pci_epf_free_space(epf, epf_test->reg[bar], bar);
pci_epf_free_space(epf, epf_test->reg[bar], bar,
PRIMARY_INTERFACE);
}
}
}
@ -651,7 +652,8 @@ static int pci_epf_test_set_bar(struct pci_epf *epf)
ret = pci_epc_set_bar(epc, epf->func_no, epf_bar);
if (ret) {
pci_epf_free_space(epf, epf_test->reg[bar], bar);
pci_epf_free_space(epf, epf_test->reg[bar], bar,
PRIMARY_INTERFACE);
dev_err(dev, "Failed to set BAR%d\n", bar);
if (bar == test_reg_bar)
return ret;
@ -771,7 +773,7 @@ static int pci_epf_test_alloc_space(struct pci_epf *epf)
}
base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
epc_features->align);
epc_features->align, PRIMARY_INTERFACE);
if (!base) {
dev_err(dev, "Failed to allocated register space\n");
return -ENOMEM;
@ -789,7 +791,8 @@ static int pci_epf_test_alloc_space(struct pci_epf *epf)
continue;
base = pci_epf_alloc_space(epf, bar_size[bar], bar,
epc_features->align);
epc_features->align,
PRIMARY_INTERFACE);
if (!base)
dev_err(dev, "Failed to allocate space for BAR%d\n",
bar);
@ -834,6 +837,8 @@ static int pci_epf_test_bind(struct pci_epf *epf)
linkup_notifier = epc_features->linkup_notifier;
core_init_notifier = epc_features->core_init_notifier;
test_reg_bar = pci_epc_get_first_free_bar(epc_features);
if (test_reg_bar < 0)
return -EINVAL;
pci_epf_configure_bar(epf, epc_features);
}

View File

@ -21,6 +21,9 @@ static struct config_group *controllers_group;
struct pci_epf_group {
struct config_group group;
struct config_group primary_epc_group;
struct config_group secondary_epc_group;
struct delayed_work cfs_work;
struct pci_epf *epf;
int index;
};
@ -41,6 +44,127 @@ static inline struct pci_epc_group *to_pci_epc_group(struct config_item *item)
return container_of(to_config_group(item), struct pci_epc_group, group);
}
static int pci_secondary_epc_epf_link(struct config_item *epf_item,
struct config_item *epc_item)
{
int ret;
struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent);
struct pci_epc_group *epc_group = to_pci_epc_group(epc_item);
struct pci_epc *epc = epc_group->epc;
struct pci_epf *epf = epf_group->epf;
ret = pci_epc_add_epf(epc, epf, SECONDARY_INTERFACE);
if (ret)
return ret;
ret = pci_epf_bind(epf);
if (ret) {
pci_epc_remove_epf(epc, epf, SECONDARY_INTERFACE);
return ret;
}
return 0;
}
static void pci_secondary_epc_epf_unlink(struct config_item *epc_item,
struct config_item *epf_item)
{
struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent);
struct pci_epc_group *epc_group = to_pci_epc_group(epc_item);
struct pci_epc *epc;
struct pci_epf *epf;
WARN_ON_ONCE(epc_group->start);
epc = epc_group->epc;
epf = epf_group->epf;
pci_epf_unbind(epf);
pci_epc_remove_epf(epc, epf, SECONDARY_INTERFACE);
}
static struct configfs_item_operations pci_secondary_epc_item_ops = {
.allow_link = pci_secondary_epc_epf_link,
.drop_link = pci_secondary_epc_epf_unlink,
};
static const struct config_item_type pci_secondary_epc_type = {
.ct_item_ops = &pci_secondary_epc_item_ops,
.ct_owner = THIS_MODULE,
};
static struct config_group
*pci_ep_cfs_add_secondary_group(struct pci_epf_group *epf_group)
{
struct config_group *secondary_epc_group;
secondary_epc_group = &epf_group->secondary_epc_group;
config_group_init_type_name(secondary_epc_group, "secondary",
&pci_secondary_epc_type);
configfs_register_group(&epf_group->group, secondary_epc_group);
return secondary_epc_group;
}
static int pci_primary_epc_epf_link(struct config_item *epf_item,
struct config_item *epc_item)
{
int ret;
struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent);
struct pci_epc_group *epc_group = to_pci_epc_group(epc_item);
struct pci_epc *epc = epc_group->epc;
struct pci_epf *epf = epf_group->epf;
ret = pci_epc_add_epf(epc, epf, PRIMARY_INTERFACE);
if (ret)
return ret;
ret = pci_epf_bind(epf);
if (ret) {
pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE);
return ret;
}
return 0;
}
static void pci_primary_epc_epf_unlink(struct config_item *epc_item,
struct config_item *epf_item)
{
struct pci_epf_group *epf_group = to_pci_epf_group(epf_item->ci_parent);
struct pci_epc_group *epc_group = to_pci_epc_group(epc_item);
struct pci_epc *epc;
struct pci_epf *epf;
WARN_ON_ONCE(epc_group->start);
epc = epc_group->epc;
epf = epf_group->epf;
pci_epf_unbind(epf);
pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE);
}
static struct configfs_item_operations pci_primary_epc_item_ops = {
.allow_link = pci_primary_epc_epf_link,
.drop_link = pci_primary_epc_epf_unlink,
};
static const struct config_item_type pci_primary_epc_type = {
.ct_item_ops = &pci_primary_epc_item_ops,
.ct_owner = THIS_MODULE,
};
static struct config_group
*pci_ep_cfs_add_primary_group(struct pci_epf_group *epf_group)
{
struct config_group *primary_epc_group = &epf_group->primary_epc_group;
config_group_init_type_name(primary_epc_group, "primary",
&pci_primary_epc_type);
configfs_register_group(&epf_group->group, primary_epc_group);
return primary_epc_group;
}
static ssize_t pci_epc_start_store(struct config_item *item, const char *page,
size_t len)
{
@ -94,13 +218,13 @@ static int pci_epc_epf_link(struct config_item *epc_item,
struct pci_epc *epc = epc_group->epc;
struct pci_epf *epf = epf_group->epf;
ret = pci_epc_add_epf(epc, epf);
ret = pci_epc_add_epf(epc, epf, PRIMARY_INTERFACE);
if (ret)
return ret;
ret = pci_epf_bind(epf);
if (ret) {
pci_epc_remove_epf(epc, epf);
pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE);
return ret;
}
@ -120,7 +244,7 @@ static void pci_epc_epf_unlink(struct config_item *epc_item,
epc = epc_group->epc;
epf = epf_group->epf;
pci_epf_unbind(epf);
pci_epc_remove_epf(epc, epf);
pci_epc_remove_epf(epc, epf, PRIMARY_INTERFACE);
}
static struct configfs_item_operations pci_epc_item_ops = {
@ -366,12 +490,53 @@ static struct configfs_item_operations pci_epf_ops = {
.release = pci_epf_release,
};
static struct config_group *pci_epf_type_make(struct config_group *group,
const char *name)
{
struct pci_epf_group *epf_group = to_pci_epf_group(&group->cg_item);
struct config_group *epf_type_group;
epf_type_group = pci_epf_type_add_cfs(epf_group->epf, group);
return epf_type_group;
}
static void pci_epf_type_drop(struct config_group *group,
struct config_item *item)
{
config_item_put(item);
}
static struct configfs_group_operations pci_epf_type_group_ops = {
.make_group = &pci_epf_type_make,
.drop_item = &pci_epf_type_drop,
};
static const struct config_item_type pci_epf_type = {
.ct_group_ops = &pci_epf_type_group_ops,
.ct_item_ops = &pci_epf_ops,
.ct_attrs = pci_epf_attrs,
.ct_owner = THIS_MODULE,
};
static void pci_epf_cfs_work(struct work_struct *work)
{
struct pci_epf_group *epf_group;
struct config_group *group;
epf_group = container_of(work, struct pci_epf_group, cfs_work.work);
group = pci_ep_cfs_add_primary_group(epf_group);
if (IS_ERR(group)) {
pr_err("failed to create 'primary' EPC interface\n");
return;
}
group = pci_ep_cfs_add_secondary_group(epf_group);
if (IS_ERR(group)) {
pr_err("failed to create 'secondary' EPC interface\n");
return;
}
}
static struct config_group *pci_epf_make(struct config_group *group,
const char *name)
{
@ -410,10 +575,15 @@ static struct config_group *pci_epf_make(struct config_group *group,
goto free_name;
}
epf->group = &epf_group->group;
epf_group->epf = epf;
kfree(epf_name);
INIT_DELAYED_WORK(&epf_group->cfs_work, pci_epf_cfs_work);
queue_delayed_work(system_wq, &epf_group->cfs_work,
msecs_to_jiffies(1));
return &epf_group->group;
free_name:

View File

@ -87,24 +87,50 @@ EXPORT_SYMBOL_GPL(pci_epc_get);
* pci_epc_get_first_free_bar() - helper to get first unreserved BAR
* @epc_features: pci_epc_features structure that holds the reserved bar bitmap
*
* Invoke to get the first unreserved BAR that can be used for endpoint
* Invoke to get the first unreserved BAR that can be used by the endpoint
* function. For any incorrect value in reserved_bar return '0'.
*/
unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features
*epc_features)
enum pci_barno
pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
{
int free_bar;
return pci_epc_get_next_free_bar(epc_features, BAR_0);
}
EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
/**
* pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
* @epc_features: pci_epc_features structure that holds the reserved bar bitmap
* @bar: the starting BAR number from where unreserved BAR should be searched
*
* Invoke to get the next unreserved BAR starting from @bar that can be used
* for endpoint function. For any incorrect value in reserved_bar return '0'.
*/
enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
*epc_features, enum pci_barno bar)
{
unsigned long free_bar;
if (!epc_features)
return 0;
return BAR_0;
free_bar = ffz(epc_features->reserved_bar);
/* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
bar++;
/* Find if the reserved BAR is also a 64-bit BAR */
free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
/* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
free_bar <<= 1;
free_bar |= epc_features->reserved_bar;
free_bar = find_next_zero_bit(&free_bar, 6, bar);
if (free_bar > 5)
return 0;
return NO_BAR;
return free_bar;
}
EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
/**
* pci_epc_get_features() - get the features supported by EPC
@ -204,6 +230,47 @@ int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no,
}
EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
/**
* pci_epc_map_msi_irq() - Map physical address to MSI address and return
* MSI data
* @epc: the EPC device which has the MSI capability
* @func_no: the physical endpoint function number in the EPC device
* @phys_addr: the physical address of the outbound region
* @interrupt_num: the MSI interrupt number
* @entry_size: Size of Outbound address region for each interrupt
* @msi_data: the data that should be written in order to raise MSI interrupt
* with interrupt number as 'interrupt num'
* @msi_addr_offset: Offset of MSI address from the aligned outbound address
* to which the MSI address is mapped
*
* Invoke to map physical address to MSI address and return MSI data. The
* physical address should be an address in the outbound region. This is
* required to implement doorbell functionality of NTB wherein EPC on either
* side of the interface (primary and secondary) can directly write to the
* physical address (in outbound region) of the other interface to ring
* doorbell.
*/
int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, phys_addr_t phys_addr,
u8 interrupt_num, u32 entry_size, u32 *msi_data,
u32 *msi_addr_offset)
{
int ret;
if (IS_ERR_OR_NULL(epc))
return -EINVAL;
if (!epc->ops->map_msi_irq)
return -EINVAL;
mutex_lock(&epc->lock);
ret = epc->ops->map_msi_irq(epc, func_no, phys_addr, interrupt_num,
entry_size, msi_data, msi_addr_offset);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
/**
* pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
* @epc: the EPC device to which MSI interrupts was requested
@ -467,21 +534,28 @@ EXPORT_SYMBOL_GPL(pci_epc_write_header);
* pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
* @epc: the EPC device to which the endpoint function should be added
* @epf: the endpoint function to be added
* @type: Identifies if the EPC is connected to the primary or secondary
* interface of EPF
*
* A PCI endpoint device can have one or more functions. In the case of PCIe,
* the specification allows up to 8 PCIe endpoint functions. Invoke
* pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
*/
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf)
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
enum pci_epc_interface_type type)
{
struct list_head *list;
u32 func_no;
int ret = 0;
if (epf->epc)
if (IS_ERR_OR_NULL(epc))
return -EINVAL;
if (type == PRIMARY_INTERFACE && epf->epc)
return -EBUSY;
if (IS_ERR(epc))
return -EINVAL;
if (type == SECONDARY_INTERFACE && epf->sec_epc)
return -EBUSY;
mutex_lock(&epc->lock);
func_no = find_first_zero_bit(&epc->function_num_map,
@ -498,11 +572,17 @@ int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf)
}
set_bit(func_no, &epc->function_num_map);
epf->func_no = func_no;
epf->epc = epc;
list_add_tail(&epf->list, &epc->pci_epf);
if (type == PRIMARY_INTERFACE) {
epf->func_no = func_no;
epf->epc = epc;
list = &epf->list;
} else {
epf->sec_epc_func_no = func_no;
epf->sec_epc = epc;
list = &epf->sec_epc_list;
}
list_add_tail(list, &epc->pci_epf);
ret:
mutex_unlock(&epc->lock);
@ -517,14 +597,26 @@ EXPORT_SYMBOL_GPL(pci_epc_add_epf);
*
* Invoke to remove PCI endpoint function from the endpoint controller.
*/
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf)
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
enum pci_epc_interface_type type)
{
struct list_head *list;
u32 func_no = 0;
if (!epc || IS_ERR(epc) || !epf)
return;
if (type == PRIMARY_INTERFACE) {
func_no = epf->func_no;
list = &epf->list;
} else {
func_no = epf->sec_epc_func_no;
list = &epf->sec_epc_list;
}
mutex_lock(&epc->lock);
clear_bit(epf->func_no, &epc->function_num_map);
list_del(&epf->list);
clear_bit(func_no, &epc->function_num_map);
list_del(list);
epf->epc = NULL;
mutex_unlock(&epc->lock);
}

View File

@ -20,6 +20,38 @@ static DEFINE_MUTEX(pci_epf_mutex);
static struct bus_type pci_epf_bus_type;
static const struct device_type pci_epf_type;
/**
* pci_epf_type_add_cfs() - Help function drivers to expose function specific
* attributes in configfs
* @epf: the EPF device that has to be configured using configfs
* @group: the parent configfs group (corresponding to entries in
* pci_epf_device_id)
*
* Invoke to expose function specific attributes in configfs. If the function
* driver does not have anything to expose (attributes configured by user),
* return NULL.
*/
struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf,
struct config_group *group)
{
struct config_group *epf_type_group;
if (!epf->driver) {
dev_err(&epf->dev, "epf device not bound to driver\n");
return NULL;
}
if (!epf->driver->ops->add_cfs)
return NULL;
mutex_lock(&epf->lock);
epf_type_group = epf->driver->ops->add_cfs(epf, group);
mutex_unlock(&epf->lock);
return epf_type_group;
}
EXPORT_SYMBOL_GPL(pci_epf_type_add_cfs);
/**
* pci_epf_unbind() - Notify the function driver that the binding between the
* EPF device and EPC device has been lost
@ -74,24 +106,37 @@ EXPORT_SYMBOL_GPL(pci_epf_bind);
* @epf: the EPF device from whom to free the memory
* @addr: the virtual address of the PCI EPF register space
* @bar: the BAR number corresponding to the register space
* @type: Identifies if the allocated space is for primary EPC or secondary EPC
*
* Invoke to free the allocated PCI EPF register space.
*/
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar)
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
enum pci_epc_interface_type type)
{
struct device *dev = epf->epc->dev.parent;
struct pci_epf_bar *epf_bar;
struct pci_epc *epc;
if (!addr)
return;
dma_free_coherent(dev, epf->bar[bar].size, addr,
epf->bar[bar].phys_addr);
if (type == PRIMARY_INTERFACE) {
epc = epf->epc;
epf_bar = epf->bar;
} else {
epc = epf->sec_epc;
epf_bar = epf->sec_epc_bar;
}
epf->bar[bar].phys_addr = 0;
epf->bar[bar].addr = NULL;
epf->bar[bar].size = 0;
epf->bar[bar].barno = 0;
epf->bar[bar].flags = 0;
dev = epc->dev.parent;
dma_free_coherent(dev, epf_bar[bar].size, addr,
epf_bar[bar].phys_addr);
epf_bar[bar].phys_addr = 0;
epf_bar[bar].addr = NULL;
epf_bar[bar].size = 0;
epf_bar[bar].barno = 0;
epf_bar[bar].flags = 0;
}
EXPORT_SYMBOL_GPL(pci_epf_free_space);
@ -101,15 +146,18 @@ EXPORT_SYMBOL_GPL(pci_epf_free_space);
* @size: the size of the memory that has to be allocated
* @bar: the BAR number corresponding to the allocated register space
* @align: alignment size for the allocation region
* @type: Identifies if the allocation is for primary EPC or secondary EPC
*
* Invoke to allocate memory for the PCI EPF register space.
*/
void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
size_t align)
size_t align, enum pci_epc_interface_type type)
{
void *space;
struct device *dev = epf->epc->dev.parent;
struct pci_epf_bar *epf_bar;
dma_addr_t phys_addr;
struct pci_epc *epc;
struct device *dev;
void *space;
if (size < 128)
size = 128;
@ -119,17 +167,26 @@ void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
else
size = roundup_pow_of_two(size);
if (type == PRIMARY_INTERFACE) {
epc = epf->epc;
epf_bar = epf->bar;
} else {
epc = epf->sec_epc;
epf_bar = epf->sec_epc_bar;
}
dev = epc->dev.parent;
space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
if (!space) {
dev_err(dev, "failed to allocate mem space\n");
return NULL;
}
epf->bar[bar].phys_addr = phys_addr;
epf->bar[bar].addr = space;
epf->bar[bar].size = size;
epf->bar[bar].barno = bar;
epf->bar[bar].flags |= upper_32_bits(size) ?
epf_bar[bar].phys_addr = phys_addr;
epf_bar[bar].addr = space;
epf_bar[bar].size = size;
epf_bar[bar].barno = bar;
epf_bar[bar].flags |= upper_32_bits(size) ?
PCI_BASE_ADDRESS_MEM_TYPE_64 :
PCI_BASE_ADDRESS_MEM_TYPE_32;
@ -282,22 +339,6 @@ struct pci_epf *pci_epf_create(const char *name)
}
EXPORT_SYMBOL_GPL(pci_epf_create);
const struct pci_epf_device_id *
pci_epf_match_device(const struct pci_epf_device_id *id, struct pci_epf *epf)
{
if (!id || !epf)
return NULL;
while (*id->name) {
if (strcmp(epf->name, id->name) == 0)
return id;
id++;
}
return NULL;
}
EXPORT_SYMBOL_GPL(pci_epf_match_device);
static void pci_epf_dev_release(struct device *dev)
{
struct pci_epf *epf = to_pci_epf(dev);

View File

@ -13,6 +13,12 @@
struct pci_epc;
enum pci_epc_interface_type {
UNKNOWN_INTERFACE = -1,
PRIMARY_INTERFACE,
SECONDARY_INTERFACE,
};
enum pci_epc_irq_type {
PCI_EPC_IRQ_UNKNOWN,
PCI_EPC_IRQ_LEGACY,
@ -20,6 +26,19 @@ enum pci_epc_irq_type {
PCI_EPC_IRQ_MSIX,
};
static inline const char *
pci_epc_interface_string(enum pci_epc_interface_type type)
{
switch (type) {
case PRIMARY_INTERFACE:
return "primary";
case SECONDARY_INTERFACE:
return "secondary";
default:
return "UNKNOWN interface";
}
}
/**
* struct pci_epc_ops - set of function pointers for performing EPC operations
* @write_header: ops to populate configuration space header
@ -36,6 +55,7 @@ enum pci_epc_irq_type {
* @get_msix: ops to get the number of MSI-X interrupts allocated by the RC
* from the MSI-X capability register
* @raise_irq: ops to raise a legacy, MSI or MSI-X interrupt
* @map_msi_irq: ops to map physical address to MSI address and return MSI data
* @start: ops to start the PCI link
* @stop: ops to stop the PCI link
* @owner: the module owner containing the ops
@ -58,6 +78,10 @@ struct pci_epc_ops {
int (*get_msix)(struct pci_epc *epc, u8 func_no);
int (*raise_irq)(struct pci_epc *epc, u8 func_no,
enum pci_epc_irq_type type, u16 interrupt_num);
int (*map_msi_irq)(struct pci_epc *epc, u8 func_no,
phys_addr_t phys_addr, u8 interrupt_num,
u32 entry_size, u32 *msi_data,
u32 *msi_addr_offset);
int (*start)(struct pci_epc *epc);
void (*stop)(struct pci_epc *epc);
const struct pci_epc_features* (*get_features)(struct pci_epc *epc,
@ -175,10 +199,12 @@ __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
struct module *owner);
void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc);
void pci_epc_destroy(struct pci_epc *epc);
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf);
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
enum pci_epc_interface_type type);
void pci_epc_linkup(struct pci_epc *epc);
void pci_epc_init_notify(struct pci_epc *epc);
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf);
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
enum pci_epc_interface_type type);
int pci_epc_write_header(struct pci_epc *epc, u8 func_no,
struct pci_epf_header *hdr);
int pci_epc_set_bar(struct pci_epc *epc, u8 func_no,
@ -195,14 +221,19 @@ int pci_epc_get_msi(struct pci_epc *epc, u8 func_no);
int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u16 interrupts,
enum pci_barno, u32 offset);
int pci_epc_get_msix(struct pci_epc *epc, u8 func_no);
int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no,
phys_addr_t phys_addr, u8 interrupt_num,
u32 entry_size, u32 *msi_data, u32 *msi_addr_offset);
int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no,
enum pci_epc_irq_type type, u16 interrupt_num);
int pci_epc_start(struct pci_epc *epc);
void pci_epc_stop(struct pci_epc *epc);
const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
u8 func_no);
unsigned int pci_epc_get_first_free_bar(const struct pci_epc_features
*epc_features);
enum pci_barno
pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features);
enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
*epc_features, enum pci_barno bar);
struct pci_epc *pci_epc_get(const char *epc_name);
void pci_epc_put(struct pci_epc *epc);

View File

@ -9,11 +9,13 @@
#ifndef __LINUX_PCI_EPF_H
#define __LINUX_PCI_EPF_H
#include <linux/configfs.h>
#include <linux/device.h>
#include <linux/mod_devicetable.h>
#include <linux/pci.h>
struct pci_epf;
enum pci_epc_interface_type;
enum pci_notify_event {
CORE_INIT,
@ -21,6 +23,7 @@ enum pci_notify_event {
};
enum pci_barno {
NO_BAR = -1,
BAR_0,
BAR_1,
BAR_2,
@ -60,10 +63,13 @@ struct pci_epf_header {
* @bind: ops to perform when a EPC device has been bound to EPF device
* @unbind: ops to perform when a binding has been lost between a EPC device
* and EPF device
* @add_cfs: ops to initialize function specific configfs attributes
*/
struct pci_epf_ops {
int (*bind)(struct pci_epf *epf);
void (*unbind)(struct pci_epf *epf);
struct config_group *(*add_cfs)(struct pci_epf *epf,
struct config_group *group);
};
/**
@ -118,6 +124,12 @@ struct pci_epf_bar {
* @list: to add pci_epf as a list of PCI endpoint functions to pci_epc
* @nb: notifier block to notify EPF of any EPC events (like linkup)
* @lock: mutex to protect pci_epf_ops
* @sec_epc: the secondary EPC device to which this EPF device is bound
* @sec_epc_list: to add pci_epf as list of PCI endpoint functions to secondary
* EPC device
* @sec_epc_bar: represents the BAR of EPF device associated with secondary EPC
* @sec_epc_func_no: unique (physical) function number within the secondary EPC
* @group: configfs group associated with the EPF device
*/
struct pci_epf {
struct device dev;
@ -134,6 +146,13 @@ struct pci_epf {
struct notifier_block nb;
/* mutex to protect against concurrent access of pci_epf_ops */
struct mutex lock;
/* Below members are to attach secondary EPC to an endpoint function */
struct pci_epc *sec_epc;
struct list_head sec_epc_list;
struct pci_epf_bar sec_epc_bar[6];
u8 sec_epc_func_no;
struct config_group *group;
};
/**
@ -164,16 +183,17 @@ static inline void *epf_get_drvdata(struct pci_epf *epf)
return dev_get_drvdata(&epf->dev);
}
const struct pci_epf_device_id *
pci_epf_match_device(const struct pci_epf_device_id *id, struct pci_epf *epf);
struct pci_epf *pci_epf_create(const char *name);
void pci_epf_destroy(struct pci_epf *epf);
int __pci_epf_register_driver(struct pci_epf_driver *driver,
struct module *owner);
void pci_epf_unregister_driver(struct pci_epf_driver *driver);
void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
size_t align);
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar);
size_t align, enum pci_epc_interface_type type);
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
enum pci_epc_interface_type type);
int pci_epf_bind(struct pci_epf *epf);
void pci_epf_unbind(struct pci_epf *epf);
struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf,
struct config_group *group);
#endif /* __LINUX_PCI_EPF_H */

View File

@ -881,6 +881,7 @@
#define PCI_DEVICE_ID_TI_X620 0xac8d
#define PCI_DEVICE_ID_TI_X420 0xac8e
#define PCI_DEVICE_ID_TI_XX20_FM 0xac8f
#define PCI_DEVICE_ID_TI_J721E 0xb00d
#define PCI_DEVICE_ID_TI_DRA74x 0xb500
#define PCI_DEVICE_ID_TI_DRA72x 0xb501